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Abstract: Bistable metal shells with a fully closed unfolded geometry are of great interest as
lightweight construction parts which could be transported without housing and unfolded at the
construction place. In order to achieve the effect of bistability in metallic shells, residual stresses with a
specific distribution along the shell thickness are necessary. These residual stresses can be introduced
in bending processes. The tools with specific bending radii are used to influence the curvature of
the shell in the different stable states and thus determine whether a completely closed profile can be
achieved. In addition to the forming process, the shell thickness and the shell material have an effect
on the achievable geometries and stability. In order to manufacture bistable metallic cylindrical shells
from different materials and shell thicknesses, it is necessary to be able to determine a promising
process sequence and corresponding bending radii in advance. For this reason, this article presents a
semianalytical model for the calculation of bistability and final curvatures. This model is applied to
an incremental die-bending process using two bending operations with bending radii of 6 to 12 mm
and a 0.2 mm thick steel shell of grade 1.1274 (AISI 1095). The calculation results show that bistability
cannot be reached for all combinations of the two bending radii. Moreover, the model indicates that a
bistable and fully closed shell is only achieved for a bending radii combination of R1 = 6 mm and
R2 = 6 mm. With the aim of model verification, experiments with a closed-die incremental bending
tool were performed. Calculated and experimental results show good correlation regarding bistability
and curvature. In addition, X-ray diffraction measurement of the residual stresses shows a good
qualitative agreement regarding the calculated and experimental results.

Keywords: residual stresses; bistability; semianalytical model

1. Introduction

Bistable metallic shells have many applications as lightweight construction parts. Monostable
structures such as tape measures [1] or so-called storable tubular extendable member (STEM)
devices [2] require housings to keep the shell in coiled condition. On the contrary, bistable shells do
not need any housing to remain in coiled condition, which saves weight and reduces the size of the
device. Moreover, bistable fully closed metallic shells could substitute STEM devices in aerospace area
as antennas or solar array support structures. A schematic representation of such shells is shown in
Figure 1.
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Figure 1. Schematic representation of a fully closed bistable shell.

There are basically two different concepts in order to manufacture shells with bistable properties.
The first concept uses composite materials with several layers of different orientation to achieve
bistability. Employing this concept, bistable slit tubes were produced as described in [3]. Analytical
investigations on the effect of bistability of such structures are given by Galletly and Guest, using
beam [4] and shell [5] models, and He [6].

The second concept is based on introducing residual stresses into thin metallic shells to result
in a bistable behavior. A detailed description of the production of bistable metallic shells as
well as a corresponding basic analytical model is introduced by Kebadze et al. [7]. Also, in a
work of Norman et al. [8], multistable corrugated shells are described, which are achieved due to
interaction between residual stresses introduced during forming and nonlinear geometrical changes
during deformation.

Although there are several studies on bistable fully closed cylindrical shells made of composite
materials, there is still a lack of investigations on bistable metallic shells with a fully closed
deployed configuration.

The bistability of metallic shells could be achieved by plastic bending of the shell around two
perpendicular axes in opposite direction [9]. The incremental process concept is depicted in Figure 2a
and can be divided into three steps:

1. First incremental die-bending of the shell around the Y-axis with bending radius R1.
2. After springback, the shell is turned upside down and flattened by elastic bending.
3. Second incremental die-bending of the shell around the X-axis with bending radius R2.

Figure 2. Scheme of the production process of bistable shells (a) and schematic representation of
experimental setup (b) [9].

It should be mentioned that in a previous work [9], a bistable structure with a fully closed first
stable geometry was produced using an incremental die-bending setup (Figure 2b) with the bending
radii combination of R1 = R2 = 6 mm. The manufactured fully closed structure is shown in Figure 3
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and has a radius of 40.95 mm at the deployed (fully closed) configuration and a radius of 100.82 mm at
the folded configuration.

Figure 3. Bistable tube (produced by incremental die-bending with R1 = R2 = 6 mm) in deployed state
as the first stable state (a) and (partially) folded configuration as the second stable state (b) [9].

Besides experimental results, a process design was realized via an FE model of the bending
process in [9]. Using an implicit time integration scheme and S4R elements with an edge length of
0.5 mm, the die-bending process was simulated. The shell was bent along two opposite axes according
to the process concept mentioned above. The size of the shell part was 18 × 18 × 0.2 mm3 including
81 Simpsons integration points across the shell thickness. The contact conditions between shell and
bending tools were described by a “surface-to-surface” approach. All tool geometries were considered
to be rigid bodies.

Already in the numerical simulations, the bending radii combination of R1 = R2 = 6 mm was
identified as a promising concept. Despite the good qualitative agreement between simulation and
experiment, the quantitative results show a significant difference in prediction of the stable state radii.
There are also some considerable drawbacks in the FE model regarding simulation time. A change
of the shell thickness or the material and the corresponding material data requires an adaption of
the FE model. Moreover, an FE simulation takes about 20 min for calculation, which is too slow for
parameter studies with a big amount of variables. Thus, a previous determination of a promising
process sequence and corresponding bending radii for a wide range of materials and shell thickness
combinations is costly.

For this reason, this paper introduces a semi-analytic model for the determination of bistability
and curvature of metallic cylindrical shells. Therefore, a semianalytical model based on a kinematic
and isotropic hardening model proposed by Kebadze et al. [7] is enhanced. The derived model
can predict bistability of metallic shell structures as well as the values of stable state curvatures
based on the imposed bending radii. The model is validated by accompanying experiments with a
0.2 mm thick steel shell of grade 1.1274 (AISI 1095) including residual stress measurements within the
metastable geometries.

2. Semianalytical Model

2.1. Model Assumptions

In order to enable a fast calculation and to be able to solve the equations describing forming
during bending, a set of assumptions is applied. The assumptions made are referred to as the Bernoulli
assumptions and are used in various references [5,6]. The assumptions regarding bending of shell
metals applied in this work can be summarized as follows:

• Plane strain condition due to the large ratio of shell width to shell thickness.
• No stresses acting normal to the shell surface.
• Application of pure bending load.
• No change of the shell thickness during bending.
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• Neutral bending axis is always in the shell center.
• In tension and compression, the stress–strain characteristics of the material are the same.
• Planes perpendicular to the neutral axis stay perpendicular to this axis during bending.

2.2. Model Description

In order to describe the phenomenon of bistability, the semianalytical model needs to cover the
whole process of two subsequent bending operations over two different axes in two opposite directions.
The metastable states are identified by searching for a minimum of the bending moment resulting
from the residual stresses acting in longitudinal and transversal direction of the shell.

As a starting point, an already published model aiming at the production of bistable metallic
shells by Kebadze et al. [7] is used. The model introduced now enhances this model by considering
bending of already prebended and annealed cylindrical shells over perpendicular axis in opposite
direction and gives a more detailed description of the kinematic and isotropic material hardening
which are considered.

Contrary to the Kebadze et al. model [7], in the following paragraphs the model is explained
following the production process, starting with pure elastic bending of the flat unbent shell, moving
to elastic–plastic bending, first springback after unloading, second bending operation, including
elastic and plastic deformation, and final elastic springback. Moreover, for the model verification,
a 0.1 mm thick shell of annealed beryllium–copper with an initial yield stress of 650 MPa was used by
Kebadze et al. [7]. Along this explanation, equations given by Kebadze et al. [7] are stated as far as
they are necessary to understand the general concept. A more detailed description can be found in the
publication of Kebadze et al. [7] itself.

The preliminary experiments of manufacturing bistable metal shells using an incremental
die-bending process indicate that in case of equal bending radii in the two consecutive bending
operations, the springback radius after the second bending is always smaller than the springback radius
after the first bending. This can be attributed to the displacement of the yield locus instead of increasing
the yield locus and, therefore, to kinematic hardening. However, after switching between the first
and second stable state, the springback radii do not change. Therefore, no plastic deformation occurs
during the change between the stable states. Based on these observations, kinematic hardening in the
first bending operation followed by isotropic hardening in the second bending operation is assumed.
A similar approach is employed by Kebadze et al. [7], who refer to a work of Crisfield [10] regarding
details on the calculation scheme. Since this assumption satisfies the experimental observations, it will
be applied for the analytical model in a first step.

The whole chain of the bending process is depicted by means of the stress state and the von
Mises yield criterion in Figure 4. The yield locus represents the stresses on the surface of the shell.
Point A corresponds to the unstressed flat shell. After the start of the first bending over the Y-axis,
the shell initially deforms elastically until the stress state reaches point B. Subsequently, plastic forming
takes place until point C. After the first bending, the shell has the curvature of k1. During plastic
forming, kinematic hardening occurs and the yield locus is translated from the original position by an
amount equal to the vector of plastic stress accumulated during plastic forming. After plastic forming,
the material unloads linearly until point D, which corresponds to the springback configuration with
the shell curvature of ksb. After springback, the shell is bended further until the flat state (point E).
From the flattened state, the bending over the X-axis starts. This step also consists of elastic deformation
until point F and plastic forming until point G. After the second bending, the shell has the curvature
of k2. Unlike the first bending, plastic forming at the second bending operation leads to isotropic
hardening [7], and the yield locus grows. Point H corresponds to the springback configuration after
the second bending operation, which is equal to the first stable state with the shell curvature of k1.geom,y.
By bending the shell to the flat geometry (point I) and further bending in the opposite direction over
the Y-axis, the second stable state could be achieved at point J with the shell curvature of k2.geom,x.
In the next sections, this bending sequence will be described in detail for each single step.
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Figure 4. Yield locus displacement and stress path during bending operations.

It is defined that after first bending and springback along the Y-axis, the shell curvature is positive
(k1,x > 0). After bending the shell in reverse direction along the X-axis (k2,y < 0) and at the first stable
state, the curvature has a negative sign (k1.geom,y < 0). At the second stable state, when the shell is
bent along the Y-axis, the curvature again has a positive sign (k2.geom,x > 0). Taking this into account,
an assessment of the stability of the shell geometry becomes possible. If the first and second geometry
have an opposite sign in curvature other than defined, there is no stable geometry along the given axis,
and, correspondingly, the shell is not bistable.

2.2.1. Elastic Deformation during the First Bending

The stress state after the first bending σC could be divided into two parts: elastic stresses and
plastic stresses (Figure 5b). The starting point of the process is an elastic bending within the first
bending operation. In general, stresses and strains are considered in two dimensions according to
the above-mentioned assumptions. For means of simplification, a vector notation is used as given in
Equation (1).

σ =

[
σx

σy

]
and ε =

[
εx

εy

]
(1)

Figure 5. Shell geometry (a) and stress distribution along the shell thickness (b) after first bending.
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Due to the assumed similar stress–strain behavior of material under tension and compression,
only half of the shell thickness must be taken in account. The stresses on the other half could be
assumed the same, but with opposite sign.

Generally, the thickness of the shell at elastic and plastic part is divided into n layers each.
Accordingly, the stress state of each layer is calculated subsequently using 2n increments. For this
research, a value of n = 200 has been determined to give suitable results.

It is necessary to define the transition from elastic to elastic–plastic bending. Thus, a critical depth
measured from the neutral axis can be defined below which the shell does only deform elastically
under a given curvature (see Equation (2)).

zcr =
σ0
(
1− v2)

Ek1
√

1− v + v2
(2)

within this equation, E is the Young’s modulus, k1 is the first bending curvature, v is the Poisson’s
ratio, σ0 is the initial yield stress of the material, and z gives the distance from midsurface of the
shell. The maximum elastic strain and elastic strain increment follow accordingly and are given in
Equations (3) and (4).

εel = k1zcr (3)

∆εel =

[
k1· zcr

n
0

]
(4)

where n is the number of increments.
The accompanying stresses can be calculated via the material stiffness matrix C as stated in

Equations (5) and (6) [7].
σI,i = C∆εel (5)

C =
E

1− ν2 ·
[

1 v
v 1

]
(6)

2.2.2. Plastic Forming during the First Bending

In the Kebadze et al. model [7], the stress–strain relationship of the shell was represented as tabular
data. In this work, since the transition point between elastic and plastic bending is known, the stresses
under bending load are described via the extended Voce equation [11]. Furthermore, the equivalent
stress according to the von Mises yield criterion can be calculated utilizing Equation (7) [7].

σv =

√
σT Aσ

2
(7)

where A denotes the auxiliary matrix for the given stress state for pure bending (Equation (8) [7]).

A =

[
2 −1
−1 2

]
(8)

Knowing the stress state at which plastic forming starts, it is necessary to describe the evolution
of the stress state under load. The consistency criterion is applicable in that case and can be written in
the form according to Equation (9) [7].

f = σv − σ0 =

√
σT Aσ

2
− σ0 ≤ 0 (9)
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In order to describe the evolution of the yield locus, the so-called strain hardening parameter
H should be calculated (Equation (10) [7]). The strain hardening parameter consists of the tangent
modulus Et, which gives the slope of the yield locus at a given stress state.

H =
EEt

E− Et
(10)

In this work, the tangent modulus is derived by differentiating the extended Voce equation [11]
as stated in Equation (11).

Et =
∂σ
(

εpl

)
∂εpl

=
θ0

(
θ1εpl + σ1

)
e−

θ0ε pl
σ1

σ1
+ θ1

(
1− e−

θ0ε pl
σ1

)
(11)

where θ0 is the initial hardening rate, θ1 is the asymptotic hardening rate, and (σ0 + σ1) is the
back-extrapolated yield stress, with σ0 as the initial yield stress. After plastic forming starts, the stresses
acting on the material can be calculated with the help of the material tangent stiffness matrix as given
in Equation (12) [7].

Ct = C
(

I − aaTC
aTCa + H

)
(12)

within this equation, I denotes the 2 × 2 identity matrix, and a is the normal vector to the yield surface
(see Equation (13) [7]):

a =
Aσ

2σv
(13)

Along plastic forming, the direction of the tangent to the yield locus changes along with the
evolving stress state. Thus, it is necessary to conduct an iterative calculation of the change of the yield
locus. Therefore, the total plastic strain is divided in n increments. The plastic strain increment can be
calculated via Equation (14):

∆εpl =
(t/2− zcr)·k1

n
(14)

where t is the thickness of the shell. The given stress increment and the total stress under load can be
calculated according to Equations (15) and (16) [7]:

∆σpl = Ct∆εpl (15)

σI,i = σI,i−1 + ∆σpl (16)

The plastic stress distribution after first bending is shown in Figure 5b. The evolution of the
stress state is assumed to be caused by kinematic hardening. Thus, the evolution of the stress state
in direction of the normal to the tangent at the yield locus is imposed as a shift of the yield locus
from the origin of the stress space. This way, the back stress evolving during kinematic hardening
is equal to the vector of plastic stress accumulated during plastic forming (which is used as well
in the work of Kebadze et al. [7]). Thus, kinematic hardening can be described without using
material-dependent coefficients.

2.2.3. First Elastic Springback

The shell is in a mechanical equilibrium if one of the resulting bending moments per unit length,
induced by the residual stresses, is close to zero. The specific bending moments can be calculated as
given in Equation (17) [12]. (

mx

my

)
=

t
2∫

− t
2

(
σx(z)
σy(z)

)
zdz (17)
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within this equation, z gives the material thickness, mx and my are the resultant bending moments
per unit length in the unit Nmm/mm, and σx(z) and σy(z) are the residual stress distributions
along the given axes. In order to determine the remaining curvature after springback, the linear
relationship between bending moment and resulting shell curvature [12] can be applied according to
Equation (18) [13]:

m
k
=

1
3

E(t/2)3

(1− ν2)
(18)

where k is the shell curvature and m is the resultant bending moment per unit length. Assuming that
curvature of flattened shell (kE,x) and bending moments along X-axis at springback curvature (mD,x)
are equal to zero, the springback curvature can be calculated according to Equation (19).

ksb,x = kD,x = −mE,x·
3
(
1− ν2)

E(t/2)3 (19)

The shell geometry and stress distribution after first springback are shown in Figure 6.

Figure 6. Shell geometry (a) and stress distribution (b) after first springback.

2.2.4. Elastic Bending in the Reverse Direction

First of all, the stress distribution for the flattened shell should be calculated. For this purpose,
the elastic stresses calculated for bending of the shell by curvature k1 should be subtracted from the
stresses after first bending (Equation (20)):

σE,i = σC,i − zik1C (20)

Afterwards, the x and y components of critical stress values, at which the plastic deformation
starts (σF), can be determined by solving a system of two equations (Equation (21)):{

σ2
x − σxσy + σ2

y = σ2
0

σy = 1
v σx + b

(21)

where b is the offset of the elastic part line relative to the Y-axis.
The curvature at which plastic forming begins can be found using Equation (22):

kF =
(σF − σE)·C−1

t/2
(22)

Figure 7 shows the determination of the starting point of plastic deformation at the yield surface.
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Figure 7. Determination of the starting point of plastic deformation during second bending.

2.2.5. Plastic Bending in the Reverse Direction

Plastic deformation during the second bending can be calculated using the approach from
Section 2.2.2. The shell geometry and stress distribution along the shell thickness after the second
bending are shown in Figure 8.

Figure 8. Shell geometry (a) and stress distribution along the shell thickness (b) after second bending.

2.2.6. Elastic Springback and the First Stable State

The curvature and the stress distribution of the first stable state can be calculated with the help of
Equation (23).

k1.geom,y = −mI,y·
3
(
1− ν2)

E(t/2)3 (23)

where k1.geom,y is the curvature of the first stable state and mI,y is the moment along the Y-axis at the
flattened shell after the second bending. The shell geometry and stress distribution at first stable state
are shown in Figure 9.

Figure 9. Shell geometry (a) and stress distribution along the shell thickness (b) at first stable state.
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2.2.7. Second Stable State

The curvature and the stress distribution of the first stable state can be calculated with the help of
Equation (24).

k2.geom,x = −mI,x·
3
(
1− ν2)

E(t/2)3 (24)

where k2.geom,x is the curvature of the first stable state and mI,x is the moment along the Y-axis at the
flattened shell after the second bending. The shell geometry and stress distribution at second stable
state are shown in Figure 10.

Figure 10. Shell geometry (a) and stress distribution along the shell thickness (b) at second stable state.

3. Results and Discussion

With the help of the semianalytical model, the examination of the shell bistability regarding
the bending radii combinations R1 and R2 was performed. The model study was performed at
bending radii sequences of R1 = {6, . . . , 12} mm and R2 = {6, . . . , 12} mm with a step size of 0.1 mm.
The semianalytical model was calculated using the software Python. The used material data of steel
grade 1.1274 (AISI 1095) is taken from [9] and summarized together with the constants of the extended
Voce equation [9] in Table 1.

Table 1. Averaged properties of steel 1.1274 obtained from quasi-static tensile tests and values of
constants for the extended Voce equation [9].

Young’s Modulus, E Initial Yield Stress, σ0 σ1 θ0 θ1

198,540 MPa 1685 MPa 128.9 MPa 32,639.8 MPa 4863.4 MPa

Here, θ0 is the initial hardening rate, θ1 is the asymptotic hardening rate, and (σ0 + σ1) is the
back-extrapolated yield stress, with σ0 as the initial yield stress.

The experimental study was performed for a bending radii sequence R1 = {6, 7, 8, 10} mm
and R2 = {6, 7, 8, 10} mm and has already been partially published in [9]. In the following sections,
different features of the shell will be discussed. Firstly, the bistability properties regardless of the
realized curvature radii will be compared. Thereafter, the experimental and calculated curvature radii
of shells at stable states will be studied. Finally, the calculated residual stress distribution for a bistable,
fully closed shell, produced with bending radii combination R1 = R2 = 6 mm, will be compared with
an experimentally measured distribution.

3.1. Bistability of the Shell

The results regarding the achieved bistability are shown in Figure 11. Only for the bending
combinations (R1 = 7 mm, R2 = 6 mm) and (R1 = 8 mm, R2 = 7 mm), experiments and semianalytical
calculations do not coincide. Both combinations are situated almost at the boundary, separating
bistable and monostable shells. Nevertheless, a more accurate yield stress determination could help to
solve this issue.
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Figure 11. Results regarding bistability for different combinations of bending radii obtained by
experiments and semianalytical calculation.

3.2. Radii of Stable Geometries

As mentioned before, during the experiments, shells with a size of 300 × 300 mm2 were
incrementally bended. Opposite to experiments, in the semianalytical model, the size of the shell is
considered as infinite and there is only one single bending around each axis. Despite this difference,
a comparison of experiment and model regarding the final curvatures is done. In this way, the general
tendencies concerning the influence of the bending radii on the resulting curvature could be compared.
In Figure 12, the shell curvatures of first (a) and second (b) stable states depending on the second
bending radius R2 at a fixed first bending radius R1 = 6 mm are depicted. It can be seen that the
calculated results are in good agreement with the experimental values, despite the fact that calculated
radii are higher than the experimental ones. It should also be mentioned that only for a bending radii
combination of R1 = R2 = 6 mm, a fully closed bistable shell was produced. Due to the shell width
of 300 mm, the maximal radius of a fully closed shell is equal to 47.75 mm, which is mentioned in
Figures 12–15 by a grey horizontal line. As the second bending radius increases, the curvature of the
first stable state increases and the curvature of the second stable state decreases, both in experiment
and in model.

Figure 13 depicts the curvatures for both stable states produced with a first bending radius of
R1 = 7 mm. As was mentioned before, the main difference between calculated and experimental
results is derived for the combination of (R1 = 7 mm, R2 = 6 mm). During experiments, the bistability
was not achieved. For this part of the parameter study, it should be also noted that the calculated
shell geometries have smaller curvature radii for almost all bending radii combinations. None of the
experiments reached a fully closed curvature of bistable shell. In general, the curvature of the first
stable state increases and the curvature of the second stable state decreases by increasing the second
bending radius.

Figure 14 depicts radii of stable shell structures produced with a first bending radius of R1 = 8 mm.
The bistable behavior of the shell structure has been achieved during the experiments only for a bending
radii of R2 = 8 mm and R2 = 10 mm. At the same time, the model predicts that the bistable properties
will not be achieved for R2 = 6 mm. However, the radii of curvature for both stable states are too high
to achieve a fully closed shape of bistable shell.
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Figure 15 depicts radii of stable shell structures produced with a first bending radius of
R1 = 10 mm. The bistable behavior of the shell structure has been achieved during the experiments
and model calculation only for a bending radii combination of R1 = R2 = 10 mm. This could be
seen also in Figure 15b, where only one curvature of second stable state for experimental results is
marked. However, the radii of curvature for both stable states are too high to achieve a fully closed
shape. For the bending radii combinations with R2 < 10 mm, only small deviations between calculated
and produced first stable states radii can be found. However, for the bending radii combination of
R1 = R2 = 10 mm, a huge difference between the model and the experiment is obvious. The reason for
this difference could be the proximity of the maximum plastic stress at this bending curvature to the
initial yield stress of the material.

Figure 12. Radii of curvature for first (a) and second (b) stable state after first bending operation with a
radius R1 = 6 mm and various second bending radii R2.

Figure 13. Radii of curvature for first (a) and second (b) stable state after first bending operation with a
radius R1 = 7 mm and various second bending radii R2.
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Figure 14. Radii of curvature for first (a) and second (b) stable state after first bending operation with a
radius R1 = 8 mm and various second bending radii R2.

Figure 15. Radii of curvature for first (a) and second (b) stable state after first bending operation with a
radius R1 = 10 mm and various second bending radii R2.

3.3. Residual Stress Distribution

For the verification of the model, the calculated residual stress distribution along the shell
thickness is compared to a measurement of residual stresses done by using the X-ray diffraction
method. The measurements were carried out with the friendly support of the Leibniz Institute for
Materials Engineering (IWT). Considering the change of atomic interplanar distances under the
influence of residual stresses, the X-ray diffraction method could measure these deviations and,
accordingly, calculate the residual stresses [14]. The measurements were done for the aforementioned
fully closed bistable shell produced with bending radii of R1 = R2 = 6 mm. Stress values were measured
from the surface until the middle of the shell with the step size of 0.02 mm for both stable geometries.
The measured results are given in Figure 16 and show a good qualitative agreement between the model
and the experimental results. Nevertheless, there are still deviations in the absolute values.
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Figure 16. Residual stresses over the shell cross section at first (a) and second (b) stable state
(R1 = R2 = 6 mm).

4. Conclusions

The aim of the present work was to develop a semianalytical model for the investigation of bistable
properties and the final curvatures of metallic shells. For this purpose, a model using a combination of
isotropic and kinematic hardening was used to identify suitable bending radii combinations to realize
bistability. Experimental results have suggested that the first bending operation should be described
by kinematic hardening, whereas for the second one, isotropic hardening can be assumed. Future
work will be done to clarify this assumption, which might be caused by residual stresses in the starting
material and the orientation of the bending axis referring to the rolling direction of the initial material.

Due to the short calculation time compared to an FEM simulation, the model can be used for
investigating the influence of material properties and process parameters on the bistability properties
of metallic shells.

For the model verification, an incremental die-bending parameter study was done. The calculated
and experimental results are in good agreement regarding bistability properties of the shell, despite
inconsistent results at the boundary between bistable and monostable shell properties. The residual
stress measurement, done by X-ray diffraction analysis, shows good qualitative correspondence
between calculated and measured residual stresses of the shell, obtained by a bending radii
combination of R1 = R2 = 6 mm. Moreover, a fully closed, metallic bistable shell was achieved
within experiments with this bending radii combination.

The new semianalytical model allows for a precalculation of promising process sequences and
corresponding bending radii for different metallic materials and shell thicknesses. The results obtained
by calculations and experiments show that a bistable shell property, as well as a fully closed geometry,
could only be achieved by using small radii combinations.
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Nomenclature

a normal vector to the yield surface
C material stiffness matrix
Ct material tangent stiffness matrix
E Young’s modulus
Et tangent modulus
f yield function
H hardening parameter
I identity matrix
k curvature of cylindrical surface
k1, k2 first and second bending curvatures, respectively
m resultant bending moments per unit length
n number of increments
R bending radius
t shell thickness
z through-thickness coordinate measured from mid plane
zcr critical depth
ε vector of principal strain components
ν Poisson’s ratio
σ vector of principal stress components
σi stress vector at step i
σv von Mises effective stress
σ0 yield stress in pure tension

Subscripts

()el elastic
()pl plastic
(){A . . . J} at bending process point {A . . . J}
()j.geom at j stable state

Operators

()T transpose of the matrix
()-1 inverse of the matrix
∆ change between two consecutive steps
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