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Abstract: In this paper, a new method was introduced for feature extraction and fault diagnosis in
bearings based on wavelet packet decomposition and analysis of the energy in different frequency
bands. This method decomposes a signal into different frequency bands using different types of
wavelets and performs multi-resolution analysis to extract different features of the signals by choosing
energy levels in different frequency bands. The support vector machines (SVM) technique was used
for faults classifications. Daubechies, biorthogonal, coiflet, symlet, Meyer, and reverse Meyer wavelets
were used for feature extraction. The most appropriate decomposition level and frequency band were
selected by analyzing the variation in the signal’s energy level. The proposed approach was applied
to the fault diagnosis of rolling bearings, and testing results showed that the proposed approach
can reliably identify different fault categories and their severities. Moreover, the effectiveness of
the proposed feature selection and fault diagnosis method was significant based on the similarity
between the wavelet packet and the signal, and effectively reduced the influence of the signal noise
on the classification results.
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1. Introduction

Machine condition monitoring and fault diagnosis as a part of maintenance systems became global
due to the potential advantages of reduced maintenance costs, improved productivity, and increased
machine availability. Bearings and gears are identified as important machine components and therefore
need to be constantly monitored for consistency in operation and potential faults and defects. Several
different methods have been applied to detect and diagnose the faults in rolling element bearings,
such as temperature measurement, oil-debris analysis, vibration, acoustic emission (AE), electrostatic,
and ultrasound [1]. Among the various methods of condition monitoring techniques, vibration
analysis is effective and widely used [2]. Common techniques to analyze the vibration signals for fault
diagnosis include: Root mean square (RMS), crest factor, kurtosis, fast Fourier transform (FFT) envelope
analysis, wavelets, expert systems, cyclo-stationary analysis, fuzzy logic techniques, and data-driven
methods [1]. Because of advances in technology and intelligent systems, intelligent monitoring systems
are also being developed. An important part of intelligent systems is the extraction of relevant features
to conduct data classification. Pattern recognition techniques can be used to classify objects into
distinctive classes using four basic steps: data importation, data preprocessing, feature extraction, and
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classification. Among these four stages of pattern recognition, feature extraction is a very important
step. At present, various methods have been used for feature extraction such as statistical analysis [3–5],
cyclic spectral analysis [6], wavelet analysis [7–13], correlation [14], Hilbert–Huang transform, and
acoustic techniques [15,16]. Liu et al. (2019) used spectrum amplitude ratios and statistical features
to identify the spalling damage location and level. In their work, the Pearson correlation coefficient
(PCC) was used to determine the effective features among all the identified statistical features [17].

However, due to the unique features of the wavelet analysis, it is a useful technique for fault
diagnosis in bearings and gears [18,19], as well as the detection of the location and size of the cracks
in structures and components [20,21]. E.Y. Kim et al. [22] presented the fault detection method for
a moving transfer robot in the mass production line of liquid crystal display (LCD) manufacturing
based on the wavelet packet transform (WPT) for feature extraction and the artificial neural network
(ANN) for fault classification. M. Rucka et al. [23] studied a method for estimating the damage location
in beam and plate structures using continuous wavelet transform. Since there are many different
variations of wavelet functions, it is important to select an appropriate wavelet. In Reference [24],
the application and appropriate selection of the 324 basic wavelet functions for intelligent diagnostic
systems were examined.

After feature extraction, data must be classified using an appropriate method. There are several
methods for classification purposes, such as neural networks and wavelets [22,25], support vector
machines (SVM), the Bayes statistical methods, and minimum distance. In this paper, a new method
for feature extraction based on energy levels in different frequency bands using different wavelets
is introduced. Then, the support vector machine classification technique is used to classify the data
with high accuracy and reduce the effect of signal noise on classifying data of energy-based feature
extraction in different frequency bands. The paper is structured as follows: in Section 2, a description of
the wavelet transform, multi-resolution analysis, and support vector machine are presented. Section 3
explains how the data were obtained. In Section 4, the signals are decomposed using wavelets in the
third level and then a suitable feature is extracted based on energy levels in different frequency bands.
Conclusions are presented in last section.

2. Wavelet Transform

One of the drawbacks in Fourier transform analysis is that frequency information can only be
extracted for the complete duration of a signal [26]. Since the integral in the Fourier transform extends
over all time, from −∞. to +∞, the information it provides is obtained from an average over the
whole length of the signal [26]. To solve this problem, various techniques have been presented, such as
short-time Fourier transform (STFT), Gabor transform, Wigner–Ville transform, and wavelet transform.
Among these techniques, wavelet transform was identified as an effective method. In general, the
wavelet function is defined as follows [8]:

ψ(t) = g(t)e−j2π f0t (1)

ψ(t) is an oscillatory time-dependent function which depends on two variables (τ, a). The function
on the time axis is transmitted with a change in (τ) and the width of function ψ(t) on the time axis is
changed with a change in the scale (a). In the case of a < 1, ψ(t) is transformed to ψ(t/a) and extended,
and its frequency should be reduced. If a < 1, the function is more compact, and its frequency is
increased. The wavelet transform of a function is obtained from the following equation [8]:

wx(τ, a) =
+∞∫
−∞

1√
a

x(t)ψ∗(
t− τ

a
)dt (2)

The properties of wavelet transform are as follows:
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A) The integral of the wavelet function is equal to zero in the time domain.

+∞∫
−∞

ψ(t)dt = 0

In other words, the mean value of ψ(t) is zero.

+∞∫
−∞

∣∣ψ̂( f )
∣∣2

| f | d f < ∞

B) In addition, one of the following conditions exists:

ψ̂( f ) = 0 f ≤ 0 (3)

ψ̂( f ) = 0 f ≥ 0 (4)

0∫
−∞

∣∣ψ̂( f )
∣∣2

| f | d f =

+∞∫
0

∣∣ψ̂( f )
∣∣2

| f | d f (5)

3. Multi-Resolution Analysis

The multi-resolution analysis algorithm was originally presented by Mallat [27]. In this
analysis, the frequency resolution can be increased using a filter bank and thus is very effective
in multi-resolution analysis. In the multi-resolution algorithm, considering the sampling frequency
as Fs, the frequency domain resolution can be doubled using one low-pass and one high-pass filter.
Accordingly, the resolution can then be increased by increasing the levels of decomposition. There are
two methods for multi-resolution analysis—discrete wavelet transform (DWT) and discrete wavelet
packet transform (DWPT). As shown in Figure 1, the first method (DWT) has a focus on lower
frequencies. However, in the second method (DWPT), as shown in Figure 2, the resolution was
improved significantly compared to the DWT using both low- and high-frequency filters [25,27]. In
Figures 1 and 2, H and L indicate the high-pass and low-pass filters. When the signal is decomposed
at the third level, it is divided into eight frequency bands. When the sampling frequency is 12 kHz,
the frequency bands at the third level of decomposition are presented as shown in Table 1. When the
signal is at the fourth level of decomposition, the signal is divided into 16 frequency bands. When the
sampling frequency is 12 kHz and the signal is decomposed at the fourth level, the frequency bands at
the fourth level of decomposition are presented as shown in Table 2.
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Table 1. The frequency intervals corresponding to the decomposition of a signal at the third level
(Fs = 12,000 Hz).

Frequency Range (Hz) Frequency Bands Frequency Range (Hz) Frequency Bands

(3000–3750) Freq Band 5 (0–750) Freq Band 1
(3750–4500) Freq Band 6 (750–1500) Freq Band 2
(4500–5250) Freq Band 7 (1500–2250) Freq Band 3
(5250–6000) Freq Band 8 (2250–3000) Freq Band 4

Table 2. The frequency intervals corresponding to the decomposition of a signal at the fourth level
(Fs = 12,000 Hz).

Frequency Range (Hz) Frequency Bands Frequency Range (Hz) Frequency Bands

(3000–3375) Freq Band 9 (0–375) Freq Band 1
(3375–3750) Freq Band 10 (375–750) Freq Band 2
(3750–4125) Freq Band 11 (750–1125) Freq Band 3
(4125–4500) Freq Band 12 (1125–1500) Freq Band 4
(4500–4875) Freq Band 13 (1500–1875) Freq Band 5
(4875–5250) Freq Band 14 (1875–2250) Freq Band 6
(5250–5625) Freq Band 15 (2250–2625) Freq Band 7
(5625–6000) Freq Band 16 (2625–3000) Freq Band 8

4. Support Vector Machine (SVM) Technique

The support vector machine classification method is based on the maximum distance between the
data sets. This method was originally introduced in 1998 by Vapnik and Cortes [28]. In this method,
the data were classified into two classes: yi = +1 and yi = −1. In this study, the aim was to check two
classes of problems related to hard-margin support vector machines and soft-margin support vector
machines. If the data could be linearly classified in the feature space, the classification was called
hard-margin support vector machine classification (see Figure 3).

When the data were not linearly separable, the space of the data was transferred to a higher order
space. In this case, data were linearly classified using support vector machines with soft-margins. If
all of the data were considered as a pair of data points, such as (x1, y1) , (x2, y2) , . . . , (xn, yn) where
xn ∈ Rm , yn ∈ {−1, 1}, then to classify the second order linear problems, the data were separated
as follows:

wTxi + b ≥ 1 for yi = +1
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wTxi + b ≤ −1 for yi = −1

where b is the bias. The distance between the support vectors is obtained as follows:

d =
2
‖w‖

where w is the normal vector perpendicular to the line
→
w.
→
x + b = 0. and ‖w‖ is the magnitude of

w. As the magnitude of d increases, the separation of variables will be more efficient. To increase the
magnitude of d, the magnitude of w should decrease. Using the Lagrange function, the desired result
(i.e., large d and small w parameters) can be defined:

L(w, b, α) =
‖w‖2

2
−

l

∑
i=1

αi.{yi.[(w, xi) + b]− 1} (6)

where (αi) is the Lagrange coefficient. To solve the Lagrange equation, (αi) should be a maximum and
(d, w) should be a minimum:

∂L(w, b, α)

∂w
= 0 (7)

∂L(w, b, α)

∂b
= 0 (8)

J. Manuf. Mater. Process. 2019, 3, x FOR PEER REVIEW  5 of 15 

 

 

Figure 3. Schematic drawing showing the separation of the data. 

When the data were not linearly separable, the space of the data was transferred to a higher 
order space. In this case, data were linearly classified using support vector machines with soft-margins. 
If all of the data were considered as a pair of data points, such as (𝑥ଵ, 𝑦ଵ) , (𝑥ଶ, 𝑦ଶ) , … , (𝑥௡, 𝑦௡) where 𝑥௡ ∈ 𝑅௠ , 𝑦௡ ∈ {−1,1}, then to classify the second order linear problems, the data were separated as 
follows: T iw x b+ ≥ 1  for  iy = +1   

T iw x b+ ≤ −1  for  iy = −1   

where b is the bias. The distance between the support vectors is obtained as follows: 

=d w2   

where w is the normal vector perpendicular to the line 𝑤ሬሬ⃗ . 𝑥⃗ + 𝑏 = 0 and ‖w‖ is the magnitude of w. 
As the magnitude of d increases, the separation of variables will be more efficient. To increase the 
magnitude of d, the magnitude of w should decrease. Using the Lagrange function, the desired result 
(i.e., large d and small w parameters) can be defined: 

α α
=

= − + −
l i i ii

wL w b y w x b2
1( , , ) .{ .[( , ) ] 1}2  (6) 

where α i( )  is the Lagrange coefficient. To solve the Lagrange equation, α i( )  should be a 

maximum and d( ,w)  should be a minimum: 

∂ α =
∂

L w bw( , , ) 0  (7) 

∂ α =
∂

L w bb( , , ) 0  (8) 

After solving Equations (6)–(8), Equations (9) and (10) are obtained as follows: 

Figure 3. Schematic drawing showing the separation of the data.

After solving Equations (6)–(8), Equations (9) and (10) are obtained as follows:

αi

{
yi(wTxi + b)− 1

}
= 0 for i = 1, 2, 3, . . . , M (9)

αi

{
yi(wTxi + b)− 1

}
= 0 for i = 1, 2, 3, . . . , M (10)

In Equation (9), if αi 6= 0, then the training data (xi) are known as the support vectors. In this case
the optimal separating hyperplane (OSH) is determined as follows:

w =
l

∑
i=1

αi.yi.xi, αi ≥ 0, i = 1, 2, 3, . . . , ` (11)
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where:
`

∑
i=1

αi.yi = 0, αi ≥ 0, i = 1, 2, 3, . . . , `

If s is defined as s = {i|0 < αi < c}, then from Equations (9) and (11): b = 1
|s| ∑i∈s

(
yi − wTxi

)
.

The distance of each point (xi) from the optimal separating hyperplane (OSH) is calculated as follows:

d(w, b, x) =
|w.x + b|
‖w‖ (12)

Substituting Equation (11) into Equation (12), we obtain:

d(x) =
(

`
∑

i=1
αi.yi.xi).x + b

‖
`
∑

i=1
αi.yi.xi‖

(13)

The sign of d(x) in Equation (13) shows the class of x(i). If d(x) > 0, the data will be categorized
as class 1; if d(x) < 0, the data will be categorized as class 2; and if d(x) = 0, then x(i) is on the border
and cannot be classified. Here |d| determines the distance between x(i) and the optimal separating
hyperplane (OSH). As the value of |d| increases, the classification will be more efficient.

When the data are nonlinearly distributed, linear separation is not an effective method. In such
cases, data will be transferred to a higher order space to be classified using a linear technique. This
transformation will be done using the ϕ(x) operator rather than x(i), where:

f (x) = w.ϕ(x) + b (14)

Substituting Equation (11) into Equation (14), the above equation can be generalized as follows:

f (x) =
`

∑
i=1

αi.yi.(ϕ(xi).ϕ(x)) + b (15)

In mapping to a higher order space, the (ϕ(x)× ϕ(xi)) should be selected appropriately. For this
reason, the kernel function is defined as:

k(xi, x) = (φ(xi)× φ(x))

The most commonly used kernel function is defined as follows:

A) a polynomial kernel function:
k(xi, x) = (xi.x + 1)p (16)

B) an RBF kernel function:
k(xi, x) = exp[−γ‖x− xi‖2] (17)

More details about the SVM and classification problems can be found in References [12–14].

5. Data Acquisition of Vibration Signals

In this paper, the vibration signals of rolling bearing model 6205-2 RS JEM SKF deep-groove were
obtained from the Case Western Reserve University Bearing Data Center [29]. For experimentation,
an electrical motor connected to a fan was used to extract the signals for the bearings fault detection
(Figure 4).
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Signals used in this article consisted of different types of bearing operational conditions. These
included: Normal operation conditions, the presence of faults in the inner ring, faults in the outer
ring, and faults in the balls under different loads and rotational speeds. The sampling frequency was
designated to be 12 kHz throughout the experiment, and the signals were obtained by an accelerometer
placed perpendicular to the shaft. The experimental data acquired consisted of four vibrational signals
for normal conditions and eight vibrational signals related to the faults in the inner ring, outer ring,
and balls, totaling 28 vibration signals for the analysis in this study. Figure 5 shows the flowchart of
the proposed method for the intelligent fault diagnosis of bearings based on energy levels in frequency
bands using wavelet and support vector machines (SVM).

1 
 

 

Figure 5. Flowchart of the proposed method for the intelligent fault diagnosis of bearings based on
energy levels in frequency bands using wavelet and support vector machines (SVM).
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6. Feature Extraction

Feature extraction is the pivotal part of an intelligent fault diagnosis system. There are a variety
of statistical methods for feature extraction from a signal [6,9,10]. The novel method presented in this
study is based on the analysis of signal energy in different frequency bands using wavelet analysis.
Table 3 presents the total energy of vibration signals in different conditions, using different wavelets.
As shown in Table 3, different wavelets were used for decomposition in the third level for signal feature
extraction. For a better understanding of the process in Table 3, these data are presented as a graph in
Figure 6.

Table 3. Energy extraction as signal energy by different wavelets.

Wavelet
Type

Normal
Conditions

Inner
Ring

Outer
Ring Balls Wavelet

Type
Normal

Conditions
Inner
Ring

Outer
Ring Balls

Db (1–10) 2157.11 19,367.78 11,358.25 2200.625 bior 5.5 1646.074 19,875.59 14,148.54 2582.225
Sym (2–8) 2157.12 19,368.15 11,358.69 2200.63 bior 6.8 2220.009 19,964.09 11,197.79 2189.105
Coif (1–5) 2157.13 19,368.43 11,358.56 2200.65 rbio 1.1 2157.112 19,367.79 11,358.25 2200.554

dmey 2158.01 19,383.33 11,362.88 2202.375 rbio 1.3 1968.818 19,517.14 12,327.03 2327.723
bior 1.1 2157.112 19,367.79 11,358.25 2200.554 rbio 1.5 1928.785 19,601.41 12,917.27 2416.57
bior 1.3 2471.467 19,652.07 10,742.81 2132.575 rbio 2.2 2080.56 23,640.36 14,581.46 2763.02
bior 1.5 2627.541 19,954.79 10,477.61 2095.307 rbio 2.4 1834.783 23,242.51 15,360.39 2873.272
bior 2.2 2697.638 23,563.8 12,754.69 2561.615 rbio 2.6 1742.075 23,080.8 16,037.67 2982.819
bior 2.4 2844.135 23,600.42 11,734.45 2419.893 rbio 2.8 1697.09 23,004.08 16,639.32 3083.27
bior 2.6 2954.414 23,842.13 11,182.01 2329.608 rbio 3.1 3709.718 40,385.17 22,977.3 4467.429
bior 2.8 3039.554 24,100.1 10,784.85 2260.565 rbio 3.3 2278.809 37,702.51 23,492.65 4455.607
bior 3.1 3986.502 45,741.43 28,792.2 5301.835 rbio 3.5 1890.008 36,741.06 24,388.36 4596.692
bior3.3 3767.156 38,241.26 19,187.21 3980.502 rbio 3.7 1710.69 36,158.9 25,240.45 4744.515
bior 3.5 3768.738 37,900.59 17,383.33 3708.362 rbio 3.9 1617.109 35,760.62 26,009.97 4884.884
bior 3.7 3832.379 38,021.93 16,253.48 3519.478 rbio 4.4 2321.09 20,025.55 11,591.45 2264.359
bior 3.9 3902.459 38,245.49 15,448.34 3372.755 rbio 5.5 3175.766 20,351.78 9854.393 2047.906
bior 4.4 2050.796 20,143.06 11,956.86 2298.285 rbio 6.8 2104.933 19,875.52 12041.18 2326.006
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7. Signal Decomposition in the Third Level Using Different Wavelets

In this section, signals were decomposed by wavelets in the third level. Hence, there were eight
(2ˆ3 = 8) frequency bands. Following the signal decomposition, the evaluation of the signal’s energy in
each frequency band identified the faults in the inner ring, outer ring, and balls. Figure 7 shows the
energy level of each frequency band for the decomposition by wavelet db1 at the third level.
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Figure 7. Percentage energy in the third level of decomposition by db3. (a) frequency bands 1–4, and
(b) frequency bands 5–8.

As can be seen in Figure 7, for the signals in normal conditions, the larger portion of the energy
was in the first and second frequency bands. However, in case of the faults in the inner ring, outer
ring, and balls, the larger portion of the energy was in the third and seventh frequency bands. Since
there were appropriate and significant changes in the seventh and eighth frequency bands, these two
bands were selected as feature vectors (identifiers). It should be noted that the more variation that
exists between the energy levels of each type of fault, the better the detection and diagnosis will be
(Figure 8).
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Figure 9 shows the graphical classification of the different bearing conditions using energy levels
in the seventh and eighth frequency bands in the third level. In Figure 9, the horizontal and vertical
axes correspond to the energy level in the seventh and eighth frequency bands, respectively. The
rate of change of energy in the seventh and eighth frequency bands are directly dependent on the
type of wavelets. Hence, it is necessary to evaluate different kinds of wavelets to determine the
appropriate wavelet type for classification. As presented in Table 3, three kinds of wavelets from the
Daubechies wavelet group were used for signal decomposition in the third level in the seventh and
eighth frequency bands. Table 3 shows that the decomposition and classification of the signals strongly
depend on the type of wavelet.
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8. Signal Decomposition in the Fourth Level Using Different Wavelets

Similar to the previous section for feature extraction, these signals were decomposed by wavelets
in the fourth level. In this case, 16 frequency bands exist (2ˆ4 = 16). Following the signal decomposition,
the energy level in each frequency band for normal conditions, as well as faults in the inner ring, outer
ring, and balls were achieved. Figure 10 shows the energy level of different frequency bands using
wavelet db3 with the fourth level of decomposition.

Figure 11 shows the graphical classification of the different bearing conditions using energy levels
in the seventh and eighth frequency bands in the fourth level. As seen in Figure 11, the seventh and
eighth frequency bands were not suitable to select the feature vectors, because changes in these two
frequency bands were close together. However, choosing frequency bands 15 and 16 remarkably
increased the accuracy of classification due to the larger changes of energy in these frequency bands.
This is because there were 16 frequency bands in the fourth level of decomposition, while there were
only eight frequency bands in the third level. Thus, in the third level of decomposition, the variation
of energy levels in the seventh and eighth frequency bands was very low and close to each other.
Figures 11 and 12 as well as Tables 4 and 5 show the accuracy in classification for the selected feature
vectors in the different frequency bands. Classification accuracy for different types of faults depends
on the level of decomposition and the determined level of signal energy using different wavelets.
Since each type of wavelet has different characteristics influencing the decomposition of the signal,
and they were used to detect all types of defects, the accuracy of classification could be different (or
lower in some cases) due to the characteristics of the particular wavelet used for the classification of
different faults.
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Figure 10. Percentage of energy in the fourth level of decomposition by db3, (a) frequency bands 1–4,
and (b) frequency bands 5–8.
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Figure 11. The fourth level of decomposition by db3 (classification accuracy for four different conditions:
normal = 100%, inner ring = 78%, outer ring = 100%, and balls = 92%).
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Table 4. Classification accuracy of various conditions using different wavelets based on support vector
machine (SVM) (analysis was performed in the third level and was used in the seventh and eighth
frequency bands for data input to the SVM).

Wavelet
Type

Normal
Conditions

Inner
Ring

Outer
Ring Balls Wavelet

Type
Normal

Conditions
Inner
Ring

Outer
Ring Balls

Db1 100% 100% 100% 100% Coif2 100% 92% 92% 100%
Db2 100% 92% 100% 92% Coif3 100% 100% 92% 92%
Db3 100% 78% 100% 92% bior 1.1 100% 100% 100% 100%

Sym2 100% 92% 100% 92% bior 1.3 100% 92% 100% 100%
Sym3 100% 92% 100% 92% bior 1.5 100% 71% 100% 100%
Sym4 100% 85% 100% 92% rbio 1.1 100% 71% 100% 92%
Coif1 100% 78% 100% 92% rbio 1.3 100% 100% 100% 92%

Table 5. Classification accuracy of various conditions using different wavelets based on support vector
machine (SVM) (analysis was performed in the fourth level and was used in the seventh and eighth
frequency bands for data input to the SVM).

Wavelet
Type

Normal
Conditions

Inner
Ring

Outer
Ring Balls Wavelet

Type
Normal

Conditions
Inner
Ring

Outer
Ring Balls

Db1 85% 92% 100% 85% Coif2 92% 78% 71% 64%
Db2 85% 92% 100% 92% Coif3 85% 64% 64% 50%
Db3 100% 92% 92% 57% bior 1.1 85% 92% 100% 85%

Sym2 85% 100% 100% 57% bior 1.3 100% 78% 85% 42%
Sym3 100% 85% 100% 50% bior 1.5 85% 85% 85% 64%
Sym4 100% 78% 100% 64% rbio 1.1 92% 100% 100% 71%
Coif1 85% 85% 100% 85% rbio 1.3 85% 78% 100% 78%

As shown in Tables 1 and 2, the bandwidth of the seventh and eighth frequency bands in the third
level of decomposition was equal to the total (sum) bandwidth for the 13th to 16th frequency bands in
the fourth level of decomposition. Since most of the variations in the signals in this study occurred in
the 9000–12,000 Hz frequency range, to analyze the variations in the fourth level of decomposition,
the 14th to 16th frequency bands should be evaluated. This is the main reason for the classification
error when using the seventh and eighth frequency bands at the fourth level of decomposition. Due to
the highest variation in fault detection, bior and rbior wavelet groups were the most adequate type of
wavelets for real applications.

9. Conclusions

The proposed decomposition technique based on wavelet and SVM successfully detected and
classified the faults in bearings with a high level of accuracy. The effectiveness of the proposed feature
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selection and classification method was also demonstrated by the testing results. The accuracy of
the classification and detection in this method strongly depended on the type of wavelet selected for
the decomposition. Higher similarity between the selected wavelet and the original signal resulted
in a higher level of energy in different frequency bands. The outcome of the proposed method is
summarized as follows: Total minimum average energy levels of the signal occurred in normal
conditions, followed by the presence of faults in the balls. Total maximum average energy levels of
signals occurred under fault conditions in the inner ring and outer ring. For the vibration signals of
the faults in the inner ring or outer ring, the most variation occurred in the bior and rbior wavelet
groups. The seventh and eighth frequency bands were a good choice of feature vectors when the third
decomposition level was used. The 15th and 16th frequency bands were good for choosing feature
vectors when the fourth decomposition level was used. If the seventh and eighth frequency bands in
the fourth decomposition level were used, the classification error was significant.
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