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Abstract: In this study, a precision motion stage, whose design utilizes a single shaft supported
from the bottom by an air bearing and voice coil actuators in complementary double configuration,
is evaluated for its dynamic properties, motion accuracy, and potential machining force response,
through modal testing, laser interferometric metrology, and spectral analysis, respectively. Modal
testing is carried out using two independent methods, which are both based on impact hammer
testing. Results are compared with each other and with the predicted natural frequencies based on
design calculations. Laser interferometry has been used with varying optics to measure the geometric
errors of motion. Laser interferometry results are merged with measured servo errors, estimated
thermal errors, and the predicted dynamic response to machining forces, to compile the error budget.
Overall accuracy of the stage is calculated as peak-to-valley 5.7 µm with a 2.3 µm non-repeatable
part. The accuracy measured is in line with design calculations which incorporated the accuracy
grade of the encoder scale and the dimensional tolerances of structural components. The source of
the non-repeatable errors remains mostly equivocal, as they fall in the range of random errors of
measurement in laser interferometry like alterations of the laser wavelength due to air turbulence.

Keywords: nano-positioner; vibration modes; impact testing; peak picking; laser interferometry;
thermal error; cutting force response; spectral analysis; error budget; precision motion

1. Introduction

Precision motion stages find extensive application in various industries for carrying out tasks
related to manufacturing and inspection, as well as inside commercial products such as optical disk
drives [1]. In this study, details of modal testing, laser interferometric metrology, and dynamic response
to cutting forces, with subsequent error budgeting for a long-stroke linear nano-positioner is presented.
A CAD drawing and photograph of the stage are presented in Figure 1. Some important features of
design can be summarized as follows [2]:

i. The nano-positioner utilizes a single shaft engaged to air bushings, instead of the more
commonly used double shaft arrangement. The roll resistance is provided by the air bearing
at the bottom. This way, the self-aligning property of the air bushings, which are held in the
housings using O-rings, is exploited to the greatest extent, making the manufacturing and
assembly of the stage easy and low-cost.

ii. Actuation is provided by two voice coil actuators (VCA) operating in moving magnet mode in
complementary double configuration.
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Figure 1. CAD drawing and photograph of the long-stroke linear nano-positioner. 

This paper performs a verification study of the nano-positioner, with emphasis on following a 
systematic approach. The methods can be applied in the metrology and dynamic analysis of similar 
precision motion systems that are used in precision and ultra-precision manufacturing. 

The novel aspects of this work are summarized as follows: 

i. A modified ‘peak-picking’ approach has been developed which directly utilizes the accelerance 
measurement, through its modified formulations for the estimation of modal parameters. This 
way, the bias at low frequency, observed in the receptance plots obtained from accelerance via 
double integration, is avoided. Searching the modal analysis literature [3–5], the authors were 
not able to find a peak picking method which directly works with accelerance. With this study, 
we hope to fill in this gap. 

ii. Modal testing, laser interferometric metrology, and error budgeting, although being established 
methods, have been applied to a novel precision motion stage design [2] for the first time. 
Outcome from these tests has allowed an in-depth evaluation of several design features 
regarding the overall accuracy and applicability of the motion stage in the micro-machining 
framework. 

iii. A hybrid error budget has been compiled which combines the commonly considered quasi-static 
geometric, thermal, and steady-state servo errors with the dynamic component due to cutting 
forces. The 3-axis harmonic deflections due to machining forces, at the workpiece level of the 
stage, could only be predicted using the spatial modal testing results. 

In the literature, several works can be found involving the identification of vibratory dynamics 
of high precision motion stages using finite element analysis (FEA) [6–11]. While in [6–8,10,11] a 
precision positioning stage or some of its components were analyzed, in [9] different design 
alternatives for an ultraprecision micro-milling machine are evaluated. In this paper, instead of FEA, 
modal analysis is carried out by direct experimentation using impact testing with a hammer and two 
different accelerometers. Two independent methods for conducting and evaluating the tests are 
employed, and their results are compared. The main purpose of modal testing has been to verify the 

Figure 1. CAD drawing and photograph of the long-stroke linear nano-positioner.

This paper performs a verification study of the nano-positioner, with emphasis on following a
systematic approach. The methods can be applied in the metrology and dynamic analysis of similar
precision motion systems that are used in precision and ultra-precision manufacturing.

The novel aspects of this work are summarized as follows:

i. A modified ‘peak-picking’ approach has been developed which directly utilizes the accelerance
measurement, through its modified formulations for the estimation of modal parameters. This
way, the bias at low frequency, observed in the receptance plots obtained from accelerance via
double integration, is avoided. Searching the modal analysis literature [3–5], the authors were
not able to find a peak picking method which directly works with accelerance. With this study,
we hope to fill in this gap.

ii. Modal testing, laser interferometric metrology, and error budgeting, although being established
methods, have been applied to a novel precision motion stage design [2] for the first
time. Outcome from these tests has allowed an in-depth evaluation of several design
features regarding the overall accuracy and applicability of the motion stage in the
micro-machining framework.

iii. A hybrid error budget has been compiled which combines the commonly considered
quasi-static geometric, thermal, and steady-state servo errors with the dynamic component due
to cutting forces. The 3-axis harmonic deflections due to machining forces, at the workpiece
level of the stage, could only be predicted using the spatial modal testing results.

In the literature, several works can be found involving the identification of vibratory dynamics of
high precision motion stages using finite element analysis (FEA) [6–11]. While in [6–8,10,11] a precision
positioning stage or some of its components were analyzed, in [9] different design alternatives for an
ultraprecision micro-milling machine are evaluated. In this paper, instead of FEA, modal analysis
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is carried out by direct experimentation using impact testing with a hammer and two different
accelerometers. Two independent methods for conducting and evaluating the tests are employed,
and their results are compared. The main purpose of modal testing has been to verify the dynamic
properties of the stage and also facilitate response prediction to multi-axis dynamic disturbances, such
as cutting forces, which cannot be directly predicted with model identification that is based only on
control system input/output data.

A number of works on the measurement of error motions of precision motion stages have also
been published [12–16]. A specially designed laser interferometer for measurement in all six motion
axes was employed in [12]. In [13], error motions of a linear stage were measured by comparing results
from a laser interferometer, an autocollimator, and capacitance probes. In [14], a two-degree-of-freedom
linear encoder capable of simultaneously measuring linear positioning and horizontal straightness
errors was used. In [15], out-of-straightness and axis misalignment errors of the carriage slide of a
drum roll lathe are measured using two capacitance probes. Reflective-type optical sensors for on-line
real-time measurements were proposed in [16]. In this study, error motions of a long-stroke linear
nano-positioner are measured using a laser interferometer. Geometric errors obtained this way are
combined with servo errors, estimated thermal errors, and the predicted dynamic response due to
machining forces to compile the error budget.

The paper is organized as follows. In Section 2 predicted vibratory dynamics, the experimental
modal testing and analysis methodology, as well as comparative results from the two independent
methods are shown. In Section 3, the laser interferometric measurement procedure is described and
the observed error motions are presented. In Section 4, the predicted error budget using the data
available at the design phase is shown. Then, the actual error budget is established using the errors
due to servo, geometric, thermal, and machining force factors. In Section 5, conclusions are presented.

2. Vibratory Dynamics

In this section, first, the predicted vibratory modes using information available at the design
phase are presented. Then, experimental modal testing results are shown.

2.1. Predicted Vibration Modes

A schematic diagram of the motion stage is presented in Figure 2. Catalogue values of stiffness
for the air-bushings/bearings [17] and certain dimensions are presented in Table 1. Inertia values
of the moving body are calculated using CAD program and presented in Table 2. Flat air bearings
are usually not rated for their rotational stiffness. At the time of conducting the design, due to the
lack of rotational stiffness data or models concerning flat air bearings, a simple model as shown in
Figure 3 was assumed, for estimating the air bearing reaction moment due to the rotational motion.
When the stage body is in its rotationally neutral position, the assumed distributed stiffness elements
(wk = k2y/L) are preloaded.

Table 1. Air-bushing/bearing stiffness properties and dimensions.

Property Symbol Value

Air bushing axial stiffness k1yz 23 N/µm
Air bushing rotational stiffness k1bc 2.8 Nm/mrad
Air bearing axial stiffness k2y 35 N/µm
Air bearing roll stiffness (estimated) k2a 4.7 Nm/mrad
Air bearing pitch stiffness (estimated) k2c 7.3 Nm/mrad
Air bearing length along the X-axis L2x 50 mm
Air bearing length along the Z-axis L2z 40 mm
Distance between the middle of the air bushings along the X-axis Lx 180 mm
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Figure 2. Air-bushing/bearing arrangement of the motion stage.

Table 2. Inertia properties of the moving body.

Property Symbol Value

Mass m 1.318 kg
Moment of inertia in A (Roll) Ia 409 kg mm2

Moment of inertia in B (Yaw) Ib 17,439 kg mm2

Moment of inertia in C (Pitch) Ic 17,454 kg mm2
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The moment generated due to rotation can be expressed as:

Mk =

x=L/2∫
x=−L/2

(θ x) · x · wk · dx =
k2y L2θ

12
= k2rθ (1)
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where k2y is the axial stiffness, and k2r is the estimated rotational stiffness. The air bearing length
(L) is different along the X and Z axes (L2x, L2z), which results in different estimations for roll and
pitch stiffness. It was observed later in the modal testing results presented in Section 2.6 that this
approximation was not very accurate.

The natural frequency predictions for each significant vibration mode are presented in Table 3.
For each motion axis, the natural frequency is found using the effective stiffness in that direction
due to the bearings and the relevant mass or moment of inertia, using the analogy with a
single-degree-of-freedom (SDOF) vibratory system [5]. The lowest predicted natural frequency is
associated with the role mode at 538 Hz.

Table 3. Prediction of the natural frequencies.

Direction Expression Natural Frequency (Hz)

Y (Vertical) ωy =

√
2k1yz+k2y

m
1248

Z (Horizontal) ωz =

√
2k1yz

m
940

A (Roll) ωa =
√

k2a
Ia

538

B (Yaw) ωb =

√
2k1bc+2( Lx

2 )
2
k1yz

Ib
741

C (Pitch) ωc =

√
2k1bc+2( Lx

2 )
2
k1yz+k2c

Ic
748

2.2. Summary of Modal Testing Methods

Modal testing of the linear nano-positioner is carried out using two independent methods as
summarized in Table 4. The modified peak-picking approach which constitutes Method 1, has been
developed as an alternative to the traditional peak-picking approach, with the primary difference being
the usage of accelerance FRF directly, rather than converting to receptance first, which can introduce
errors due to the measurement noise at low frequency. Details of how each method is employed are
discussed in Sections 2.3 and 2.4, for methods 1 and 2, respectively. Results are compared in Section 2.6.

Table 4. Comparison of the two independent methods used in modal testing.

Feature Method 1 (Modified
Peak-Picking) Method 2 (Software Package)

Frequency response function (FRF)
acquisition system

CutPRO® MalTF module
by Manufacturing Automation
Laboratory (MAL), Inc.

LMS Test.Lab®

by Siemens-PLM Software

Testing procedure Roving hammer Roving accelerometer

Accelerometer type Dytran® 3035AG
(1-channel)

PCB Electronics® 356A02
(3-channel)

Impact hammer type Dytran® 5800SL Dytran® 5800SL

Identification of the natural
frequency and damping ratio Modified peak-picking method PolyMAX [18]

Identification of the mode shape
vectors Modified peak-picking method Least-Squares Frequency Domain

(LSFD) [19]

Presentation of the mode shapes Manual 2D drawings Automated 3D animations
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2.3. Modal Analysis Method 1 (Modified Peak-Picking Approach)

2.3.1. Impact and Measurement Points

For method 1 (modified peak-picking), FRF measurements are taken in 3 different planes: XY,
YZ, and XZ (Figure 4). For each measurement plane, accelerometer location and positive direction of
acceleration measurement are indicated by Axz, Ayz, and, Axy. In each measurement plane, impact
locations and directions are indicated by F1 to F10 for Axz, F′1 to F′9 for Ayz, and F′′ 1 to F′′ 4 for Axy.
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2.3.2. Method of Analysis

In the first method, modal parameters, natural frequency (ωr) and damping ratio (ζr), are
identified using the developed ‘modified peak picking’ approach. ‘Peak-picking’, in the general
sense, refers to the usage of graphical features of the real and imaginary parts of the FRF near the
natural frequencies to estimate modal parameters [3–5]. Different resources may refer to slightly
varying formulations of the ‘peak-picking’ method, although they share a similar basic idea. In this
paper, a modified approach from traditional ‘peak-picking’ is taken in which the accelerance FRF is
employed directly. The derivations of the formulas for this case are presented in the proceeding section
side-by-side with formulas that have traditionally been used for receptance. Hence, by avoiding
the numerical conversion from accelerance to receptance, the problem of double-integrating the low
frequency noise can be largely circumvented through the use of the proceeding modified formulas.

Accelerance FRF between two coordinates (i and k) of a proportionally damped multi-degree of
freedom (MDOF) system can be presented as a combination of vibratory modes as [3],

aik(ω) =
N

∑
r=1

−ω2(1/kr) ψi
rψk

r

1− (ω/ωr)
2 + j2ζr(ω/ωr)

(2)

where, N is the number of modes, ψi
r and ψk

r are the i-th and k-th elements of the r-th mode shape
vector, ωr is the natural frequency, ζr is the damping ratio, and kr is the modal stiffness. In the case
of a point FRF (i = k), ψi

rψk
r = 1 can be set without loss of generality, which makes 1/kr equivalent
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to the static compliance contribution of each mode. The receptance for the same FRF (gik(ω)) can be
obtained from the accelerance as,

gik(ω) =
aik(ω)

−ω2 . (3)

Equation (2) can be separated into real and imaginary parts as,

aik(ω) =
N
∑

r=1

(
Gik

r (ω) + jHik
r (ω)

)
Gik

r (ω) =
−ω2

r z2
r (1−z2

r )(1/kr)ψi
rψk

r

(1−z2
r )

2
+(2ζrzr)

2

Hik
r (ω) =

2ζrω2
r z3

r (1/kr)ψi
rψk

r

(1−z2
r )

2
+(2ζrzr)

2

(4)

where zr = ω/ωr represents the normalized frequency. If the modes are assumed to be separated
from each other (i.e., having sufficiently distant natural frequencies), the real and imaginary plots
of the FRF near each eigenfrequency ω = ωr (zr = 1) would resemble the characteristics of a
single-degree-of-freedom (SDOF) system as shown in Figure 5 for both accelerance and receptance.
Note that the extrema of the real and imaginary parts of the accelerance (ωr,1, ωr,2, ωmax) around the
natural frequency (ωr) attain close but different values than those for receptance (ω∗r,1, ω∗r,2, ω∗max), with
the difference depending on the damping ratio (ζr). However, the real part crossing of the abscissa is
the same at ω = ωr for both cases.
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Important characteristics of the real and imaginary plots of the FRF, and how they can be used to
extract modal parameters (i.e., damping ratio, natural frequency, and modal participation factor) are
summarized in the following, including the new steps proposed in our modified peak picking method:

i. Setting ∂Gr
∂ω = 0 yields two positive roots as, ωr,1 = ωr/

√
1 + 2ζr and ωr,2 = ωr/

√
1− 2ζr.

Hence, in our approach, the frequency values coinciding with the minimum and maximum
real components of accelerance around the natural frequency (ωr) are used to determine the
damping ratio as,

ζr =

(
ω2

r,2 −ω2
r,1

)
(ωr)

2

4ω2
r,1ω2

r,2
(5)
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In traditional peak picking, extrema of the real component of receptance are considered, which
occur at the following frequencies, leading to the corresponding damping ratio expression,

ω∗r,1 = ωr
√

1− 2ζr, ω∗r,2 = ωr
√

1 + 2ζr, ζr =

(
ω∗r,2

)2
−
(

ω∗r,1

)2

4ω2
r

(6)

Figure 6a presents a comparison between the damping ratio values estimated from the real
component of accelerance. When the proposed formulation in Equation (5) is used, the damping ratio
is estimated correctly. However, if the traditional receptance formulation in Equation (6) is applied
together with the approximation that ω∗r,1

∼= ωr,1 and ω∗r,2
∼= ωr,2, then the damping ratio can only be

estimated reasonably well if its actual value is 0.05–0.07 or less. In the case of the actual damping being
higher, the use of Equation (6) yields a significant error when peak frequencies of real accelerance
are substituted in place of their receptance counterparts. In the comparative modal testing results
presented in Section 2.6, damping ratios as high as ζr = 0.24 were encountered, with the vibration
modes originating mainly from air bearing/bushing stiffness and damping properties. The receptance
formulation in this case would have given incorrect estimates. Hence, the development of separate
formulations for accelerance-based peak-picking was an obvious necessity in this study, and can be
applied in other systems as well.

ii. Setting ∂Hr
∂ω = 0 yields only ωmax = ωr

√
2
√

ζ4
r − ζ2

r + 1 + 2ζ2
r − 1 as the positive root. For

ζr << 1, ωr ≈ ωmax can be assumed. Hence, the imaginary peak/dip location is used to identify
the natural frequency (ωr). For receptance, the imaginary peak location is obtained as,

ω∗max = ωr

√
2
3

√
ζ4

r − ζ2
r + 1− 2

3
ζ2

r +
1
3

(7)
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In Figure 6b, estimation of the natural frequency using accelerance versus receptance peak values
is shown. It is observed that using the imaginary peak yields similar accuracy in both cases. Also,
while the accelerance case overestimates, and deteriorates slightly faster for high values of ζr, the
receptance method underestimates the true ωr. Overall, both methods are suitable for peak picking to
a certain extent for their type of measurement.
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iii. Limit ω/ωr→∞ yields Gr→ω2
r ψi

rψk
r

kr
and Hr→ 0. Hence, real part of accelerance has residues from

the lower frequency modes, and using the horizontal axis crossing of Gr for natural frequency
estimation would be inaccurate.

iv. Limit ω/ωr→ 0 yields Gr→ 0 and Hr→ 0. Hence, in accelerance, higher frequency modes
typically do not have an influence on their lower frequency counterparts. In the case of receptance,
the situation is reversed in which the higher frequency modes affect the real part only, and lower
frequency modes exert very little influence.

For mode shapes to be identified, either the accelerometer location can be fixed and force impacts
at different locations can be applied (roving hammer), or the impact location can be fixed while the
accelerometer is placed at different points for each measurement (roving accelerometer). Due to
the reciprocity rule (aik = aki), results from the two cases should be equivalent in a linear system.
Roving hammer measurements (for the same number of measurement points) can be carried out
more quickly, as impacting at a point does not require any significant preparation. On the other hand,
in the roving accelerometer case, more time is needed to properly mount the accelerometer at each
measurement point, generally using wax. If one wants to determine mode shapes in three dimensions,
which allows for a full three dimensional display of the vibratory motions, the response at every
measurement point has to be measured in all three orthogonal axes. For the roving hammer case,
this requires impacts in three orthogonal directions to be applied at each measurement point. This is
very cumbersome; first, due to the difficulty of adjusting the orthogonal impact directions, second,
due to the likelihood of some points being impossible to reach from all three directions. In such
cases, it is much more advantageous to use a tri-axial accelerometer, which can output accelerations
in all three axes at the same time, in roving accelerometer configuration. This way, both the problem
of orienting measurement axes is solved, and the possibility of being obstructed by the measured
structure is minimized, as the accelerometer is both smaller, and stays in place during measurement.
In this paper, as the mode shapes are manually sketched in method 1, roving hammer configuration
is used to obtain two dimensional mode shapes using hammer impacts from a single direction for
each measurement point. On the other hand, taking advantage of the availability of three dimensional
automated calculation and animation of mode shapes, in method 2, roving accelerometer configuration
is used with a tri-axial accelerometer.

Denoting the accelerometer location as ‘o’, the accelerance FRF is given by aok(ω). As the
imaginary peak/dip approximately occurs at ωr, the value of the peak/dip (Qok

r ) can be expressed as:

Hok
r (ωr) = Qok

r =
ω2

r ψo
r ψk

r
2krζr

(8)

Value of the imaginary peak/dip measured for a number of impact points, k = 1, . . . , m, can be
related to the mode shape (ψr) as, 

Qo1
r

Qo2
r
...

Qom
r

 =
ω2

r ψo
r

2krζr


ψ1

r
ψ2

r
...

ψm
r

 (9)

As the mode shapes, which are essentially eigenvectors of the system dynamics, can be scaled by
any constant factor, the imaginary peak/dip values can be directly used for visualizing the elements
of the mode shape vector. An example case of how the modes are sketched is illustrated in Figure 7,
for the YZ measurement plane. The values of Qok

r can be carried on the undeformed sketch of the
structure using a graphical scaling factor. The deformed body is sketched using the displaced points,
matching the displacements in their respective axes. For the actual analysis, additional points such as
F′6 to F′9 are also considered.
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2.4. Modal Analysis Method 2 (Software Package)

2.4.1. Impact and Measurement Points

The experimental setup for method 2 (software package) is presented in Figure 8a. In this method,
the stage is impacted at the locations F1 and F2, as shown in Figure 8b. FRF’s are measured from the
3-axis accelerometer roved through A1–A8, which totals to 24 FRF’s for each impact point. A related
module of Test.Lab® was used to acquire and view the FRF’s.
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2.4.2. Method of Analysis

In method 2, modal identification has been carried out using automated and typically complex
algorithms that have been documented in the literature, and implemented inside the commercially
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available vibration analysis software package. Natural frequencies and damping ratios were identified
using the ‘PolyMAX’ module within LMS Test.Lab®. The proprietary ‘PolyMAX’ algorithm carries out
a similar operation to the commonly used least-squares time domain complex exponential method, in
the frequency domain [18]. The resulting stabilization diagram is interpreted for natural frequencies
and damping ratios. For constructing the mode shapes, these identified parameters are used in
the least-squares frequency domain (LSFD) algorithm [19], which finds the best fit to the modal
displacement vector based on the agreement between the measured and fitted FRF’s. The software
package allows either complex or real mode shapes to be fit. In this paper, complex mode shapes
are enabled to test the proportional damping assumption. Complexity of mode shapes is rated
using ‘modal phase collinearity (MPC)’ and ‘mean phase deviation (MPD)’ [19]. MPC and MPD
rate the complexity of the mode on a scale 0 to 100%, and 0◦–90◦, respectively. Having obtained a
minimum MPC of 96.5%, and a maximum MPD of 12◦ in the set of identified mode shape vectors,
the proportional damping assumption used in method 1 (Section 2.3) is observed to be justifiable.
Identified mode shapes can be animated as a 3D video, and screenshots of the animated mode shapes
are presented in Section 2.6.

2.5. Measurements from the Encoder

For the identification of axial modes in the X-direction or modes which have significant
displacement components along the stage’s direction of sensitivity, measurements that are parallel
to the encoder axis are needed. Such modes are critical for the positioning control stability, as they
directly enter the control loop through the encoder measurement. In this regard, position readings
from the encoder scale, evaluated by the DSpace® DS3002 encoder interface board, were fed to
CutPRO®’s MalTF interface, as a position measurement, using the DS2102 digital to analog converter.
The boards (DS3002, DS2102) ran at sampling frequency of 20 kHz. The same impact points in three
planes mentioned for method 1 (Figure 4) were used, with the accelerometer replaced by the encoder.
Receptances acquired this way did not yield any vibratory modes in the 0–2000 Hz range. Eventually,
position control bandwidth in the X-axis could be increased up to 650 Hz without experiencing any
interactions with vibratory modes, affirming these results. The bandwidth was mainly limited by the
phase advance that can be contributed by the control scheme at the desired cross-over frequency, while
ensuring that amplification of measurement noise through feedback did not display a significantly
deteriorating effect.

2.6. Comparative Results and Discussion

Comparative modal testing results from method 1 (modified peak-picking) and method 2 (LMS
Test.Lab®) are presented in Figure 9, along with natural frequency predictions made at the design
phase (Section 2.1). It is observed that the identified natural frequencies for methods 1 and 2 are rather
close, except for a slightly larger deviation for the first mode. Damping ratios are also observed to be
close. On the other hand, large discrepancies between the experimentally identified and predicted
natural frequencies can be noticed. This discrepancy is especially critical in the case of the first mode
(roll). While methods 1 and 2 have measured 65 Hz and 79 Hz, respectively, the initial theoretical
prediction was 538 Hz. The roll motion is only constrained by the flat air bearing at the bottom, and
such bearings are usually not rated for rotational stiffness.
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For the theoretical calculations, a simple model assuming distributed stiffness was used.
Apparently, the actual rotational stiffness of the air bearing is much lower than approximated, which
can be attributed to the distortion of the air cushion at the bearing interface and changing air flow
conditions dependent on fly height and orientation. In order to make more accurate predictions, more
detailed analyses and data on the rotational stiffness of the air bearing is necessary.

Identified modes 2 (horizontal) and 3 (vertical) also imply deviation of the actual vibratory
dynamics from the predicted ones. The fact that natural frequencies measured for these two modes
are close suggests symmetry in the actual system in the horizontal and vertical directions. On the
other hand, such symmetry was not predicted due to the assumed contribution of the flat air bearing
stiffness in the vertical direction. The effective normal stiffness of the air bearing appears to be lower
than the catalogue value, which may be due to a higher gap in the final assembly. The air bearing still
provides some stiffness, as evident from the slightly higher natural frequency identified for the vertical
mode (mode 3). The reason for both modes 2 and 3 having lower natural frequency than expected can
be due to a lower effective stiffness of the air bushings, likely due to the shaft being manufactured
closer to the minimum diameter within the tolerance range.

Contrary to the other modes, the natural frequency identified for mode 4 (pitch) is higher than
the theoretical prediction. When the main compliances causing a vibratory mode shape are due to
the bearings, mode shapes assume rigid-body motion-like patterns, as assumed for the theoretical
predictions. However, motions in each degree of freedom (linear and rotational axes) are not totally
decoupled as it was assumed. This can be observed in modes 3 and 4, which have motions in both
vertical and pitch directions. This can be the reason mode 4 attained a higher natural frequency than
expected. Also, elastic deformations of the structural components couple with bearing compliances
to alter vibratory dynamics. Mainly elastic modes were not identified in the 0–2000 Hz range, but a
dominantly axial elastic mode was identified at 2765 Hz using method 1.

Overall, these modal measurements help assess the validity of many of the assumptions made
during the design phase, and also highlight what additional knowledge is needed for making more
realistic predictions. They also allow the response to a complex disturbance input to be evaluated in a
fairly detailed manner, as performed in Section 4.2.3.

The procedure outlined in this section can be applied to other similar motion systems as follows:

i. For a quick and straightforward assessment of the most prominent vibration modes (starting
from the first mode) the ‘peak-picking’ procedure can be applied, as it is shown to yield
sufficient accuracy. This information can be incorporated in the determination of the
control bandwidth.
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ii. For further investigation of the vibratory dynamics, typically with >5 modes, as well as for
the representation of mode shapes in three dimensions, a software package similar to the one
utilized in this paper can be used.

iii. Results from the two methods can be combined in the assessment of design features, like the
magnitude and geometry of the compliances of the stage and bearings, as exemplified in this
study by the less than ideal roll resistance observed through modal testing.

3. Laser Interferometric Metrology

Laser interferometric metrology has been used to measure the geometric errors along the linear
path of the motion stage using varying combinations of the laser source and the measurement optics
(retroreflector, Wollaston prism, straightness retroreflector, angular retroreflector). The results from
this section are used in compiling the error budget in Section 4.

3.1. Methodology of Measurements

Definitions for the machine tool coordinate system and the error motions are presented in
Figure 10 [20]. Measurement target positions are chosen with some randomness in the spacing
between each other as recommended in the standard [21], and are presented in Table 5. The stage
dwells for 2 s at each position, and the average of measurement between 1.0–1.8 s is used. Each point
is crossed 5 times in backward and forward directions.
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Figure 10. Machine tool coordinate system and error motions (copied by Waterloo University with the
permission of the Standards Council of Canada (SCC) on behalf of ISO) [20].

Table 5. Target positions used in error measurements.

i Pi (mm) i Pi (mm) i Pi (mm)

1 1.509 7 7.548 13 13.545
2 2.508 8 8.501 14 14.509
3 3.507 9 9.549 15 15.533
4 4.510 10 10.515 16 16.547
5 5.548 11 11.526 17 17.549
6 6.501 12 12.543 18 18.505

During the tests, ambient pressure, temperature, and relative humidity were monitored. These
values were later used in the Edlen equation [22] to obtain the laser wavelength. The locations of
the measurement optics with respect to the center of gravity of the stage are presented in Figure 11.
Abbe compensation is applied to the linear measurements using the angular measurements and the
moment arms to bring them to the common point at the center of gravity. Linear errors in each axis can
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be expressed in terms of angular deviations and the 3D rotation matrix simplified for small angular
deviations [23] as, 

δx

δy

δz

 =

 0 −θc θb
θc 0 −θa

−θb θa 0


 Lx

Ly

Lz

 (10)

where δx,y,z are the linear errors, θa,b,c are the angular deviations in each rotation axis, and Lx,y,z are the
moment arms.J. Manuf. Mater. Process. 2018, 2, x FOR PEER REVIEW  14 of 26 
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3.2. Evaluation of the Results

The deviation at each point is given by dij where i = 1, . . . , 18 is the index of measurement position
and j = 1, . . . , 5 is the index of pass. Forward ( d ↑ ), backward ( d ↓ ), and unidirectional (d) mean
positional deviations are expressed as:

di ↑= 1
n

n
∑

j=1
dij ↑

di ↓= 1
n

n
∑

j=1
dij ↓

di =
di↑+di↓

2

(11)

The estimator of standard uncertainty is found as,

si ↑=

√√√√ 1
n− 1

n

∑
j=1

(
dij ↑ −di ↑

)2
(12)

where the backward direction (↓) version is found by replacing (↑) with (↓). For each error
measurement, a standard final plot with deviations at each point at each pass ( dij l ), mean deviations
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( di ↑ , di ↓ , di), and mean deviations with uncertainty range ( d ↑ ±2s ↑ , d ↓ ±2s ↓ ) are produced. The
rest of the parameters related to accuracy and their definitions are presented in Table 6 [21].

Table 6. Error motion parameters [21].

Parameter Definition Formula

B Reversal value Bi = di ↑ −di ↓ , B = max{Bi}

B Mean reversal value B = 1
m

m
∑

i=1
Bi

M Range mean bidirectional
positional deviation M = max

{
di

}
−min

{
di

}

E Systematic positional deviation
E = max

{
di ↑; di ↓

}
−

min
{

di ↑; di ↓
}

R Repeatability of positioning

Ri ↑= 4si ↑ , Ri ↓= 4si ↓ ,
Ri =

max{2si ↑ +2si ↓ +|Bi|; Ri ↑; Ri ↓},
R = max{Ri}

A Accuracy

A =
max

{
di ↑ +2si ↑; di ↓ +2si ↓

}
−min

{
di ↑ −2si ↑; di ↓ −2si ↓

}
3.3. Measurement Results

Linear and angular accuracies are presented in Tables 7 and 8, respectively, as PV magnitudes.
Detailed discussion of each error component is presented in the subsequent sections.

Table 7. Linear accuracies.

EXX (Linear) EYX (Vertical) EZX (Horizontal)

(µm) ↓ ↑ bi ↓ ↑ bi ↓ ↑ bi
B N/A N/A 0.1 N/A N/A 0.2 N/A N/A 0.1
B N/A N/A 0.0 N/A N/A 0.1 N/A N/A 0.0
M N/A N/A 1.2 N/A N/A 2.1 N/A N/A 0.8
E 1.2 1.2 1.2 2.1 2.2 2.3 0.8 0.8 0.9
R 0.7 0.7 0.7 0.4 0.3 0.5 0.8 0.9 0.9
A 1.6 1.7 1.8 2.3 2.4 2.5 1.6 1.5 1.6

Table 8. Angular accuracies.

EBX (Yaw) ECX (Pitch)

(µm/m) ↓ ↑ bi ↓ ↑ bi
B N/A N/A 0.7 NA NA 2.0
B N/A N/A 0.0 NA NA −1.0
M N/A N/A 4.5 NA NA 163.4
E 4.4 4.5 4.5 163.7 163.2 163.8
R 3.2 3.4 3.4 6.6 4.5 6.6
A 6.6 7.2 7.2 167.0 167.2 167.5

3.3.1. Linear Positioning Error (EXX)

Measurement results for EXX are presented in Figure 12. Abbe compensation is applied by adding
the multiplication of the pitch error (ECX) by the 18.5 mm moment arm shown in Figure 11a, to the
raw measurement result. The moment arm is measured from the encoder position, as the positioning
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error of the encoder scale w.r.t. the center of gravity is taken care of by the servo. The uncertainty of
measurement due to the misalignment of the laser beam is given in the standard [21] as:

U =
0.3 ε2

L
(13)

where U is the uncertainty in (µm), ε is the misalignment in (mm), and L is the measurement length
in (m). As the laser encoder system used [24] provides an LED lamp for the indication of the level
of alignment, ε < 1 mm can be assumed [21]. On the other hand, this still implies up to 15 µm
possible error. Hence, the approximately 2 µm total slope removed from the Abbe compensated EXX
(Figure 12b) can easily be the cosine error due to misalignment, justifying its removal. Alternatively, it
can be due to the encoder scale not being mounted at an absolute right angle to the motion stage axis.
In the latter case, it is an actual error rather than a measurement error and it should not be removed.
However, it would still be a repeatable error that can be compensated by shifting the position reference.
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After the removal of the slope, the bidirectional systematic error is given by E = 1.2 µm (Table 7).
It is compatible with the expectations as the Heidenhain® LIP501 R encoder scale is graded for
±1 µm accuracy [25], which corresponds to PV 2 µm possible error. The repeatability is evaluated
as R = 0.7 µm, which is poorer than expected for the typical optical encoder. Considering the
approximately 300 mm dead path, the repeatability corresponds to about ±1 ppm deviation, which
can be attributed to environmental disturbances on the laser measurement, such as the turbulence of
the ambient air. Altogether, the accuracy is evaluated as A = 1.8 µm.

3.3.2. Straightness Error in Y (EYX)

Measurement results for EYX are presented in Figure 13. Abbe compensation has been applied to
the raw results by subtracting the multiplication of the pitch error (ECX) by the 45.5 mm moment arm.
As straightness measurements are prone to large errors due to the misalignment of the straightness
retroreflector, the constant slope portion has been removed after Abbe compensation (Figure 13c). EYX
results indicate a possible curvature on the main shaft, which might have been introduced during the
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machining of the flat surfaces, used for mounting the top and bottom plates. A least-squares best fit
line has been used to shift the zero of the deviations axis. The repeatability of R = 0.5 µm is more likely
due to laser measurement errors as in EXX. An overall accuracy of A = 2.5 µm has been measured.J. Manuf. Mater. Process. 2018, 2, x FOR PEER REVIEW  17 of 26 
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3.3.3. Straightness error in Z (EZX)

Measurement results for EZX are presented in Figure 14. Abbe compensation has been applied
by adding the multiplication of the yaw error (EBX) by the 45.5 mm moment arm to the raw result.
As in EYX, the slope due to the misalignment of the optics is removed and the reference is shifted
to the least-squares best fit line. A repeatability of R = 0.9 µm and overall accuracy of A = 1.6 µm
are observed.
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3.3.4. Yaw Error (EBX)

Measurement results for EBX are presented in Figure 15. A repeatability of R = 3.4 µm/m and
an accuracy of A = 7.2 µm/m have been obtained. As the angular measurements are immune to
misalignment errors, no corrections of the raw results have been made.
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3.3.5. Pitch Error (ECX)

Measurement results for ECX are presented in Figure 16. The large angle measured can be due to
the main shaft having a curvature, and resulting in a semicircular motion of the stage. This is also a
potential explanation of the parabola-like EYX measured (Figure 13c).
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4. Error Budget

The error budget is made up of components related to geometric, thermal, and servo errors, as
well as the dynamic response due to machining forces. In this section, first, a predicted error budget is
presented which uses nominal properties of the components. Then, measured/estimated actual errors
are used for the actual error budget. Results from the two cases are compared.

4.1. Predicted Error Budget

In the predicted error budget, peak-to-valley (PV) error magnitudes are used likewise the actual
one. The items included can be summarized as follows:

• The PV error due to position sensor resolution is given by Eres = 0.97 nm, derived from the 4096
times arctangent interpolation of the 4 µm measurement signal period.



J. Manuf. Mater. Process. 2018, 2, 8 19 of 27

• The linear encoder scale is rated for ±1 µm grating error [25], hence the PV error due to encoder
grating defects is given by Egrating = 2000 nm.

• The main shaft of the motion stage acts as the guideway for the air bushings. It is manufactured to
a cylindricity tolerance of 5 µm as shown in Figure 17. Assuming that roughly half of the possible
errors due to the errors in the shaft dimension are cancelled by its realignment in the air gap, PV
errors in Y and Z directions can be assumed to be EY = 2.5 µm, and EZ = 2.5 µm, respectively.
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The predicted error budget is presented in Table 9. The PV predicted error is 4.1 µm. The rationale
behind using the sum of root-mean-square (RMS) values and the final prediction being the mean of
the arithmetic and RMS sums has been explained in Section 4.2.4.

Table 9. Predicted error budget.

Error Components PV Magnitude (nm)

Position sensor resolution (Eres) 0.97
Position sensor grating error (Egrating) 2000
Y straightness (EY) 2500
Z straightness (EZ) 2500
Arithmetic sum 7001
RMS sum 1173
Mean 4087

4.2. Actual Error Budget

4.2.1. Geometric Component

Summary of geometric accuracies w.r.t. the center of gravity are presented in Table 10. When it
is assumed that compensation of the systematic error in all 5 axes is possible, i.e., if the actuator is
used as part of a multi-axis micro machine-tool, the geometric errors reduce to just the repeatability
value. In the error budget, both cases are considered separately to demonstrate the extent to which the
system can be corrected with compensation.
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Table 10. Summary of geometric accuracies.

Component Accuracy (A) Repeatability (R) Units

EXX 1.8 0.7 (µm)
EYX 2.5 0.5 (µm)
EZX 1.6 0.9 (µm)
EBX 7.2 3.4 (µm/m)
ECX 167.5 6.6 (µm/m)

4.2.2. Thermal Component

Thermal Disturbance Sensitivities

The linear nano-positioner body is made up of aluminum, steel, permanent magnet material,
and encoder glass. A diagram showing key variables relevant to thermal disturbance sensitivities is
presented in Figure 18. The point of interest is defined at the center of the upper surface of the top
plate as shown.
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Dimensions in mm.

The point of interest is sensitive to the following thermal disturbances:

• In the case of thermal expansion along the X-axis, combined effect of the expansion of the encoder
scale and the top plate needs to be considered. If the encoder scale is thought of as fixed at its
center to the top plate, the deviation in X-positioning would be represented by,

δx = (αal − αenc) · L2 · ∆T (14)

where αenc is the coefficient of thermal expansion of the glass encoder scale specified by the
manufacturer [25], and αal is the coefficient of thermal expansion of Aluminum 6061. On the other
hand, the encoder scale is held by clamps which do not exert a significant pressure on the scale
and the scale can be thought of as decoupled from the top plate. In that case, X-axis positioning
error needs to be revised as,

δx = αal · L2 · ∆T (15)



J. Manuf. Mater. Process. 2018, 2, 8 21 of 27

which corresponds to a worse scenario due to αal > (αal − αenc).
• Along the Y-axis, thermal expansion of the stage would push the point of interest upwards by

δy =
αal · L1 · ∆T

2
(16)

where L1 is the thickness of the stage, and ∆T is the temperature variation. If the stage body
was only constrained by the air bearing at the bottom, the thermal expansion would be δy =

αal · L1 · ∆T. As the air bushings are expected to counteract this, L1/2 is used to approximate the
equilibrium position.

• Thermal expansion along the Z axis does not affect the point of interest.

The thermal sensitivity in X and Y axes can be defined as,

γx =
δx

∆T
= αal · L2, γy =

δy

∆T
=

αal · L1

2
(17)

The total linear thermal sensitivity of positioning can be expressed as,

γT =
√

γ2
x + γ2

y (18)

Values of the thermal sensitivities and parameters used in calculations are summarized in Table 11.

Table 11. Thermal sensitivities and parameters used in calculations.

Quantity Symbol Value

Thermal coefficient of expansion of Aluminum 6061 αal 23.5 ppm/K
Thermal coefficient of expansion of the glass encoder scale αenc 8 ppm/K
Thickness of the moving body L1 33.7 mm
Distance between the center of the top plate and the encoder scale L2 10 mm
Thermal sensitivity along the X-axis γx 235 nm/K
Thermal sensitivity along the Y-axis γy 396 nm/K
Total thermal sensitivity γT 460 nm/K

Thermal Disturbances and the Resulting Thermal Error

At the specified peak current, VCA’s dissipate 1.19 W each, which can result in considerable
thermal disturbances in a micro/nano-precision setting. The thermal stability of the nano-positioner is
tested using a jerk limited cubic acceleration profile trajectory with the maximum acceleration, A =
5000 mm/s2 (which is slightly short of the maximum achievable acceleration of 6480 mm/s2), and the
resulting high feedrate, F = 200 mm/s, constrained by the stroke length limitation. With a 0.05 s dwell
period prescribed at the far end of the stroke, the period of back and forth motions is determined as
0.35 s. Thermocouples were mounted at the adjustment ring near the VCA core and the top plate on
the main shaft. The stage was run for 8 h, for which the collected temperature readings are presented
in Figure 19.
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From the plot, it can be inferred that after the initial warming-up phase, temperature keeps rising
steadily at a rate of approximately 0.1 ◦C/h. As the adjustment ring is closer to the VCA’s, it heats up
in advance. The ambient temperature could possibly be kept steadier with better air-conditioning and
ventilation equipment, which would also contribute to the cooling of the stage. However, the proximity
of equipment such as the amplifiers, voltage supply, controller, and the PC to the experimental setup
makes it a challenge. It should also be noted that the compressed air supply at the air-bushing/shaft
interface contributes to the cooling of the stage due to the high heat transfer coefficient associated
with the forced convection in the resulting annular duct. However, this effect does not amount to
an observable isolation of the top plate from the heat generated by the VCA’s, due to the low flow
rate of the air bushings. Assuming that the micro-milling operation for which the nano-positioner is
intended can involve a calibration cycle every 2 h., thermal variation of the stage can be budgeted
using ∆T = 0.2 ◦C. Hence, the resulting dimensional error is given by γT × ∆T = 92 nm.

4.2.3. Machining Force Component

Machining forces contribute to motion errors by causing dynamic deflections (i.e., vibrations).
The directions of anticipated machining force components acting on the payload were presented in
Figure 1. The machining force input in the X-direction enters the control system as shown in the block
diagram of Figure 20 [2]. In the block diagram, Ka (A/V) is the current control response, K f (N/V) is
the actuator force factor, 1/ms2 stands for the rigid body dynamics of the actuator body floating on
the air bearings, and G∗(s) stands for the vibratory modes in the axial direction. The overall plant is
given by,

Gp = KaK f

(
1

ms2 + G∗(s)
)

(19)

which was measured using frequency response, for controller design purposes. The dynamic
compliance in the axial direction is given by the control system’s disturbance rejection function
(GFx) as,

GFx =
e

Fx
=
−
(

1
ms2 + G∗(s)

)
1 + CGp

(20)

where G∗(s)→ 0 can be set in the 0–2000 Hz range, as the measurements of Section 2.5 revealed no
vibration modes.
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Figure 20. Control block diagram with the machining force disturbance.

In the case of Fy and Fz, dynamic compliances are given by the deformability of the structure
as a function of the excitation frequency, which was captured in the FRF measurements in Section 2.
Referring to Figure 4, FRF measured between F”1-Axy can be used as GFy, and the FRF measured
between F1-Axz can be used as GFz. As the FRF’s are measured in terms of accelerance, conversion to
receptance needs to be carried out for the position response. Instead of directly dividing the accelerance
magnitudes by the square of the frequency (as suggested by the mathematical definition), receptances
are synthesized from modal parameters which were fitted using peak-picking, in order to prevent
distortions in the low-frequency region. Resulting GFx, GFy, GFz are presented in Figure 21a–c. The
compliance in the Z-direction is about an order of magnitude higher than the others, due to the low
effective roll resistance provided by the flat air bearing, as discussed in Section 2.6.
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For the quantification of forces, a slotting case was considered with sinusoidal force components
as follows:

Fx = 1.0 + 1.0× sin(ωt) (N),
Fy = 0.2 + 0.2× sin(ωt) (N),
Fz = 1.0 + 1.0× sin(ωt) (N)

(21)

The resulting deflections can be obtained from δx, y, z = GFx, y, z × Fx, y, z. Phase differences in the
timing of the forces can be neglected for a worst-case scenario to obtain the total deflection as,

δ =
√

δ2
x + δ2

y + δ2
z (22)

Depending on the nature of the cutting operation, the above force model may of course be
replaced with a more suitable one as needed [26,27]. The resulting deflection (δ) as a function of the
excitation frequency is presented in Figure 21d. The reported values comprise both the static response
to the constant part and the sinusoidal part which changes as a function of the spindle frequency. In
micro-milling, due to the compliance of the tools used, the machining forces are limited to 1–2 N in
order to obtain the desired tolerances in the finished part. This is achieved by limiting the chip load
using high spindle speeds [28]. Assuming a 2 teeth cutter, and a spindle speed of 50,000 rpm, a tooth
passing frequency of ω = 1667 Hz is obtained, for which the total deflection is given by δ = 1.748 µm.

4.2.4. Compilation of the Error Budget

The error budget is presented in Table 12. Original errors are presented at the left, and
non-repeatable errors after the assumed ideal geometric compensation are presented at the right.
Servo error is obtained from trajectory following tests conducted with the stage. Thermal errors and
machining force deflections are considered as non-repeatable. The error budget is compiled for the
point of interest at the center of the top plate, therefore EXX is modified from the values obtained for
the center of gravity (Table 10) using the Abbe moment arm and ECX.

Table 12. The error budget.

PV Magnitude (nm)

Repeatable Errors
Conserved

Repeatable Errors
Subtracted

Estimated at Design
Phase

Linear (EXX) 3964 675 2001
Straightness

Vertical (EYX) 2503 486 2500
Horizontal (EZX) 1620 936 2500

Angular (included in Linear) -
Servo 30 30 -
Thermal 92 92 -
Machining force 1748 1748
Total Error

Arithmetic Sum 9957 3967 7001
RMS Sum 1518 621 1173
Mean 5738 2294 4087

When combining errors, the arithmetic sum gives the worst case, while the RMS sum provides
a more realistic figure, assuming that the different error sources are probabilistic and not correlated.
In practice, average of the two is used as a suitable estimate [29]. For the RMS sum to be applicable,
variance of the presented error components has to be found, instead of PV magnitude. Assuming a
uniform probability distribution centered at zero, RMS sum of the errors can be expressed as [30]:

ERMS =
1

2
√

3

[
N

∑
i=1

(Ei)
2

]1/2

(23)
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where Ei are the individual PV errors.
The error budget indicates a PV 5.7 µm deviation with the repeatable errors conserved, and

2.3 µm when 5 DOF compensation is assumed to be available. With these results, the nano-positioner
can be concluded to be marginally suitable for micro-milling applications. Comparing measured
values to the estimations from Section 4.1, linear and straightness errors are observed to be of similar
magnitude. The non-repeatable parts observed in measurement were not anticipated in predictions.
The source of non-repeatable errors is mostly equivocal, as they fall in the range of random errors of
measurement in the applied laser interferometric method, for example due to the turbulence of ambient
air. The systematic part of the errors in Y and Z axes are smaller than predicted, as the predictions
employed the whole tolerance range of the shaft. In reality, within the tolerance range, the shaft may
be manufactured to a better uniformity. In EXX, the systematic error measured is larger than estimated
error due to the observed curvature of the shaft mostly evident in the EYX and ECX measurements.
This affects the point of interest through the moment arm. Servo and thermal errors are observed to
contribute a relatively small portion of the overall error. Dynamic deflections due to machining forces
are anticipated as a major component of the error, mostly due to the compliance in the roll direction.

The error budget represents data that goes into the core of the performance specifications
for a precision motion stage, in terms of accuracy. As such stages also constitute motion axes of
micro-/nano-machine tools, they directly affect the achievable manufacturing accuracy. In this study,
modal testing has been incorporated in the error budget to determine the dynamic deflections due
to machining forces, in this regard. The new procedures proposed in this paper (i.e., modified peak
picking method and merging of dynamic response predictions into an error budget) are applicable to a
wide set of precision motion stages and machine tools.

5. Conclusions

The long-stroke linear nano-positioner design has been verified through modal testing, and laser
interferometric measurements with subsequent error budgeting. The lowest resonance is observed
to be a roll mode at 65 Hz, which was predicted to occur at 538 Hz before the stage was built. It is
inferred that the roll/pitch resistance of the flat air bearing is much lower than the prediction, which
highlights the need for additional data and modeling tools to aid designers of precision equipment.
Nevertheless, this roll mode did not have any negative influence on the servo performance of the stage,
which could achieve 450–650 Hz crossover frequency [2].

The error budget concludes PV 5.7 µm accuracy, which has a non-repeatable part of PV 2.3 µm.
Systematic part of the errors could be reasonably predicted at the design phase, and they came more
or less from the manufacturing tolerance and the assembly process. The semi-circular trend in the
motion most likely originates from a curvature on the main shaft. There has also been a degree of
uncertainty regarding the origin of the non-repeatable geometric errors. In the future, investment into
better environmental control in the laboratory may help obviate some of the random sources of laser
interferometric measurement error.

Overall, the modal analyses, laser interferometry, spectral analysis, and error budgeting has
enabled the validation of many of the assumptions and predictions made during the design of the
precision stage. The measurements and analyses have also clearly indicated the limitations of, and
possible improvements to, this type of linear motion stage, such as enhancing the stiffness in the
roll direction. The results further demonstrate the need for additional modelling capability and data
regarding the multi-directional stiffness behavior of porous flat air bearings.
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