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Abstract: Laser powder bed fusion (LPBF) is one of the most potent additive manufacturing
(AM) processes. Metallic LPBF is gaining popularity, but one of the obstacles facing its larger
industrial use is the limited knowledge of its dimensional and geometrical performances. This paper
presents a metrological investigation of the geometrical and dimensional deviations of a selected
LPBF-manufactured component, according to the ASME Y14.5-2009 standard. This approach allows
for an estimation of both the process capability, as per ISO 22514-4 standard, and the correlations
between the part location in the manufacturing chamber and the profile deviations. Forty-nine parts,
which are representative of a typical aerospace tooling component (30 mm in diameter and 27.2 mm
in height) were manufactured from AlSi10Mg powder using an EOSINT M280 printer and subjected
to a stress relief annealing at 300 ◦C for two hours. This manufacturing procedure was repeated three
times. A complete statistical analysis was carried out and the results of the investigation show that
LPBF performances for all geometrical variations of 147 identical parts fall within a range of 230 µm
at a 99.73% level.

Keywords: additive manufacturing; laser powder bed fusion; selective laser melting; metrology;
inter-repeatability; intra-repeatability; geometrical dimensioning and tolerancing (GD and T);
process capability

1. Introduction

Additive manufacturing (AM) technologies produce 3D engineered parts from nominal CAD
files in an additive manner, generally layer by layer. The term “additive” is used to highlight the
fact that these technologies do not require conventional tooling to build components and that the
shape is created by adding, rather than removing or deforming, material. The material can be polymer,
metal, composite, ceramic, concrete, or even human cells. Many AM processes have been developed
and are commercially available, including stereolithography (SL), fused deposition modeling (FDM),
three-dimensional printing (3DP), powder bed fusion (PBF), direct metal deposition (DED), and sheet
lamination (SL). The PBF technologies include two variants depending on the nature of the heat
source: the electron beam powder bed fusion (EBPBF) and the laser powder bed fusion (LPBF).
Their general principles are described on ISO/ASTM52901-16 [1]. The processes terminologies used
are from ISO/ASTM 52900:2015 [2] standard terminology for AM.

Wohler’s report stated that 13,058 AM machines were sold in 2016 [3]. The use of these processes is
expanding and can be explained by the benefits they provide: free complexity and easy customization,
as well as the reduced setup time, delivery time, and tooling cost. LPBF is one of the most potent
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metallic AM technologies. However, the laser power, temperature field heterogeneity, and other
phenomena inherent to the process generate residual stresses responsible for distortions of the
produced parts [4]. Geometrical and dimensional deviations (GD and T) in LPBF parts are among
the main concerns as far as it concerns facing wider industrial application of this technology. There is
a need to study the process and improve part precision, which has been criticized by many researchers.

Wang et al. [5] studied the correlations between shrinkage, laser beam offset, and the weight of
LPBF parts. After statistical analysis, sampling theory and three calculation methods, the conclusion
was that the shrinkage remains nearly unchanged irrespective of the weight of AM parts. However,
the beam offset increases with part weight. One of the first shrinkage calibrators for metallic AM
was also proposed. Zhu et al. [6] studied the shrinkage of direct laser sintered metallic powder parts.
Two types of shrinkage, thermal and sintering shrinkage, were isolated and quantified. Thermal
shrinkage results from cyclic heating, while sintering shrinkage is caused by densification and is a type
of elastic compressive shortening. The conclusion was that the higher the laser power and the smaller
the scan speed and spacing, the higher the thermal shrinkage. Additionally, the total shrinkage in the
Z plane is significantly higher than in the X-Y planes.

Raghunath and Pandey [7] identified the sources of deviation for each build axis using the
Analysis of Variance (ANOVA) technique. Laser power and scan length were identified as the
primary sources of deviations in the X-axis, laser power and beam speed in the Y-axis, and part
bed temperature, hatch spacing and beam speed in the Z-axis. Islam and Shacks [8] investigated the
influence of build parameters on the dimensional errors of 60 selective laser sintered polyamide parts.
Senthilkumaran et al. [9] developed a model for shrinkage compensation in LPBF which operates in
each layer. Galovskyi et al. [10] tested some work pieces for LPBF.

Detailed investigations of AM part geometrical deviations have been carried out in [11–23].
Fahad and Hopkinson [24] proposed a benchmark to evaluate and compare the accuracy and
repeatability of the AM processes. This benchmark has three repetitions of features with standard
geometries. With the intention of testing the LPBF process, Teeter et al. [25] conducted a metrological
study about deviations appearing according to part location in the manufacturing chamber.
After printing five pattern repetitions on a plate (the inspection was performed using an Olympus
microscope with a resolution of ±0.5 µm), there was no difference between the pattern profile
deviations. Ferrar et al. [26] investigated the gas flow effect on SLS repeatability and performance.
In their study, variations in gas flows have been shown to affect both the value, the density and the
compression strength range of the samples tested. Aidibe et al. [27] investigated the repeatability
of the LPBF technology with five Ti-6Al-4V parts. The conclusion was that the LPBF process
can provide acceptable metrological performances in terms of repeatability, overall deviations and
geometric/dimensional errors, comparable to turning. Rebaioli and Fassi [28] identified some
benchmark artefacts designed to evaluate the geometrical performance of the AM processes and
their design guidelines. Sing et al. [29] investigated the effect of LPBF processing parameters on the
dimensional accuracy and mechanical properties of cellular lattice structure using a statistical modeling.
The conclusion was that the strut dimensions of LPBF fabricated lattice structures are most sensitive
to laser power, as compared to layer thickness and scanning speed. Calignano [30] investigated
the accuracy and surface roughness of parts manufactured by LPBF in the AlSi10Mg powder.
The conclusion was that the STL file, build orientation, and process parameters affects the accuracy.

Globally, researchers have focused more on feasibility rather than on capability studies, the former
revealing process limitations in printing some specific geometric features, while the latter provides an
estimation of the probabilistic behavior of some metrological characteristics of the part produced by
this process. Since the latter aspect represents a main goal of this study, this paper quantifies the LPBF
process intra and inter repeatability, and capability with AlSi10Mg powders. The paper is organized as
follows: Section 2 describes the experimental procedure. The results are presented in Section 3 and
discussed in Section 4. Finally, a summary is provided and future works are presented in Section 5.
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2. Experimental Protocol

The first goal of the experimental procedure is to identify and quantify the variations in the
geometrical deviations of a selected part as a function of its location in the LPBF manufacturing
chamber. Then, this experiment is intended to provide an answer to the hypothesis of a repeatable
pattern of such deviations.

To this end, 49 identical AlSi10Mg parts equally distributed on a build plate (Figure 1) were
printed three (3) times in the same LPBF system using the same process and post-process parameters,
and analyzed by the same operator using the same equipment. The printed part is a typical aerospace
tooling component, 30 mm in diameter and 27.2 mm in height. This part was chosen because it is an
industrial tooling component used in jig construction, it is a kind of case study for industries interested
in manufacturing by LPBF. Secondly, it is a topologically-optimized part. Finally, this part allows
us to have an adequate sample size (49 parts/plate) for our study. Since we are concerned by GD
and T variations as a function of part location in the fabrication chamber, an interesting element of
this study is the number of repetitions which is 49 times three (49 × 3). This means that information
from 49 different emplacements on the plate quantifies the variations occurring at the same place
three times.
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Figure 1. Parts disposition in the chamber for each build (EOS M 280). 

In most cases, to reduce the risk of distortions caused by thermal gradients, while firmly 
attaching the part to the build plate during printing, the part needs to be built with support structures. 
In this study, specialized software Magics v.17.02 (Materialise, Leuven, Belgium) was used to 
generate support structures. The assembly was then loaded in the process software (PSW.3.4), where 
it was duplicated 49 times. The process parameters set, called AlSi10Mg_Speed 1.0 and recommended 
by the manufacturer EOS (Krailling, Germany) for an AlSi10Mg alloy, was used, with 30 µm-thick layers 
(Figure 2a). After printing, the build plate was stress relieved at 300 °C for two hours with no visible 
effect on the outer surface of the parts (Figure 2b). 

Next, the point cloud of printed parts was obtained by means of a Metris LC50 laser scan 
mounted on a Mitutoyo Coordinate Measuring Machine (CMM) (accuracy ≤7 µm at the 95% level), 
Figure 2c. Before each scan, the devices were calibrated using a master sphere and the data collection 
was performed on nine (9) angles to maximize the information collection on inner surfaces. A real-time 
visualization was possible with the Focus Inspector specialized software. A thin layer of talcum 
powder was used to reduce part surface reflection. In doing so, the potential point cloud density was 
increased to ensure the best measurement. The point clouds was then assembled (from the nine 
angles) and cleaned. The parts were scanned before and after being cut off the plate. The best-fit 
technique was then carried out using PolyWorks® v.16 (Innovmetric Metrological Software, Quebec, 
QC, Canada). The data were then loaded into a Matlab® 2017b (software of MathWorks, Natick, MA, 

Figure 1. Parts disposition in the chamber for each build (EOS M 280).

In most cases, to reduce the risk of distortions caused by thermal gradients, while firmly attaching
the part to the build plate during printing, the part needs to be built with support structures. In this
study, specialized software Magics v.17.02 (Materialise, Leuven, Belgium) was used to generate
support structures. The assembly was then loaded in the process software (PSW.3.4), where it was
duplicated 49 times. The process parameters set, called AlSi10Mg_Speed 1.0 and recommended by
the manufacturer EOS (Krailling, Germany) for an AlSi10Mg alloy, was used, with 30 µm-thick layers
(Figure 2a). After printing, the build plate was stress relieved at 300 ◦C for two hours with no visible
effect on the outer surface of the parts (Figure 2b).

Next, the point cloud of printed parts was obtained by means of a Metris LC50 laser scan mounted
on a Mitutoyo Coordinate Measuring Machine (CMM) (accuracy ≤7 µm at the 95% level), Figure 2c.
Before each scan, the devices were calibrated using a master sphere and the data collection was
performed on nine (9) angles to maximize the information collection on inner surfaces. A real-time
visualization was possible with the Focus Inspector specialized software. A thin layer of talcum
powder was used to reduce part surface reflection. In doing so, the potential point cloud density was
increased to ensure the best measurement. The point clouds was then assembled (from the nine angles)
and cleaned. The parts were scanned before and after being cut off the plate. The best-fit technique was
then carried out using PolyWorks® v.16 (Innovmetric Metrological Software, Quebec, QC, Canada).
The data were then loaded into a Matlab® 2017b (software of MathWorks, Natick, MA, USA), using
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a code to extract the deviation at each point. Minitab® v.17 (a statistical software of Minitab Inc., State
College, PA, USA) was used for the graphics and statistical studies (Figure 2d).
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visualizing the repartition of the profile deviations in the manufacturing chamber was the main 
interest. The second object of interest was the deviations of the external diameter of the parts at a 
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Figure 2. Experimental protocol: (a) manufacturing sequence, (b) stress relief heat treatment,
(c) geometrical deviation measurements, and (d) data analysis.

Four types of analysis were performed based on ASME Y14.5 (2009): Intra-build variation study
(Analysis 1), inter-build variation study (Analysis 2), and a capability study according to ISO 22514-4
(Analysis 3).

2.1. Intra-Build Variations Study

The intra-build variation study (Analysis 1) consisted of measuring the profile deviations (without
a frame of reference) between the digitized parts (SCAN) and the nominal part (CAD). The digitization
provided an average of 400,000 points for each part. The overall 3D profile deviations were extracted
using the IMInspect module of PolyWorks® v.16 for each part, and represented by their nonparametric
medians. In the first part of this intra-build variation study (Analysis 1a), visualizing the repartition
of the profile deviations in the manufacturing chamber was the main interest. The second object of
interest was the deviations of the external diameter of the parts at a height of z = 1.2 mm (Analysis 1b).
This plan z = 1.2 mm has been chosen because it is the mid-value between the chamfer and the holes
in the cylindrical feature of the part. For each of the 147 parts, the absolute difference between the
measured diameter (using best fit criteria) and the nominal diameter (∅19.05 mm) was extracted
using the IMInspect module of PolyWorks® v.16 and plotted using Minitab® v.17. The Analysis 1c
consisted of a correlation study of the two previous variables, the overall 3D profile deviation and the
external diameter at a height of z = 1.2 mm. This analysis was carried out using a regression equation,
which is an algebraic representation of the regression line used to describe the relationship between the
response and predictor variables. In our case, the measured diameter was used as a predictor variable,
while the overall 3D profile deviation represented by its median was considered as a response variable.
Minitab v.17 linear regression analysis was used to obtain the equations for the three builds. Finally,
a basic statistical study was also conducted with the overall 3D profile deviations and the external
diameter at a height of z = 1.2 mm (Analysis 1d).
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2.2. Inter-Build Variations Study

In order to quantify the inter-build variations (Analysis 2), which is the variation behavior among
three builds, two statistical analyses were performed: the Kolmogorov–Smirnov (KS) test (Analysis 2a)
and the inter-repeatability quantification (Analysis 2b). A visual comparison was also carried out
using the best-fit technique with PolyWorks® v.16. The KS test and visual comparison were performed
using the data acquired before cutting the parts off the plate for Build #2 and Build #3 (Build #1 data
before cutting the parts were not available). The KS test is a nonparametric goodness-of-fit test that
compares cumulative distribution functions (CDF). It is explained below in Equations (1)–(3). In this
case, the KS test was used to compare the CDF of the 3D profile deviation of Build #2 and Build #3
acquired before the part removal.

Given n data points x1,x2, . . . ,xn of the build #j, the empirical CDF is defined as:

Fj, nj(t) =
1
nj

nj

∑
i=1

1xi≤t (1)

where 1xi is the indicator of event xi, nj is the data size from build #j, and Fj,nj(t) is its corresponding
empirical CDF. The KS test between Build #2 and Build #3 is based on the maximum distance between
two curves:

KSn2,n3 = sup
t

∣∣F2,n2(t)− F3,n3(t)
∣∣ (2)

The null hypothesis H0 is F2,n2 and F3,n3 have identical CDF behavior. H0 is rejected at
a significance level 1 − α if:

KSn2,n3 > c(1 − α)
√
(n2 + n3)/n2n3 (3)

where c(1 − α) is the inverse of the KS distribution at level 1 − α. The p-value is used as criteria for
acceptance/rejection of the KS test. α is the type I error [31]. The significance level is this study is 95%.
This significance level was chosen because he usually used in metrological analyses. If the p-value is
lower than the significance level α = 0.05, then the null hypothesis H0 is rejected.

Analysis 2b is an inter-repeatability statistical study carried out using CDF of the 3D profile
deviation of each part as shown in Equations (4)–(6). Nine (9) different locations were selected (to be
specified below) to uniformly cover the build space. The inter-variation study was performed for each
position at a 95% level:

PV = ±1.96σPV (3)

σPV = K3R (4)

R = max(xi)− min(xi) (5)

With xi is the capabilities (as described in Equation (7)) of the profile deviation at location i for
Build #j (1, 2, and 3), R is the range of the three parts, σPV is the standard deviation, and PV is the part
variation. For this case, K3 = 0.5231 [27].

2.3. Capability Study

According to the ISO 22514-4, the process capability is a statistical estimate of the outcome
of a characteristic of a process which has been demonstrated to be in a state of statistical control
(stable) and which describes the process ability to fulfill the requirements of a given characteristic.
By definition, process capability is the interval between L1 = 0.135% and L2 = 99.865% of the individual
values’ distributions; in other words, the interval containing 99.73% of the data (Figure 3).
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The capability study (Analysis 3) was performed using the non-parametric quantiles Lx% of the
parts’ profile deviations (Analysis 3a). The capability was obtained by:

Capability = L99.865% − L0.135% (6)

Monte Carlo Simulation (MCS) [32] of the 3D profile deviation behavior was also carried out
using Matlab® 2017b. For each part, the overall deviations were fitted to a normal distribution at a 95%
confidence level. The MCS was then performed on the 147 normal distribution parameters, and the
overall capability was extracted (Analysis 3b).

3. Results

The GD and T analysis was based on ASME Y14.5 (2009) and provides the following
information: (1) Nonparametric intra-build variations study; (2) inter-build variations study, including
goodness-to-fit test and; (3) capability study according to ISO 22514-4.

3.1. Intra-Build Variations

In the first study, each build is analyzed independently. This intra-build variation values are
related to the location of each of the 49 parts uniformly distributed on the build plate and covering
it entirely. In Analysis 1a, different colors are allocated to the deviation map shown in Figure 4 to
represent the amplitude of the profile deviations (normal vector to the nominal surface).
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The results of Analysis 1b are presented in Figure 5. Colors are brought about to distinguish the
material withdrawal, when the feature is smaller than the nominal size in the least material condition
(LMC) direction from the addition which is an increase from the nominal size in the maximum material
condition (MMC) direction as in ASME Y14. 5.1 [33]. Black bubbles are placed where this difference
was less than 1 µm.
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Figure 5. Bubble plot of the diameter deviation of each part of the three builds; the size of the bubble 
illustrates the absolute difference between the measured diameter and the nominal size of the part. 

The results of Analysis 1c correlating the measured diameter (predictor) and the median profile 
deviations (response) are plotted in Figure 6. In Figure 6, the value of S is measured in units of the 
response variable and represents the standard distance data values from the regression line. For a 
given study, the better the equation predicts the response, the lower the S value. R-Sq represents the 
proportion of variation in the observed response values that is explained by the predictor variable, 
which is the measured diameter. Adjusted R-Sq(adj) is a modified R that has been adjusted for the 
number of terms in the model. 

A basic statistical study was also conducted to evaluate the intra-build variation (Analysis 1d). 
The first objective of this analysis was the external diameter at a height of z = 1.2 mm extraction and 
characterization. The results are presented in Table 1. The second objective is the overall 3D profile 
deviations of each part, represented by the gap between the non-parametric quantiles %  and % 
(Table 2). 

Table 1. Descriptive statistics of the measured diameter for 49 parts (dimensions in mm). 

Build ∅ ø ø ø ø 
#1 19.053 0.054 18.970 19.041 19.243 
#2 19.017 0.025 18.964 19.015 19.108 
#3 19.012 0.038 18.936 19.011 19.095 

With  = mean; = Standard deviation. 

Figure 5. Bubble plot of the diameter deviation of each part of the three builds; the size of the bubble
illustrates the absolute difference between the measured diameter and the nominal size of the part.

The results of Analysis 1c correlating the measured diameter (predictor) and the median profile
deviations (response) are plotted in Figure 6. In Figure 6, the value of S is measured in units of
the response variable and represents the standard distance data values from the regression line.
For a given study, the better the equation predicts the response, the lower the S value. R-Sq represents
the proportion of variation in the observed response values that is explained by the predictor variable,
which is the measured diameter. Adjusted R-Sq(adj) is a modified R that has been adjusted for the
number of terms in the model.

A basic statistical study was also conducted to evaluate the intra-build variation (Analysis 1d).
The first objective of this analysis was the external diameter at a height of z = 1.2 mm extraction and
characterization. The results are presented in Table 1. The second objective is the overall 3D profile
deviations of each part, represented by the gap between the non-parametric quantiles L1% and L99%
(Table 2).
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Table 1. Descriptive statistics of the measured diameter for 49 parts (dimensions in mm).

Build µ∅ StDev∅ Min∅ Median∅ Max∅

#1 19.053 0.054 18.970 19.041 19.243
#2 19.017 0.025 18.964 19.015 19.108
#3 19.012 0.038 18.936 19.011 19.095
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Figure 6. Correlation between the diameter deviation (predictor) and the profile deviation (response). 

Table 2. Descriptive statistics of the measured Profile  ( % − %)  for 49 parts (dimensions  
in mm). 

Build µ  
#1 0.148 0.058 0.108 0.131 0.501 
#2 0.152 0.023 0.124 0.149 0.276 
#3 0.147 0.014 0.116 0.148 0.181 

3.2. Inter-Build Variations 

This study involves comparing the builds and quantifying and analyzing the differences. First 
of all, a visual comparison is carried out. For example, Figure 7 presents the overall 3D-profile 
deviations for Build #2 and Build #3, where the same color scale and parameters are used. This 
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Table 2. Descriptive statistics of the measured Profile
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Figure 6. Correlation between the diameter deviation (predictor) and the profile deviation (response). 

Table 2. Descriptive statistics of the measured Profile  ( % − %)  for 49 parts (dimensions  
in mm). 

Build µ  
#1 0.148 0.058 0.108 0.131 0.501 
#2 0.152 0.023 0.124 0.149 0.276 
#3 0.147 0.014 0.116 0.148 0.181 

3.2. Inter-Build Variations 

This study involves comparing the builds and quantifying and analyzing the differences. First 
of all, a visual comparison is carried out. For example, Figure 7 presents the overall 3D-profile 
deviations for Build #2 and Build #3, where the same color scale and parameters are used. This 
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Figure 6. Correlation between the diameter deviation (predictor) and the profile deviation (response). 

Table 2. Descriptive statistics of the measured Profile  ( % − %)  for 49 parts (dimensions  
in mm). 

Build µ  
#1 0.148 0.058 0.108 0.131 0.501 
#2 0.152 0.023 0.124 0.149 0.276 
#3 0.147 0.014 0.116 0.148 0.181 

3.2. Inter-Build Variations 

This study involves comparing the builds and quantifying and analyzing the differences. First 
of all, a visual comparison is carried out. For example, Figure 7 presents the overall 3D-profile 
deviations for Build #2 and Build #3, where the same color scale and parameters are used. This 
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Figure 6. Correlation between the diameter deviation (predictor) and the profile deviation (response). 

Table 2. Descriptive statistics of the measured Profile  ( % − %)  for 49 parts (dimensions  
in mm). 

Build µ  
#1 0.148 0.058 0.108 0.131 0.501 
#2 0.152 0.023 0.124 0.149 0.276 
#3 0.147 0.014 0.116 0.148 0.181 

3.2. Inter-Build Variations 

This study involves comparing the builds and quantifying and analyzing the differences. First 
of all, a visual comparison is carried out. For example, Figure 7 presents the overall 3D-profile 
deviations for Build #2 and Build #3, where the same color scale and parameters are used. This 
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Figure 6. Correlation between the diameter deviation (predictor) and the profile deviation (response). 

Table 2. Descriptive statistics of the measured Profile  ( % − %)  for 49 parts (dimensions  
in mm). 

Build µ  
#1 0.148 0.058 0.108 0.131 0.501 
#2 0.152 0.023 0.124 0.149 0.276 
#3 0.147 0.014 0.116 0.148 0.181 

3.2. Inter-Build Variations 

This study involves comparing the builds and quantifying and analyzing the differences. First 
of all, a visual comparison is carried out. For example, Figure 7 presents the overall 3D-profile 
deviations for Build #2 and Build #3, where the same color scale and parameters are used. This 
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Figure 6. Correlation between the diameter deviation (predictor) and the profile deviation (response). 

Table 2. Descriptive statistics of the measured Profile  ( % − %)  for 49 parts (dimensions  
in mm). 

Build µ  
#1 0.148 0.058 0.108 0.131 0.501 
#2 0.152 0.023 0.124 0.149 0.276 
#3 0.147 0.014 0.116 0.148 0.181 

3.2. Inter-Build Variations 

This study involves comparing the builds and quantifying and analyzing the differences. First 
of all, a visual comparison is carried out. For example, Figure 7 presents the overall 3D-profile 
deviations for Build #2 and Build #3, where the same color scale and parameters are used. This 
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Figure 6. Correlation between the diameter deviation (predictor) and the profile deviation (response). 

Table 2. Descriptive statistics of the measured Profile  ( % − %)  for 49 parts (dimensions  
in mm). 

Build µ  
#1 0.148 0.058 0.108 0.131 0.501 
#2 0.152 0.023 0.124 0.149 0.276 
#3 0.147 0.014 0.116 0.148 0.181 

3.2. Inter-Build Variations 

This study involves comparing the builds and quantifying and analyzing the differences. First 
of all, a visual comparison is carried out. For example, Figure 7 presents the overall 3D-profile 
deviations for Build #2 and Build #3, where the same color scale and parameters are used. This 

#1 0.148 0.058 0.108 0.131 0.501
#2 0.152 0.023 0.124 0.149 0.276
#3 0.147 0.014 0.116 0.148 0.181

3.2. Inter-Build Variations

This study involves comparing the builds and quantifying and analyzing the differences. First of
all, a visual comparison is carried out. For example, Figure 7 presents the overall 3D-profile deviations
for Build #2 and Build #3, where the same color scale and parameters are used. This comparison
reveals more material withdrawal in Build #3 than in Build #2 (more detailed discussion will be made
in Section 4). Next, Figure 8 illustrates the results of Analysis 2a (KS test). Since the p-value is higher
than 0.05 (α), no significant statistical differences between the CDFs of Build #2 and Build #3 can be
reported (95% confidence level). The range of the inter-repeatability (Analysis 2b) for the 49 locations
is 455 µm. The minimum part variation is 14 µm, and the maximum is 469 µm at a 95% confidence
level, as will be shown in more detail in the next section.
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The capability study (Analysis 3) was performed on all 174 parts, and the results of this study 
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of one part, with the capability interval highlighted, and Figure 9d shows the distribution of the 
capability intervals of 49 parts. 

Figure 7. Overall 3D profile color deviation map for Build #2 and Build #3.

J. Manuf. Mater. Process. 2018, 2, x FOR PEER REVIEW  9 of 13 

 

comparison reveals more material withdrawal in Build #3 than in Build #2 (more detailed discussion 
will be made in Section 4). Next, Figure 8 illustrates the results of Analysis 2a (KS test). Since the p-value 
is higher than 0.05 ( ), no significant statistical differences between the CDFs of Build #2 and Build #3 can 
be reported (95% confidence level). The range of the inter-repeatability (Analysis 2b) for the 49 
locations is 455 µm. The minimum part variation is 14 µm, and the maximum is 469 µm at a 95% 
confidence level, as will be shown in more detail in the next section. 

(mm)

ARGON

RECO
ARTER

ARGON

RECO
ARTER

  

X

Y

  

X

Y

Build#2 Build#3

 
Figure 7. Overall 3D profile color deviation map for Build #2 and Build #3. 

-0,1 -0,06 -0,02 0,02 0,06 0,1
0

0,2

0,4

0,6

0,8

1

Deviations (mm)

P
ro

po
rt

io
n

α =0.05

p-value=0.1546 
2, 3=0.16mm 

Build#2
Build#3

 
Figure 8. KS-test results for Build #2 and Build #3. 

3.3. Capability 

The capability study (Analysis 3) was performed on all 174 parts, and the results of this study 
are presented in Figure 9. Figure 9a illustrates the external diameter extraction and quantification, 
Figure 9b presents its non-parametric distribution, Figure 9c the distribution of the profile deviation 
of one part, with the capability interval highlighted, and Figure 9d shows the distribution of the 
capability intervals of 49 parts. 

Figure 8. KS-test results for Build #2 and Build #3.



J. Manuf. Mater. Process. 2018, 2, 56 10 of 14

3.3. Capability

The capability study (Analysis 3) was performed on all 174 parts, and the results of this study
are presented in Figure 9. Figure 9a illustrates the external diameter extraction and quantification,
Figure 9b presents its non-parametric distribution, Figure 9c the distribution of the profile deviation of
one part, with the capability interval highlighted, and Figure 9d shows the distribution of the capability
intervals of 49 parts.J. Manuf. Mater. Process. 2018, 2, x FOR PEER REVIEW  10 of 13 
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Figure 9. Capability and diameter deviation analyses: (a) Diameter quantification, (b) 49 parts’
(one build) diameter distribution, (c) 3D profile deviation capability, and (d) 49 parts’ (one build)
3D profile deviation capabilities distribution.

The results of Analysis 3a are presented in Figure 10, giving an overview of the capabilities
(as in Equation (7)) over three builds for nine locations selected to uniformly cover the build space.
Thus, for each of the selected part location, the capability (99.73%) and the 95% (L97.5% − L2.5%)
intervals of profile deviations are provided for Build #1, Build #2, and Build #3. Table 3 presents
the results of Analysis 3b for Builds #1, 2, 3 and for the overall 147 parts. It also reveals that the 3D
profile deviation capability interval for the 147 parts falls within 228 µm at the 99.73% level.
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Figure 10. Intra and inter-variation of part profile deviation study (mm).

Table 3. 3D profile deviation (mm) and equivalent IT grade (International Tolerance Grade defined in
ISO 286).
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Figure 6. Correlation between the diameter deviation (predictor) and the profile deviation (response). 

Table 2. Descriptive statistics of the measured Profile  ( % − %)  for 49 parts (dimensions  
in mm). 

Build µ  
#1 0.148 0.058 0.108 0.131 0.501 
#2 0.152 0.023 0.124 0.149 0.276 
#3 0.147 0.014 0.116 0.148 0.181 

3.2. Inter-Build Variations 

This study involves comparing the builds and quantifying and analyzing the differences. First 
of all, a visual comparison is carried out. For example, Figure 7 presents the overall 3D-profile 
deviations for Build #2 and Build #3, where the same color scale and parameters are used. This 
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Figure 6. Correlation between the diameter deviation (predictor) and the profile deviation (response). 

Table 2. Descriptive statistics of the measured Profile  ( % − %)  for 49 parts (dimensions  
in mm). 

Build µ  
#1 0.148 0.058 0.108 0.131 0.501 
#2 0.152 0.023 0.124 0.149 0.276 
#3 0.147 0.014 0.116 0.148 0.181 

3.2. Inter-Build Variations 

This study involves comparing the builds and quantifying and analyzing the differences. First 
of all, a visual comparison is carried out. For example, Figure 7 presents the overall 3D-profile 
deviations for Build #2 and Build #3, where the same color scale and parameters are used. This 

95% 97.73%

#1 0.005 0.034 0.136 0.240
#2 0.000 0.032 0.127 0.225
#3 −0.002 0.030 0.121 0.191

Overall 0.001 0.032 0.128 (IT 11) 0.228 (IT 12)

4. Discussion

After the first build, neither the second nor the third build showed any similarity in terms of the
distribution (pattern) of the 3D profile deviations in the manufacturing chamber. Globally, the deviation
values are in the same range, but their distribution in the chamber is not repeating. We can then
conclude there is no specific pattern of geometric deviations on the chamber for LPBF process with
an EOS M280. The measured range of the intra-build means variations are 0.100 mm for the first
build, 0.071 mm for the second, and 0.054 mm for the third build. The inter-build variation range is
0.104 mm. The intra-build variations are practically constant even if their distribution on the build
plate is not similar. The observation of Figure 7 highlights more withdrawal in Build #3 than Build #2
(Figure 11a). However, since the magnitude of the differences between the two builds is lower than the
measurement equipment uncertainty which is ±5 µm, we cannot really conclude on the absence of
any significant difference between these builds. The range of the intra-build diameter (∅19.05 mm)
variations at z = 1.2 mm is 0.273 mm for the first build, 0.144 mm for the second, and 0.159 mm for the
third build. The overall diameter deviation variation range is 0.307 mm (Figure 11b) which corresponds
to an equivalent IT Grade IT 13. The 3D profile deviation behavior of the 147 parts falls within 128 µm
at a 95% level, which corresponds to an IT 11. The 3D profile capability interval (99.73%) for the
process is 228 µm, which is an IT 12 equivalent, comparable to turning and milling process tolerance.
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Figure 11. Box plot of the profile deviation (a) and diameter deviation (b).

5. Conclusions

This paper presents a metrological investigation carried out on 147 typical aerospace tooling
components built in three print jobs using an AlSi10Mg powder and an EOS M280 LPBF system.
The investigations were limited to the overall 3D profile and diameter deviation studies, specifically
to their repartition in the build chamber. No significant statistical differences were revealed between
the 49 locations over the three builds, and the deviation distribution in the build chamber appeared
to be non-repeatable. However, inspection of part external diameters reveals a correlation between
this feature and the overall 3D profile deviation. In fact, it was shown that the magnitude of these
deviations is in the same range as the measurement equipment uncertainty, which is ±5 µm. Further
studies with different geometries, such as cylinders, holes, cubes, and cones, could be promising.

The results of this study, and of the upcoming ones, will have a positive impact on increasing the
competitiveness of the LPBF process. The findings of the study can also be directly applied to high
technology industries, such as aerospace and automotive sectors, planning to use the metallic AM
technology in their production cycle.
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