
Manufacturing and
Materials Processing

Journal of

Article

Three Hundred and Sixty Degree Real-Time
Monitoring of 3-D Printing Using Computer Analysis
of Two Camera Views

Siranee Nuchitprasitchai 1, Michael C. Roggemann 1 and Joshua M. Pearce 2,*
1 Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931,

USA; snuchitp@mtu.edu (S.N.); mroggema@mtu.edu (M.C.R.)
2 Department of Materials Science & Engineering, Michigan Technological University, Houghton,

MI 49931, USA
* Correspondence: pearce@mtu.edu; Tel.: +1-906-487-1466

Received: 15 May 2017; Accepted: 22 June 2017; Published: 4 July 2017

Abstract: Prosumer (producing consumer)-based desktop additive manufacturing has been enabled
by the recent radical reduction in 3-D printer capital costs created by the open-source release of the
self-replicating rapid prototype (RepRap). To continue this success, there have been some efforts
to improve reliability, which are either too expensive or lacked automation. A promising method
to improve reliability is to use computer vision, although the success rates are still too low for
widespread use. To overcome these challenges an open source low-cost reliable real-time optimal
monitoring platform for 3-D printing from double cameras is presented here. This error detection
system is implemented with low-cost web cameras and covers 360 degrees around the printed object
from three different perspectives. The algorithm is developed in Python and run on a Raspberry
Pi3 mini-computer to reduce costs. For 3-D printing monitoring in three different perspectives,
the systems are tested with four different 3-D object geometries for normal operation and failure
modes. This system is tested with two different techniques in the image pre-processing step: SIFT
and RANSAC rescale and rectification, and non-rescale and rectification. The error calculations were
determined from the horizontal and vertical magnitude methods of 3-D reconstruction images. The
non-rescale and rectification technique successfully detects the normal printing and failure state for
all models with 100% accuracy, which is better than the single camera set up only. The computation
time of the non-rescale and rectification technique is two times faster than the SIFT and RANSAC
rescale and rectification technique.

Keywords: real time monitoring; 2-D reconstruction; error detection; reliability; 3-D printing;
computer analysis

1. Introduction

Prosumer (producing consumer) based additive manufacturing has been enabled by the recent
radical reduction in 3-D printer capital costs [1] created by the open-source release of the self-replicating
rapid prototyper (RepRap) [2–4]. The open-source hardware approach [5] has followed the traditional
rapid development seen in free and open source software [6] and the top-desktop 3-D printers are
now routinely open source RepRap derivatives [7]. The fast growth of the RepRap 3-D printers is a
result of their ability to replicate (e.g., print their own parts) and self-upgrade its own parts (e.g., print
a new cooling fan duct) as well as their ability to easily pay for themselves by fabricating consumer
goods [8,9]. In addition, open source desktop 3-D printers have been applied to create high-value
items in a wide range of fields including: rapid prototyping [10,11], distributed manufacturing [12,13],
education [14–16], sustainable technology [17–19], scientific tools [20–23], microfluidics [24,25].

J. Manuf. Mater. Process. 2017, 1, 2; doi:10.3390/jmmp1010002 www.mdpi.com/journal/jmmp

http://www.mdpi.com/journal/jmmp
http://www.mdpi.com
https://orcid.org/0000-0001-9802-3056
http://dx.doi.org/10.3390/jmmp1010002
http://www.mdpi.com/journal/jmmp

J. Manuf. Mater. Process. 2017, 1, 2 2 of 32

Despite this success, these low-cost 3-D printers still suffer from a litany of printing challenges
related to building up a part from thermoplastic one layer at time from a flat print bed including
warping, elephant foot (thicker part touching the print bed), bed adhesion (prints peeling off of the bed
during print), distortion due to shrinking, skewed prints/shifted layers, layer misalignment, clogged
nozzles, or snapped filament [10,24,26]. These unintended results reduce the economic as well as the
environmental advantage of distributed manufacturing with 3-D printing [20,21,27–29] in the aspect of
environmental and sustainability. Many works have been undertaken to automatically detect the errors
while printing, but most of them are for the expensive laser-based 3-D printing [30–33]. Therefore,
there is an acute need for a low-cost real-time error detection system for prosumer-grade 3-D printers.

There have been some efforts made to this end. There were several works detecting an error based
on the laser and piezoelectric sensors, which are not easily adapted to the low-cost market [34–36].
A more promising method is to use computer vision, which has been shown to be highly effective at
process monitoring for manufacturing [37–48]. Some previous works used cameras to monitor the 3-D
printing process [49–51]. Hurd et al. installed Samsung Galaxy Tab 3 on the printer and monitored the
printing via mobile phone [49] but this can monitor only the top view of the printed part. Therefore,
horizontal size can be determined. Baumann et al. used OpenCV [52], Python [53], and a PlayStation
eye cam to detect detachment, missing material flow and deformed object in 3-D printing [50], however,
this work can detect only the shape of the printed part from only one side with success rate of 80%.
Straub successfully applied a visible light 3-D scanning system, five Raspberry Pi cameras, Raspberry
Pi [54], and open source software approach with C# and Dot Net Framework [55] to detect incomplete
prints [51]. Nonetheless, the work can only detect error in the shape aspect. Other solutions to detect
the failure 3-D printing in the RepRap 3-D printer have had a video monitor of printing but the user
must manually check the video and stop the printing if something goes wrong [56–60].

To monitor errors during FFF-based 3-D printing, an open source low-cost reliable real-time
optimal monitoring platform for FFF-based 3-D printing from double cameras is presented here.
This error detection system is implemented with low-cost web cameras and extended from the
basic approaches dis-cussed above for 360 degrees around the printed object from three different
perspectives by extending the algorithm using the Scale Invariant Feature Transform (SIFT) [61] and
the Random Sample Consensus (RANSAC) [62] models previously described [63]. The algorithm is
developed under open-source Python and run on a Raspberry Pi3 mini-computer to reduce the costs
and computation time. For 3-D printing monitoring in three different perspectives, the systems are
tested with four different 3-D object geometries (two experiments tested in the normal printing and
two in the failure state). The normal printing state means that the filament can print correctly and
complete printing the 3-D object. The failure state is the incomplete printing the 3-D object. This system
is tested with two different techniques in the image pre-processing step: SIFT and RANSAC rescale
and rectification, and non-rescale and rectification. The error percentage is calculated by the horizontal
magnitude. Then the technique that can detect the error in the normal printing and the failure state
will be used correctly in the second experiment where two different error detection methods are used:
horizontal magnitude, and horizontal and vertical magnitudes. The results are discussed, conclusions
are drawn and the limitations of these approaches are detailed.

2. Materials and Methods

2.1. Experimental Equipment

For this work, optical experiments were setup around a delta-style [64] RepRap as shown in
Figure 1 running double cameras. This is a low-cost (<US $500 in parts) open source delta-style polymer
printing RepRap (MOST Delta). The MOST Delta is a RepRap [65] derived from the Rostock [66]
printer with a cylindrical build volume 270 mm in diameter and 250 mm high and overall dimensions
of 375 mm diameter and 620 mm high. In addition, the STL and SCAD file are given for a first
generation 3-D printable design to attach the cameras to the MOST delta [67]. The double camera

J. Manuf. Mater. Process. 2017, 1, 2 3 of 32

error detection uses left and right images for three 3-D reconstructions (as seen in Figure 2). A Python
algorithm was written for the experimental setup and is made available free and open source under
an AGPLv3 license [63]. A different Python algorithm is used for each experimental setup, but the
same type of webcam, 3-D printer, Raspberry Pi3, USB 3.0 hub with 12 V/3 A power adapter, three
LED light sources, tested objects, black printing base, black background, and filament brand are used.
Due to the distance between the camera and the printer for the experiment setup, the field of view
for both cameras can cover the printed area of 70 mm in width and 60 mm in height. The relation
of geometry between the 3-D printer and the camera system need to be known to be able to use
the camera calibration technique [68] to calculate the intrinsic and extrinsic parameters for a specific
camera setup. These parameters will be used to correct for lens distortion and image rectification.
The three LED light sources [69] are installed on the three sides of the printer. All light sources are
connected to the circuit with 4 volts from a DC power supply. The three pairs of cameras are set up
on the same side of the LED light sources. All cameras are connected to a 7 port USB 3.0 hub with
12V/3A power adapter which is connected to Raspberry Pi3. The cameras used in this study are six
Logitech C525 webcams, with an image size of 480-by-640 (height-by-width), pixel size is 5.52-by-5.82
µm (height-by-width), and a focal length of 39.5 mm. The pixel size and the focal length calculation of
the webcam below.

J. Manuf. Mater. Process. 2017, 1, 2 3 of 33

dimensions of 375 mm diameter and 620 mm high. In addition, the STL and SCAD file are given for

a first generation 3-D printable design to attach the cameras to the MOST delta [67]. The double

camera error detection uses left and right images for three 3-D reconstructions (as seen in Figure 2).

A Python algorithm was written for the experimental setup and is made available free and open

source under an AGPLv3 license [63]. A different Python algorithm is used for each experimental

setup, but the same type of webcam, 3-D printer, Raspberry Pi3, USB 3.0 hub with 12 V/3 A power

adapter, three LED light sources, tested objects, black printing base, black background, and filament

brand are used. Due to the distance between the camera and the printer for the experiment setup, the

field of view for both cameras can cover the printed area of 70 mm in width and 60 mm in height.

The relation of geometry between the 3-D printer and the camera system need to be known to be able

to use the camera calibration technique [68] to calculate the intrinsic and extrinsic parameters for a

specific camera setup. These parameters will be used to correct for lens distortion and image

rectification. The three LED light sources [69] are installed on the three sides of the printer. All light

sources are connected to the circuit with 4 volts from a DC power supply. The three pairs of cameras

are set up on the same side of the LED light sources. All cameras are connected to a 7 port USB 3.0

hub with 12V/3A power adapter which is connected to Raspberry Pi3. The cameras used in this study

are six Logitech C525 webcams, with an image size of 480-by-640 (height-by-width), pixel size is

5.52-by-5.82 μm (height-by-width), and a focal length of 39.5 mm. The pixel size and the focal length

calculation of the webcam below.

Figure 1. MOST (Michigan Tech Open Sustainability Technology) Delta printer experimental setup

where three pairs of cameras were placed around the 3-D printer 120 degrees apart then all six images

were processed by our Python-algorithms on Raspberry Pi3.

Figure 1. MOST (Michigan Tech Open Sustainability Technology) Delta printer experimental setup
where three pairs of cameras were placed around the 3-D printer 120 degrees apart then all six images
were processed by our Python-algorithms on Raspberry Pi3.

J. Manuf. Mater. Process. 2017, 1, 2 4 of 32
J. Manuf. Mater. Process. 2017, 1, 2 4 of 33

Figure 2. Example of reconstructing 2-D images to 3-D image.

2.2. Theory

2.2.1. Calculating Webcam Pixel Size and Focal Length

Unlike scientific cameras, inexpensive webcams do not normally ship with detailed technical

specifications. The procedure below enables the extraction of pixel size and focal length from any

inexpensive webcam. The Logitech C525 webcams used here do not come with information on the

pixel size and focal length (on the package or the website), so the webcam was taken apart to calculate

this information through the sensor size in the webcam as shown in Figure 3. The webcam sensor

size is 2.52-by-3.73 mm (height-by-width), and the webcam diagonal is 4.50 mm. The width and the

height of pixel size are calculated by

𝑊𝑑 = 𝑊𝑠 𝑊𝑖⁄ (μm) (1)

where 𝑊𝑑 is a width of pixel size (μm), 𝑊𝑠 is the width of the sensor size (mm), and 𝑊𝑖 is the width

of images size (pixels).

𝐻𝑝 = 𝐻𝑠 𝐻𝑖⁄ (μm) (2)

where 𝐻𝑝 is the height of pixel size (μm), 𝐻𝑠 is the height of sensor size (mm), and 𝐻𝑖 is the height

of images size (pixels).

The checkerboard image shown in Figure 4 is taken to calculate the focal length in pixels. The

checkerboard image was printed in 2-D. The size of checkerboard square on paper is 7-by-7 mm [63].

The checkerboard image was taken where the distance between the image and the webcam was 230

mm, and the size of checkerboard square in the image was 20-by-20 pixels. The focal length in pixels

is calculated by

𝐹 = (𝑃 ∗ 𝐷) 𝑊𝑐⁄ (pixels) (3)

where 𝐹 is the focal length (pixels), 𝑃 is the size of checkerboard square in the image (pixels), 𝐷 is

the distance between the image and the webcam, and 𝑊𝑐 is the size of checkerboard square on the

paper (pixels).

𝑓 = (𝐹 ∗ 𝑊𝑑) 𝑊𝑖⁄ (mm) (4)

Figure 2. Example of reconstructing 2-D images to 3-D image.

2.2. Theory

2.2.1. Calculating Webcam Pixel Size and Focal Length

Unlike scientific cameras, inexpensive webcams do not normally ship with detailed technical
specifications. The procedure below enables the extraction of pixel size and focal length from any
inexpensive webcam. The Logitech C525 webcams used here do not come with information on the
pixel size and focal length (on the package or the website), so the webcam was taken apart to calculate
this information through the sensor size in the webcam as shown in Figure 3. The webcam sensor size
is 2.52-by-3.73 mm (height-by-width), and the webcam diagonal is 4.50 mm. The width and the height
of pixel size are calculated by

Wd = Ws/Wi (µm) (1)

where Wd is a width of pixel size (µm), Ws is the width of the sensor size (mm), and Wi is the width of
images size (pixels).

Hp = Hs/Hi (µm
)

(2)

where Hp is the height of pixel size (µm), Hs is the height of sensor size (mm), and Hi is the height of
images size (pixels).

J. Manuf. Mater. Process. 2017, 1, 2 5 of 33

where 𝑓 is the focal length (mm), 𝐹 is the focal length (pixels), 𝑊𝑑 is the width of pixel size (μm),

and Wi is the width of images size (pixels).

Figure 3. Logitech C525 webcam: (a) webcam circuit board and body; and (b) sensor of webcam.

Figure 4. Example of the checkerboard image where the square size is 7-by-7.

2.2.2. Computer Vision Error Detection

There are three steps to prepare the error detection system before printing a 3-D model: (1)

camera calibration, (2) preparing STereoLithography (STL) files and resultant images, and (3) setting

up a pause and loop to move the extruder out of the view of the cameras for imaging. STL file is a file

format describing 3-D model by using series of connected triangles to create the surface of the model

and it is usually generated by computer-aided design (CAD) software. The first step is camera

calibration. Sixteen chessboard (Figure 4) images are taken from three different views of the cameras

after the 3-D printer experiment is setup for camera calibration. There are six cameras named as

camera0, camera1, camera2, camera3, camera4, and camera5. The camera0 and camera1 are setup as

the first pair of cameras, camera2 and camera3 are setup as the second pair, and camera4 and camera5

are setup as the third pair. The camera0, camera2, and the camera4 are setup as the left cameras, and

camera1, camera 3, and the camera5 are setup as the right cameras. The calibration is calculated and

saved as CalibrationData1, CalibrationData2, and CalibrationData3. The second step is preparing the

stlimage by slicing stl files every N layers where the error will be detected as shown in Figure 5. The

layer height and the amount of slicing layers need to be assigned for slicing stl file in three different

views of the cameras. The layer height and the number of total layers can be found in gcode file. All

data at every N layers from the stl file are plotted in x, y, z axes to display the shape of the rendered

3-D model, which can be observed from different viewpoints. The shape of the stlimage is saved as

PNG image type on xz-plane. If a remainder after division between the total height and the height of

every N layers is not equal to zero, the last PNG files are named as the amount of total layers. For

example, if the 3-D model in gcode file has 129 total layers, layer height of 0.2 mm, and the 3-D model

is slicing in every 30 layers, then the stl file is sliced at layer 30, 60, 90, 120, and 129 which result in

Figure 3. Logitech C525 webcam: (a) webcam circuit board and body; and (b) sensor of webcam.

J. Manuf. Mater. Process. 2017, 1, 2 5 of 32

The checkerboard image shown in Figure 4 is taken to calculate the focal length in pixels. The
checkerboard image was printed in 2-D. The size of checkerboard square on paper is 7-by-7 mm [63].
The checkerboard image was taken where the distance between the image and the webcam was 230
mm, and the size of checkerboard square in the image was 20-by-20 pixels. The focal length in pixels is
calculated by

F = (P ∗ D)/Wc (pixels) (3)

where F is the focal length (pixels), P is the size of checkerboard square in the image (pixels), D is
the distance between the image and the webcam, and Wc is the size of checkerboard square on the
paper (pixels).

f = (F ∗ Wd)/Wi (mm) (4)

where f is the focal length (mm), F is the focal length (pixels), Wd is the width of pixel size (µm), and
Wi is the width of images size (pixels).

J. Manuf. Mater. Process. 2017, 1, 2 5 of 33

where 𝑓 is the focal length (mm), 𝐹 is the focal length (pixels), 𝑊𝑑 is the width of pixel size (μm),

and Wi is the width of images size (pixels).

Figure 3. Logitech C525 webcam: (a) webcam circuit board and body; and (b) sensor of webcam.

Figure 4. Example of the checkerboard image where the square size is 7-by-7.

2.2.2. Computer Vision Error Detection

There are three steps to prepare the error detection system before printing a 3-D model: (1)

camera calibration, (2) preparing STereoLithography (STL) files and resultant images, and (3) setting

up a pause and loop to move the extruder out of the view of the cameras for imaging. STL file is a file

format describing 3-D model by using series of connected triangles to create the surface of the model

and it is usually generated by computer-aided design (CAD) software. The first step is camera

calibration. Sixteen chessboard (Figure 4) images are taken from three different views of the cameras

after the 3-D printer experiment is setup for camera calibration. There are six cameras named as

camera0, camera1, camera2, camera3, camera4, and camera5. The camera0 and camera1 are setup as

the first pair of cameras, camera2 and camera3 are setup as the second pair, and camera4 and camera5

are setup as the third pair. The camera0, camera2, and the camera4 are setup as the left cameras, and

camera1, camera 3, and the camera5 are setup as the right cameras. The calibration is calculated and

saved as CalibrationData1, CalibrationData2, and CalibrationData3. The second step is preparing the

stlimage by slicing stl files every N layers where the error will be detected as shown in Figure 5. The

layer height and the amount of slicing layers need to be assigned for slicing stl file in three different

views of the cameras. The layer height and the number of total layers can be found in gcode file. All

data at every N layers from the stl file are plotted in x, y, z axes to display the shape of the rendered

3-D model, which can be observed from different viewpoints. The shape of the stlimage is saved as

PNG image type on xz-plane. If a remainder after division between the total height and the height of

every N layers is not equal to zero, the last PNG files are named as the amount of total layers. For

example, if the 3-D model in gcode file has 129 total layers, layer height of 0.2 mm, and the 3-D model

is slicing in every 30 layers, then the stl file is sliced at layer 30, 60, 90, 120, and 129 which result in

Figure 4. Example of the checkerboard image where the square size is 7-by-7.

2.2.2. Computer Vision Error Detection

There are three steps to prepare the error detection system before printing a 3-D model: (1) camera
calibration, (2) preparing STereoLithography (STL) files and resultant images, and (3) setting up a
pause and loop to move the extruder out of the view of the cameras for imaging. STL file is a file format
describing 3-D model by using series of connected triangles to create the surface of the model and it
is usually generated by computer-aided design (CAD) software. The first step is camera calibration.
Sixteen chessboard (Figure 4) images are taken from three different views of the cameras after the 3-D
printer experiment is setup for camera calibration. There are six cameras named as camera0, camera1,
camera2, camera3, camera4, and camera5. The camera0 and camera1 are setup as the first pair of
cameras, camera2 and camera3 are setup as the second pair, and camera4 and camera5 are setup as
the third pair. The camera0, camera2, and the camera4 are setup as the left cameras, and camera1,
camera 3, and the camera5 are setup as the right cameras. The calibration is calculated and saved as
CalibrationData1, CalibrationData2, and CalibrationData3. The second step is preparing the stlimage
by slicing stl files every N layers where the error will be detected as shown in Figure 5. The layer height
and the amount of slicing layers need to be assigned for slicing stl file in three different views of the
cameras. The layer height and the number of total layers can be found in gcode file. All data at every N
layers from the stl file are plotted in x, y, z axes to display the shape of the rendered 3-D model, which
can be observed from different viewpoints. The shape of the stlimage is saved as PNG image type
on xz-plane. If a remainder after division between the total height and the height of every N layers is
not equal to zero, the last PNG files are named as the amount of total layers. For example, if the 3-D
model in gcode file has 129 total layers, layer height of 0.2 mm, and the 3-D model is slicing in every
30 layers, then the stl file is sliced at layer 30, 60, 90, 120, and 129 which result in heights of 6, 12, 18, 24,
and 25.8 mm, respectively. The first stl slicing files are saved as SCAD30_1.png, SCAD30_2.png, and

J. Manuf. Mater. Process. 2017, 1, 2 6 of 32

SCAD30_3.png, the next slicing files are saved as SCAD60_1.png, SCAD60_2.png, and SCAD60_3.png,
and so on. After slicing stl files for four models, it was found that three stl files can start slicing every
10, 20, or 30 layers, but t55gear stl file can start slicing at every 30 layers. Therefore, this study will take
six images every time 30 layers are printed. The last step in the process involves setting up a pause and
a loop to move the extruder out of the images every N layers in order to eliminate visual noise in the
object images, the extruder of 3-D printing will be paused and moved to the certain height. The 3-D
model is designed in OpenSCAD version2015.03-3 (OpenSCAD, 2016) and it is rendered and saved
into the stl file. After the 3-D model stl file is opened in Cura version15.04.6 (Ultimaker, 2016), the 3-D
model is saved as gcode file. The 3-D model gcode file is opened by any text editor program to add the
extra code in every N layers as shown in Figure 6.

J. Manuf. Mater. Process. 2017, 1, 2 6 of 33

heights of 6, 12, 18, 24, and 25.8 mm, respectively. The first stl slicing files are saved as SCAD30_1.png,

SCAD30_2.png, and SCAD30_3.png, the next slicing files are saved as SCAD60_1.png,

SCAD60_2.png, and SCAD60_3.png, and so on. After slicing stl files for four models, it was found

that three stl files can start slicing every 10, 20, or 30 layers, but t55gear stl file can start slicing at every

30 layers. Therefore, this study will take six images every time 30 layers are printed. The last step in

the process involves setting up a pause and a loop to move the extruder out of the images every N

layers in order to eliminate visual noise in the object images, the extruder of 3-D printing will be

paused and moved to the certain height. The 3-D model is designed in OpenSCAD version2015.03-3

(OpenSCAD, 2016) and it is rendered and saved into the stl file. After the 3-D model stl file is opened

in Cura version15.04.6 (Ultimaker, 2016), the 3-D model is saved as gcode file. The 3-D model gcode

file is opened by any text editor program to add the extra code in every N layers as shown in

Figure 6.

Figure 5. Slicing stl file flowchart.

Figure 6. Python code for pausing and moving the extruder to take images.

The 3-D printing models chosen after the preparatory stlimage step are sun gear [70], prism,

gear [71], and t55gear [72], which are available [73] as shown in Figure 7. The printing parameters

used are: layer height 0.2 mm, shell thickness 1 mm, unable retraction, bottom/top thickness 1mm,

fill density 20%, print speed 60 mm/s, printing temperature 180 °C, diameter filament 1.94–1.98 mm,

flow filament 100%, and nozzle size 0.5 mm. The PLA filament used in this experiment is Hatchbox

3D PLA with dimensional accuracy ±0.05 mm on 1 kg spools, 1.75 mm diameter with pink color.

Figure 5. Slicing stl file flowchart.

J. Manuf. Mater. Process. 2017, 1, 2 6 of 33

heights of 6, 12, 18, 24, and 25.8 mm, respectively. The first stl slicing files are saved as SCAD30_1.png,

SCAD30_2.png, and SCAD30_3.png, the next slicing files are saved as SCAD60_1.png,

SCAD60_2.png, and SCAD60_3.png, and so on. After slicing stl files for four models, it was found

that three stl files can start slicing every 10, 20, or 30 layers, but t55gear stl file can start slicing at every

30 layers. Therefore, this study will take six images every time 30 layers are printed. The last step in

the process involves setting up a pause and a loop to move the extruder out of the images every N

layers in order to eliminate visual noise in the object images, the extruder of 3-D printing will be

paused and moved to the certain height. The 3-D model is designed in OpenSCAD version2015.03-3

(OpenSCAD, 2016) and it is rendered and saved into the stl file. After the 3-D model stl file is opened

in Cura version15.04.6 (Ultimaker, 2016), the 3-D model is saved as gcode file. The 3-D model gcode

file is opened by any text editor program to add the extra code in every N layers as shown in

Figure 6.

Figure 5. Slicing stl file flowchart.

Figure 6. Python code for pausing and moving the extruder to take images.

The 3-D printing models chosen after the preparatory stlimage step are sun gear [70], prism,

gear [71], and t55gear [72], which are available [73] as shown in Figure 7. The printing parameters

used are: layer height 0.2 mm, shell thickness 1 mm, unable retraction, bottom/top thickness 1mm,

fill density 20%, print speed 60 mm/s, printing temperature 180 °C, diameter filament 1.94–1.98 mm,

flow filament 100%, and nozzle size 0.5 mm. The PLA filament used in this experiment is Hatchbox

3D PLA with dimensional accuracy ±0.05 mm on 1 kg spools, 1.75 mm diameter with pink color.

Figure 6. Python code for pausing and moving the extruder to take images.

The 3-D printing models chosen after the preparatory stlimage step are sun gear [70], prism,
gear [71], and t55gear [72], which are available [73] as shown in Figure 7. The printing parameters
used are: layer height 0.2 mm, shell thickness 1 mm, unable retraction, bottom/top thickness 1mm, fill
density 20%, print speed 60 mm/s, printing temperature 180 ◦C, diameter filament 1.94–1.98 mm, flow
filament 100%, and nozzle size 0.5 mm. The PLA filament used in this experiment is Hatchbox 3D PLA
with dimensional accuracy ±0.05 mm on 1 kg spools, 1.75 mm diameter with pink color.

J. Manuf. Mater. Process. 2017, 1, 2 7 of 32

J. Manuf. Mater. Process. 2017, 1, 2 7 of 33

Figure 7. Rendering of STereoLithography (STL) models for testing: (a) sun gear; (b) prism; (c) gear;

and (d) t55gear.

The double error detection algorithm, written in Python, will display the error percentage. If the

printing error percentage is greater than 10%, then the printing has failed as shown in Figure 8. After

the user orders printing a 3-D model through Franklin [74] with the number of slicing layers (N), the

background images are taken before printing the 3-D model. The background images are taken from

six cameras saved as bgr1, bgr2, bgr3, bgl1, bgl2, bgl3, where the bgr represents the images taken

from the right cameras, and bgl images are taken from the left cameras and the number 1, 2, and 3

mean the first, the second and the third pair of cameras. At every N layers, the printer is paused to

detect an error. After the extruder is moved to a certain height, the object images are taken. The object

images are taken from six cameras saved as objr1, objr2, objr3, objl1, objl2, objl3. The objr represents

the object images taken from the right cameras, and objl are the object images taken from the left

cameras. The numbers 1, 2, and 3 mean the first, the second and the third pair of cameras. In the

background removal process, the object images need to remove the background, render black

between bg and obj images for each pair of camera, and save as newl.png and newr.png for each pair

of cameras. There is a light reflection of the object in the images that may cause an error. The new.png

from the previous error detection will be used in the next error detection to create the new images

named as newll.png and newrr.png. For an example, if the current layer is the same as the amount

of slicing layer number, the images after removing background are saved into two different file

names as newr and prevr. If they are not equal, they are saved as newrr. The prevr images needed

for the next step to improve background removal. If the current layer is greater than the amount of

slicing layer number, the prevr image is read to combine the interested object area between the prevr

and the newrr images into two different file names as newr and prevr. After input images are ready

for 3-D reconstruction in the image pre-processing step, the camera image is used to calculate the

3-D object points and the stlimage is rescaled to find the magnitude of the width. To reduce the

computation time for detecting an error, the error detection is calculated for each pair at a time started

from first pair of images, second pair of images and third pair of images. Because the 3-D

reconstruction calculation for each pair cost n seconds, the total cost for three 3-D reconstruction is

O(N). In the last step, the determination of an error present is made. If there is an error, it will return

the percentage of error and can be used as trigger to turn of the printer and alert the user.

Figure 7. Rendering of STereoLithography (STL) models for testing: (a) sun gear; (b) prism; (c) gear;
and (d) t55gear.

The double error detection algorithm, written in Python, will display the error percentage. If the
printing error percentage is greater than 10%, then the printing has failed as shown in Figure 8. After
the user orders printing a 3-D model through Franklin [74] with the number of slicing layers (N), the
background images are taken before printing the 3-D model. The background images are taken from
six cameras saved as bgr1, bgr2, bgr3, bgl1, bgl2, bgl3, where the bgr represents the images taken from
the right cameras, and bgl images are taken from the left cameras and the number 1, 2, and 3 mean the
first, the second and the third pair of cameras. At every N layers, the printer is paused to detect an
error. After the extruder is moved to a certain height, the object images are taken. The object images
are taken from six cameras saved as objr1, objr2, objr3, objl1, objl2, objl3. The objr represents the
object images taken from the right cameras, and objl are the object images taken from the left cameras.
The numbers 1, 2, and 3 mean the first, the second and the third pair of cameras. In the background
removal process, the object images need to remove the background, render black between bg and obj
images for each pair of camera, and save as newl.png and newr.png for each pair of cameras. There is
a light reflection of the object in the images that may cause an error. The new.png from the previous
error detection will be used in the next error detection to create the new images named as newll.png
and newrr.png. For an example, if the current layer is the same as the amount of slicing layer number,
the images after removing background are saved into two different file names as newr and prevr. If
they are not equal, they are saved as newrr. The prevr images needed for the next step to improve
background removal. If the current layer is greater than the amount of slicing layer number, the prevr
image is read to combine the interested object area between the prevr and the newrr images into two
different file names as newr and prevr. After input images are ready for 3-D reconstruction in the
image pre-processing step, the camera image is used to calculate the 3-D object points and the stlimage
is rescaled to find the magnitude of the width. To reduce the computation time for detecting an error,
the error detection is calculated for each pair at a time started from first pair of images, second pair
of images and third pair of images. Because the 3-D reconstruction calculation for each pair cost n
seconds, the total cost for three 3-D reconstruction is O(N). In the last step, the determination of an
error present is made. If there is an error, it will return the percentage of error and can be used as
trigger to turn of the printer and alert the user.

J. Manuf. Mater. Process. 2017, 1, 2 8 of 32

J. Manuf. Mater. Process. 2017, 1, 2 8 of 33

Figure 8. The double camera error detection system flowchart.

2.3. Experiments

For this study, two experiments are tested: image pre-processing and error detection. The image

pre-processing step is run by two different techniques: SIFT and RANSAC to rescale and rectification,

and with non-rescale and rectification. The error detection is tested by two different methods:

horizontal magnitude, and horizontal and vertical magnitude. All cases are tested under normal

printing and failure state. The normal printing state means that the filament is in a normal condition

Figure 8. The double camera error detection system flowchart.

2.3. Experiments

For this study, two experiments are tested: image pre-processing and error detection. The image
pre-processing step is run by two different techniques: SIFT and RANSAC to rescale and rectification,
and with non-rescale and rectification. The error detection is tested by two different methods:
horizontal magnitude, and horizontal and vertical magnitude. All cases are tested under normal
printing and failure state. The normal printing state means that the filament is in a normal condition to
complete printing the 3-D object. In the failure state the printing of the 3-D object is incomplete. The
details for each experiment are explained later.

J. Manuf. Mater. Process. 2017, 1, 2 9 of 32

2.3.1. Image Pre-Processing

At every N layer that is equal to the number of slicing layers, the six object images are taken from
the three pairs of cameras in three different perspectives. The background is removed and rendered
black between bg and obj images for each camera such as (bgr1, objr1), (bgr2, objr2), (bgr3, objr3),
(bgr4, objr4), (bgr5, objr5), and (bgr6, objr6). The new images after removing the background are
named (newr1, prevr1), (newr2, prevr2), (newr3, prevr3), (newl1, prevl1), (newl2, prevl2), and (newl3,
prevl3) when the current layer is the same as the amount of slicing layer number. If they are not equal,
the images are saved as (newrr1, prevr1), (newrr2, prevr2), (newrr3, prevr3), (newll1, prevl1), (newll2,
prevl2), and (newll3, prevl3). The prev images are needed for the next step to improve background
removal. For example, if the current layer is greater than the slicing layer number, the prevr image is
read to combine the interested object area between the prevr and the newrr images into two different
file names called newr and prevr. Distortion is removed from all six images by using the intrinsic
parameters from camera calibration. Next, a region of interest (ROI) is calculated from the image by
converting the color image into a gray scale image, then converting it into binary image. The object area
in the binary image is converted to be white used as the ROI, otherwise is converted to be black. After
these steps, the images are ready for image pre-processing step tested by the SIFT and RANSAC to
rescale and rectification, and with non- rescale and rectification. The 3-D points of the interested object
is calculated. The algorithm for image rescaling, image rectification, and 3-D points calculation has
been described previously [63]. The error percentage is calculated by using the horizontal magnitude
method. The error detection is calculated for each pair of cameras once at a time. It starts from the first,
the second, and the third pair of the images, respectively. If the error detection is greater than 10%, the
error percentage will be reported to a user. However, if the error is less than 10%, then the next pair of
the images is calculated to detect an error.

SIFT and RANSAC to Rescale and Rectification

The object location of interest between the left and the right images may have different scale or
size, or may be located in different rows or columns in the image. To resolve this problem, the SIFT
and the RANSAC models are applied for image rescaling and image rectification. The 3-D points are
then calculated.

With Non-Rescale and Rectification

Due to SIFT and RANSAC in Python having an error due to wrong matching points or no
matching points, the rescale and rectification process will result in high error values. However, the
images taken by the cameras are already in very similar scale and rectification. The six images are used
to calculate the 3-D surface points.

2.3.2. Error Detection

Error detection step is comparing a magnitude between 3-D model and 3-D reconstruction images.
First, the pair of the images is processed, and if the error is greater than 10%, it will report the error
percentage to the user; otherwise the next pair of the images is calculated to detect an error. This
continues until the last pair of the images has been tested.

Horizontal Magnitude

The error detection is obtained by subtracting the magnitude of the width of interested area at the
current printing layers between the 3-D reconstruction and the stlimage model.

Horizontal and Vertical Magnitude

The horizontal error magnitude is calculated as mentioned before. If only the width data is
available at the height of the current printing, then the vertical error magnitude is obtained by

J. Manuf. Mater. Process. 2017, 1, 2 10 of 32

subtracting the magnitude of the height of interested area between the 3-D reconstruction and stlimage.
If the data is not available at the current printing layer, then the percentage of error number is 100.

2.4. Validation

The dimensions of the 3-D printed objects are measured with a digital caliper (±0.05 mm). A 3-D
reconstruction of the object is calculated from two images and the object size is calculated. Next, the
sizes of both objects are compared to calculate size difference and error of the reconstruction. For
validation of this approach four different test objects are printed including (a) sun gear, (b) prism, (c)
gear, and (d) t55gear

3. Results

The experimental procedures were tested with different object geometries (sun gear, prism, gear,
and T55gear). In order to eliminate the background noise from the extruder, the images were taken
after pausing printing and the extruder was moved out from six camera views. The example of the full
sun gear model image from three different perspectives is shown in Figure 9. The results of the two
experiments are reported as followed.

J. Manuf. Mater. Process. 2017, 1, 2 10 of 33

Horizontal and Vertical Magnitude

The horizontal error magnitude is calculated as mentioned before. If only the width data is

available at the height of the current printing, then the vertical error magnitude is obtained by

subtracting the magnitude of the height of interested area between the 3-D reconstruction and

stlimage. If the data is not available at the current printing layer, then the percentage of error number

is 100.

2.4. Validation

The dimensions of the 3-D printed objects are measured with a digital caliper (±0.05 mm). A

3-D reconstruction of the object is calculated from two images and the object size is calculated. Next,

the sizes of both objects are compared to calculate size difference and error of the reconstruction. For

validation of this approach four different test objects are printed including (a) sun gear, (b) prism,

(c) gear, and (d) t55gear

3. Results

The experimental procedures were tested with different object geometries (sun gear, prism, gear,

and T55gear). In order to eliminate the background noise from the extruder, the images were taken

after pausing printing and the extruder was moved out from six camera views. The example of the

full sun gear model image from three different perspectives is shown in Figure 9. The results of the

two experiments are reported as followed.

Figure 9. The example of full model of sun gear image results from the first, the second and the third

pair of cameras respectively: (a–c) the images from the left camera; and (d–f) the images from the

right camera.

3.1. Image Pre-Processing

After ordering the printing of the 3-D model, all six background images were taken from six

cameras in three different views. For each technique, tests are undertaken in the normal printing and

failure state. After the extruder was paused and moved up for 100 mm at every 30 layers, the six

object images from six cameras in three different perspectives was taken. The error detection

processed from six objects and six background images in different techniques for image pre-

processing is presented as followed.

Figure 9. The example of full model of sun gear image results from the first, the second and the third
pair of cameras respectively: (a–c) the images from the left camera; and (d–f) the images from the
right camera.

3.1. Image Pre-Processing

After ordering the printing of the 3-D model, all six background images were taken from six
cameras in three different views. For each technique, tests are undertaken in the normal printing and
failure state. After the extruder was paused and moved up for 100 mm at every 30 layers, the six object
images from six cameras in three different perspectives was taken. The error detection processed from
six objects and six background images in different techniques for image pre-processing is presented
as followed.

J. Manuf. Mater. Process. 2017, 1, 2 11 of 32

3.1.1. SIFT and RANSAC to Rescale and Rectification

Normal Printing State

Figure 10 shows that most of the errors are greater than 10% for each geometry except the sun
gear model at layers 60 to 240, where the error is less than 10%. The printing layers at 30, 120, and
150 layers in the prism model had zero error percentage because the SIFT and RANSAC did not have
enough matching points to rescale. Therefore, they could not calculate 3-D object points. In sun gear,
gear, and t55gear graph, there were some printing layers for which the error percentage showed a
huge difference because the SIFT and RANSAC had the wrong matching and were rescaling at the
wrong size. The computation time (as seen in Figure 11) depends on the size and the shape of the
3-D reconstruction. Most of the models had the same trend of the computation time, which increased
when the printing layers were increasing except for the prism model because it could not reconstruct a
3-D model. The sun gear model is the largest size, so the computation time for each pair of cameras
took longer than other models (i.e., (~170 s per pair). It took about 510 s to detect an error for three
pairs of sun gear images.

J. Manuf. Mater. Process. 2017, 1, 2 11 of 33

3.1.1. SIFT and RANSAC to Rescale and Rectification

Normal Printing State

Figure 10 shows that most of the errors are greater than 10% for each geometry except the sun

gear model at layers 60 to 240, where the error is less than 10%. The printing layers at 30, 120, and

150 layers in the prism model had zero error percentage because the SIFT and RANSAC did not have

enough matching points to rescale. Therefore, they could not calculate 3-D object points. In sun gear,

gear, and t55gear graph, there were some printing layers for which the error percentage showed a

huge difference because the SIFT and RANSAC had the wrong matching and were rescaling at the

wrong size. The computation time (as seen in Figure 11) depends on the size and the shape of the

3-D reconstruction. Most of the models had the same trend of the computation time, which increased

when the printing layers were increasing except for the prism model because it could not reconstruct

a 3-D model. The sun gear model is the largest size, so the computation time for each pair of cameras

took longer than other models (i.e., (~170 s per pair). It took about 510 s to detect an error for three

pairs of sun gear images.

Figure 10. Image pre-processing—SIFT and RANSAC rescale and rectification: the error detection of

normal printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.
Figure 10. Image pre-processing—SIFT and RANSAC rescale and rectification: the error detection of
normal printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 12 of 32
J. Manuf. Mater. Process. 2017, 1, 2 12 of 33

Figure 11. Image pre-processing—SIFT and RANSAC rescale and rectification: the computational

time of normal printing state for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

Failure Printing State

Figure 12 shows that most of the errors are greater than 10% for each geometry except the third

pair of the sun gear model after 90 layers, and the third pair of images in the gear model for all cases

that the errors are less than 10%. The computation time (as seen in Figure 13) had the same trend as

the normal printing state.

Figure 11. Image pre-processing—SIFT and RANSAC rescale and rectification: the computational time
of normal printing state for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

Failure Printing State

Figure 12 shows that most of the errors are greater than 10% for each geometry except the third
pair of the sun gear model after 90 layers, and the third pair of images in the gear model for all cases
that the errors are less than 10%. The computation time (as seen in Figure 13) had the same trend as
the normal printing state.

J. Manuf. Mater. Process. 2017, 1, 2 12 of 33

Figure 11. Image pre-processing—SIFT and RANSAC rescale and rectification: the computational

time of normal printing state for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

Failure Printing State

Figure 12 shows that most of the errors are greater than 10% for each geometry except the third

pair of the sun gear model after 90 layers, and the third pair of images in the gear model for all cases

that the errors are less than 10%. The computation time (as seen in Figure 13) had the same trend as

the normal printing state.

Figure 12. Cont.

J. Manuf. Mater. Process. 2017, 1, 2 13 of 32
J. Manuf. Mater. Process. 2017, 1, 2 13 of 33

Figure 12. Image pre-processing—SIFT and RANSAC rescale and rectification: the error detection of

failure state for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

Figure 13. Image pre-processing—SIFT and RANSAC rescale and rectification: the computational

time of failure state for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

3.1.2. With Non-Rescale and Rectification

Normal Printing State

Figure 14 shows that the errors of all models are less than 10%. The computation time (as seen

in Figure 15) depends on the size and the shape of the 3-D reconstruction. Most of the models showed

the same trend of the computation time: it increased when the printing layers were increasing. The

sun gear model is the largest size, so the computation time for each pair of cameras took longer than

other models, and it took around 100 s for each pair. It took about 300 s to detect an error for all three

Figure 12. Image pre-processing—SIFT and RANSAC rescale and rectification: the error detection of
failure state for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 13 of 33

Figure 12. Image pre-processing—SIFT and RANSAC rescale and rectification: the error detection of

failure state for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

Figure 13. Image pre-processing—SIFT and RANSAC rescale and rectification: the computational

time of failure state for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

3.1.2. With Non-Rescale and Rectification

Normal Printing State

Figure 14 shows that the errors of all models are less than 10%. The computation time (as seen

in Figure 15) depends on the size and the shape of the 3-D reconstruction. Most of the models showed

the same trend of the computation time: it increased when the printing layers were increasing. The

sun gear model is the largest size, so the computation time for each pair of cameras took longer than

other models, and it took around 100 s for each pair. It took about 300 s to detect an error for all three

Figure 13. Image pre-processing—SIFT and RANSAC rescale and rectification: the computational time
of failure state for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

3.1.2. With Non-Rescale and Rectification

Normal Printing State

Figure 14 shows that the errors of all models are less than 10%. The computation time (as seen in
Figure 15) depends on the size and the shape of the 3-D reconstruction. Most of the models showed the
same trend of the computation time: it increased when the printing layers were increasing. The sun
gear model is the largest size, so the computation time for each pair of cameras took longer than other
models, and it took around 100 s for each pair. It took about 300 s to detect an error for all three pairs
of sun gear images. On the other hand, the prism gear is the smallest size, so the total computation
time for all three pairs of images took only 60 s to calculate the errors.

J. Manuf. Mater. Process. 2017, 1, 2 14 of 32

J. Manuf. Mater. Process. 2017, 1, 2 14 of 33

pairs of sun gear images. On the other hand, the prism gear is the smallest size, so the total

computation time for all three pairs of images took only 60 s to calculate the errors.

Figure 14. Image pre-processing—Non-rescale and rectification: the error detection of normal

printing state for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.
Figure 14. Image pre-processing—Non-rescale and rectification: the error detection of normal printing
state for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.J. Manuf. Mater. Process. 2017, 1, 2 15 of 33

Figure 15. Image pre-processing—Non-rescale and rectification: the computation time of normal

printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

Failure Printing State

Figure 16 shows that most of the errors are greater than 10% except for some layers of the sun

gear model in the third pair of the images, which are less than 10%. The computation time (as seen in

Figure 17) trends are similar to the normal printing state.

Figure 15. Image pre-processing—Non-rescale and rectification: the computation time of normal
printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 15 of 32

Failure Printing State

Figure 16 shows that most of the errors are greater than 10% except for some layers of the sun
gear model in the third pair of the images, which are less than 10%. The computation time (as seen in
Figure 17) trends are similar to the normal printing state.J. Manuf. Mater. Process. 2017, 1, 2 16 of 33

Figure 16. Image pre-processing—Non-rescale and rectification: the error detection of failure state for

(a) sun gear; (b) prism; (c) gear; and (d) t55gear.

Figure 17. Image pre-processing—Non-rescale and rectification: the computation time of failure state

for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

Figure 16. Image pre-processing—Non-rescale and rectification: the error detection of failure state for
(a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 16 of 33

Figure 16. Image pre-processing—Non-rescale and rectification: the error detection of failure state for

(a) sun gear; (b) prism; (c) gear; and (d) t55gear.

Figure 17. Image pre-processing—Non-rescale and rectification: the computation time of failure state

for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.
Figure 17. Image pre-processing—Non-rescale and rectification: the computation time of failure state
for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 16 of 32

3.2. Error Detection

From image pre-processing, the experiment shows that the non-rescale and rectification technique
can detect an error more accurately than the SITF and RANSAC rescale and rectification methods.
The error detection method needs to be improved here and tested with horizontal magnitude, and
horizontal and vertical magnitude.

3.2.1. Horizontal Magnitude

The results are the same as the image pre-processing experiment for the non-rescale and
rectification technique for both normal printing and failure state.

3.2.2. Horizontal and Vertical Magnitude

Normal Printing State

Figure 18 shows that all errors are less than 10% for each geometry. The computation time (as
seen in Figure 19) depends on the size and the shape of the 3-D reconstruction. The computation time
trends are similar to the horizontal magnitude method.

Failure Printing State

All cases in this section were supposed to be an error and all of them reported the errors. The
computation time as shown in Figure 20 depends on the size and the shape of the 3-D reconstruction
similar to the failure state of the non-rescale and rectification in the image pre-processing experiment
in Figure 17.

J. Manuf. Mater. Process. 2017, 1, 2 17 of 33

3.2. Error Detection

From image pre-processing, the experiment shows that the non-rescale and rectification

technique can detect an error more accurately than the SITF and RANSAC rescale and rectification

methods. The error detection method needs to be improved here and tested with horizontal

magnitude, and horizontal and vertical magnitude.

3.2.1. Horizontal Magnitude

The results are the same as the image pre-processing experiment for the non-rescale and

rectification technique for both normal printing and failure state.

3.2.2. Horizontal and Vertical Magnitude

Normal Printing State

Figure 18 shows that all errors are less than 10% for each geometry. The computation time (as

seen in Figure 19) depends on the size and the shape of the 3-D reconstruction. The computation time

trends are similar to the horizontal magnitude method.

Figure 18. Error detection—Horizontal magnitude: the error detection of normal printing state for

(a) sun gear; (b) Prism; (c) gear; and (d) t55gear.
Figure 18. Error detection—Horizontal magnitude: the error detection of normal printing state for
(a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 17 of 32
J. Manuf. Mater. Process. 2017, 1, 2 18 of 33

Figure 19. Error detection—Horizontal magnitude: the computation time of normal printing state for

(a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

Failure Printing State

All cases in this section were supposed to be an error and all of them reported the errors. The

computation time as shown in Figure 20 depends on the size and the shape of the 3-D reconstruction

similar to the failure state of the non-rescale and rectification in the image pre-processing experiment

in Figure 17.

Figure 19. Error detection—Horizontal magnitude: the computation time of normal printing state for
(a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 18 of 33

Figure 19. Error detection—Horizontal magnitude: the computation time of normal printing state for

(a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

Failure Printing State

All cases in this section were supposed to be an error and all of them reported the errors. The

computation time as shown in Figure 20 depends on the size and the shape of the 3-D reconstruction

similar to the failure state of the non-rescale and rectification in the image pre-processing experiment

in Figure 17.

J. Manuf. Mater. Process. 2017, 1, 2 19 of 33

Figure 20. Error detection—Horizontal and vertical magnitude: the computation time of failure state

for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

The summary of the image pre-processing experiment for SIFT and RANSAC rescale and

rectification: the non-rescale and rectification method for both normal printing and failure state are

shown in Appendix A. In the normal state, the non-rescale and rectification method is better than the

SIFT and RANSAC rescale and rectification method in terms of both the percentage of error and

computation time. It can detect an error more accurate than the SIFT and RANSAC rescale and

rectification method for all models. The computation time for both normal printing state and failure

state of no rescale and rectification method is 2 times faster than the SIFT and RANSAC rescale and

rectification method for all models, as shown in Appendix 1.

The summary of the error detection experiment for horizontal magnitude, and horizontal and

vertical magnitude for both normal printing and failure state are shown in Appendix 1. In the normal

printing state, both the horizontal magnitude, and the horizontal and vertical magnitudes can detect

error correctly under 10% reliably. However, in the failure state, the horizontal and vertical

magnitudes can detect the failure more accurately than the horizontal magnitude alone for all models.

The computation times are the same in both normal printing and failure states.

4. Discussion

The experimental results show that the three double-camera set up, processed in Python can be

used to automatically detect a 3-D printer error such as clogged extruder, loss of filament, or an

incomplete project for a wide range of 3-D object geometries. These errors can be significant as new

user RepRap printing has been shown to have a 20% failure rate [8]. Previous solutions depended on

proprietary software and expensive hardware. This work has overcome the limitations [63,67] by

reducing the computation time for multiple cameras and reducing the cost of software. This

algorithm is a low-cost and open source code based on a double camera system for three perspectives

around 360 degrees and it is the first to be used for delta systems. The computation time here for the

similar area size of ROI using Python is around 2 times faster and less expensive than the code [63,67]

with the same algorithm run in the Matlab environment which costs $2150 [75]. This is not that

expensive for research or high-end 3-D printer applications, but represents a barrier to deployment

in the low-cost prosumer printers used for distributed manufacturing, which generally cost in total

$2500 or less (the RepRap used in this study was $500 in parts).

The double error detection works as designed. It should be noted that a printed 3-D object

usually has a small error when compared with the 3-D model file and the real 3-D printed object. The

image pre-processing with horizontal magnitude error detection experiment shows that the

algorithm with non-rescale and rectification can detect when the printing has failed more accurately

than the one using the SIFT and RANSAC rescale and rectification. However, the error detection

using horizontal magnitude results in the sun gear model not being correct in some layers such as

layers between 210 and 240, or between 240 and 268 in the first pair of cameras which are less than

10% in failure state and which should be greater than 10%. Therefore, the non-rescale and rectification

Figure 20. Error detection—Horizontal and vertical magnitude: the computation time of failure state
for (a) sun gear; (b) Prism; (c) gear; and (d) t55gear.

The summary of the image pre-processing experiment for SIFT and RANSAC rescale and
rectification: the non-rescale and rectification method for both normal printing and failure state

J. Manuf. Mater. Process. 2017, 1, 2 18 of 32

are shown in Appendix A. In the normal state, the non-rescale and rectification method is better
than the SIFT and RANSAC rescale and rectification method in terms of both the percentage of error
and computation time. It can detect an error more accurate than the SIFT and RANSAC rescale and
rectification method for all models. The computation time for both normal printing state and failure
state of no rescale and rectification method is 2 times faster than the SIFT and RANSAC rescale and
rectification method for all models, as shown in Appendix A.

The summary of the error detection experiment for horizontal magnitude, and horizontal and
vertical magnitude for both normal printing and failure state are shown in Appendix A. In the normal
printing state, both the horizontal magnitude, and the horizontal and vertical magnitudes can detect
error correctly under 10% reliably. However, in the failure state, the horizontal and vertical magnitudes
can detect the failure more accurately than the horizontal magnitude alone for all models. The
computation times are the same in both normal printing and failure states.

4. Discussion

The experimental results show that the three double-camera set up, processed in Python can
be used to automatically detect a 3-D printer error such as clogged extruder, loss of filament, or an
incomplete project for a wide range of 3-D object geometries. These errors can be significant as new
user RepRap printing has been shown to have a 20% failure rate [8]. Previous solutions depended
on proprietary software and expensive hardware. This work has overcome the limitations [63,67] by
reducing the computation time for multiple cameras and reducing the cost of software. This algorithm
is a low-cost and open source code based on a double camera system for three perspectives around 360
degrees and it is the first to be used for delta systems. The computation time here for the similar area
size of ROI using Python is around 2 times faster and less expensive than the code [63,67] with the
same algorithm run in the Matlab environment which costs $2150 [75]. This is not that expensive for
research or high-end 3-D printer applications, but represents a barrier to deployment in the low-cost
prosumer printers used for distributed manufacturing, which generally cost in total $2500 or less (the
RepRap used in this study was $500 in parts).

The double error detection works as designed. It should be noted that a printed 3-D object usually
has a small error when compared with the 3-D model file and the real 3-D printed object. The image
pre-processing with horizontal magnitude error detection experiment shows that the algorithm with
non-rescale and rectification can detect when the printing has failed more accurately than the one
using the SIFT and RANSAC rescale and rectification. However, the error detection using horizontal
magnitude results in the sun gear model not being correct in some layers such as layers between 210
and 240, or between 240 and 268 in the first pair of cameras which are less than 10% in failure state and
which should be greater than 10%. Therefore, the non-rescale and rectification algorithm was used in
the error detection experiment with two different methods: horizontal magnitude, and horizontal and
vertical magnitude. The horizontal and vertical magnitude method showed that the 3-D reconstruction
error detection can detect 100% error when the printing has failed because the 3-D printed objects are
smaller than the SCAD models because there are no data at the current height of the printing. The use
of web cameras can be less expensive than other methods which result in more accurate error detection
of a 3-D print such as a laser scanning or sensor [34], or scientific research cameras that cost about US
$300 [63,67]. There are other methods to stop catastrophic failures. For example, there is a thrown rod
alarm system for delta-style RepRaps, which alerts a user when electrical connections are broken if
any of the linking rods lose connection with the end effector (hot end) [76] and Barker developed a
similar thrown rod halt mod, which stops a print when electrical connections are broken if any of the
linking rods are thrown [77]. This type of warning system only addresses one failure mode while the
work described here stops printing for any failure mode. Others demand user oversight [56–60,78],
while the system described here is automatic. The double cameras error detection algorithm (100%
detection) can also detect the error better than vision-based error detection for 3-D printing processes
when missing material flow (80% detection) [50]. However, the algorithm here still has limitations.

J. Manuf. Mater. Process. 2017, 1, 2 19 of 32

First, slicing the stl model into every N layers cannot be done for some number layers that the user
may want because Slic3r reports an error for removing a facet. For example, the t55gear model used
here could not be sliced every 10 or 20 layers, which is why we tested every 30 layers here. Second,
3-D printing models that create too many shadows in the model after taking the images can also not
be monitored in this way. In the removing background process, such models lose a lot of data of the
bottom of the object in the image, causing a false error detection. Thus, the geometries that this process
works for is limited. Finally, for users setting up the systems for themselves, web cameras must be
selected with a focal length of 10 cm or longer and must be supported by the open source environment.

From the previous work [79], the images from the single camera set up can be processed to detect
the shape error in low-cost 3-D printing, and the detection rate for both normal printing and failure
state is 100%. The computation time of the single camera set up is fast: less than 10 s for all three
cameras. Also, this work represented reconstructing 3-D images of 3-D objects from 2-D images that
were successfully used to detect the size error of failure printing by six cameras. The computation time
of the double camera set up depends on the size of the 3-D model. In this experiment, the average of
the computation time is 45 s for each pair of cameras. Therefore, the single and double camera setup in
an open source algorithm have been used together for more efficiency in reliable monitoring error of
FFF-based 3-D printing in shape and size.

In addition, to overcome these limitations there are several other areas of future research. First,
the slicing stl model process need to be investigated to eliminate the error for removing a facet. Second,
removing the background algorithm needs to be more accurate to remove only noise. Furthermore, to
increase the quality of removing the background, the new mathematical equations need to be tested
for the performance of the system. Third, the computation time of this system would be improved if
the 3-D reconstruction process is calculated only on the new area of the 3-D printed part. For example,
the stl model is sliced every 30 layers. The first 3-D reconstruction is for layer 1 to 30, then the next
3-D reconstruction should be only for layer 31 to 60. This will reduce the area of pixels that needs
to be calculated. In this study, errors associated with clogged nozzle, loss of filament, an incomplete
project, or size error of 3-D printing were quantified. This work can be extended to the other printing
challenges related to FFF-based 3-D printing discussed in the introduction. In particular, by focusing
on the errors in the first several layers the following errors could be detected (warping, elephant foot,
and bed adhesion), and these errors need to be quantified. Then, for subsequent layers, a reduced
percent error threshold could be used to stop printing when distortion due to shrinking, skewed
prints/shifted layers, and layer misalignment occurs. Lastly, this system may be tested with other
block matching algorithms to see if another algorithm is faster and more ac-curate such as correlation
coefficient, normalized correlation coefficient, cross correlation, normalized cross correlation, squared
difference, or normalized squared difference [80]. Last, Franklin needs to be modified to include this
algorithm in order to alert user and pause the printing when an error occurs.

5. Conclusions

This paper described an open-source low-cost reliable real-time monitoring platform for FFF-based
3-D printing based on a double cameras system for three perspectives around 360 degrees. The results
showed that the algorithm using stereo calibration with detecting an error at the current height of the
printing was effective at detecting a clogged nozzle, loss of filament, or an incomplete project for a
wide range of 3-D object geometries. The error calculations were determined from the data in the 3-D
reconstruction points at the current height of the printing. The error was reported when these errors
exceeded 100%. The validity of this approach using our experiment shows that the error detection
system is capable of a 100 percent detection rate for both normal printing and failure state.

J. Manuf. Mater. Process. 2017, 1, 2 20 of 32

Acknowledgments: This work was supported by the Michigan Tech Open Sustainability Technology Lab, the EE
Department at MTU and a Royal Thai Scholarship.

Author Contributions: S.N. wrote the algorithm, performed all experiments and analyzed the results. M.R. and
J.P. formulated the project and assisted on the analysis. All authors co-wrote and edited the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The summary of the image pre-processing experiment for the SIFT and RANSAC rescale and
rectification, and non-rescale and rectification method for both normal printing and failure state are
shown in Figures A1–A4. In the normal state, the non-rescale and rectification method can detect an
error more accurately than the SIFT and RANSAC rescale and rectification method for all models, as
shown in Figure A1. However, both methods fail to detect the failure state, as shown in Figure A3.
The computation time for both normal printing state and failure state of no rescale and rectification
method is 2 times faster than the SIFT and RANSAC rescale and rectification method for all models, as
shown in Figures A2 and A4.

The summary of the error detection experiment for horizontal magnitude, and horizontal and
vertical magnitude for both normal printing and failure state are shown in Figures A5–A8. In normal
printing state, both horizontal magnitude, and horizontal and vertical magnitude can detect errors
correctly under 10% as shown in Figure A5. However, in the failure state, the horizontal and vertical
magnitude can detect the failure more accurately than the horizontal magnitude for all models by
reporting 100% error as shown in Figure A7. Also, the computation times are the same in both normal
printing and failure state as shown in Figures A6 and A8.

J. Manuf. Mater. Process. 2017, 1, 2 21 of 32
J. Manuf. Mater. Process. 2017, 1, x FOR PEER REVIEW 22 of 33

J. Manuf. Mater. Process. 2017, 1, 2; doi:10.3390/jmmp1010002 www.mdpi.com/journal/jmmp

Figure A1. Summary of image pre-processing: the error detection of normal printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear. Figure A1. Summary of image pre-processing: the error detection of normal printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 22 of 32
J. Manuf. Mater. Process. 2017, 1, 2 23 of 33

Figure A2. Summary of image pre-processing: the computation time of normal printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear. Figure A2. Summary of image pre-processing: the computation time of normal printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 23 of 32
J. Manuf. Mater. Process. 2017, 1, 2 24 of 33

Figure A3. Summary of image pre-processing: the error detection of failure state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear. Figure A3. Summary of image pre-processing: the error detection of failure state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 24 of 32
J. Manuf. Mater. Process. 2017, 1, 2 25 of 33

Figure A4. Summary of image pre-processing: the computation time of failure state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.
Figure A4. Summary of image pre-processing: the computation time of failure state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 25 of 32
J. Manuf. Mater. Process. 2017, 1, x FOR PEER REVIEW 26 of 33

J. Manuf. Mater. Process. 2017, 1, 2; doi:10.3390/jmmp1010002 www.mdpi.com/journal/jmmp

Figure A5. Summary of error detection: the error detection of normal printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear. Figure A5. Summary of error detection: the error detection of normal printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 26 of 32
J. Manuf. Mater. Process. 2017, 1, x FOR PEER REVIEW 27 of 33

Figure A6. Summary of error detection: the computation time of normal printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear. Figure A6. Summary of error detection: the computation time of normal printing state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 27 of 32
J. Manuf. Mater. Process. 2017, 1, x FOR PEER REVIEW 28 of 33

Figure A7. Summary of error detection: the error detection of failure state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.
Figure A7. Summary of error detection: the error detection of failure state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 28 of 32
J. Manuf. Mater. Process. 2017, 1, x FOR PEER REVIEW 29 of 33

Figure A8. Summary of error detection: the computation time of failure state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.Figure A8. Summary of error detection: the computation time of failure state for (a) sun gear; (b) prism; (c) gear; and (d) t55gear.

J. Manuf. Mater. Process. 2017, 1, 2 29 of 32

References

1. Wohlers, T. Wohlers Report 2016; Wohlers Associates, Inc.: Fort Collins, CO, USA, 2016.
2. Sells, E.; Smith, Z.; Bailard, S.; Bowyer, A.; Olliver, V. RepRap: The Replicating Rapid Prototyper: Maximizing

Customizability by Breeding the Means of Production. In Handbook of Research in Mass Customization and
Personalization: Strategies and Concepts; Piller, F.T., Tseng, M.M., Eds.; World Scientific: Singapore, 2010;
Volume 1, pp. 568–580.

3. Jones, R.; Haufe, P.; Sells, E.; Iravani, P.; Olliver, V.; Palmer, C.; Bowyer, A. RepRap—The replicating rapid
prototyper. Robotica 2011, 29, 177–191. [CrossRef]

4. Bowyer, A. 3D Printing and Humanity’s First Imperfect Replicator. 3D Print. Addit. Manuf. 2014, 1, 4–5.
[CrossRef]

5. Gibb, A.; Abadie, S. Building Open Source Hardware: DIY Manufacturing for Hackers and Makers; Addison
Wesley: Boston, MA, USA, 2014.

6. Raymond, E. The cathedral and the bazaar. Knowl. Technol. Policy 1999, 12, 23–49. [CrossRef]
7. Make. 3D Printer Shootout News, Reviews and More|Make: DIY Projects and Ideas for Makers

[WWW Document]. 2017. Available online: http://makezine.com/tag/3d-printer-shootout/ (accessed on
11 April 2017).

8. Wittbrodt, B.T.; Glover, A.G.; Laureto, J.; Anzalone, G.C.; Oppliger, D.; Irwin, J.L.; Pearce, J.M. Life-cycle
economic analysis of distributed manufacturing with open-source 3-D printers. Mech. Tron. 2013, 23, 713–726.
[CrossRef]

9. Petersen, E.E.; Pearce, J. Emergence of Home Manufacturing in the Developed World: Return on Investment
for Open-Source 3-D Printers. Technologies 2017, 5, 7. [CrossRef]

10. Campbell, I.; Bourell, D.; Gibson, I. Additive manufacturing: Rapid prototyping comes of age. Rapid Prototyp.
J. 2012, 18, 255–258. [CrossRef]

11. Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct
Digital Manufacturing; Springer: Berlin, Germany, 2014.

12. Kentzer, J.; Koch, B.; Thiim, M.; Jones, R.W.; Villumsen, E. An open source hardware-based mechatronics
project: The replicating rapid 3-D printer. In Proceedings of the 4th International Conference on Mechatronics
(ICOM), Kuala Lumpur, Malaysia, 17–19 May 2011; pp. 1–8. [CrossRef]

13. Gwamuri, J.; Wittbrodt, B.T.; Anzalone, N.C.; Pearce, J.M. Reversing the trend of large scale and centralization
in manufacturing: The case of distributed manufacturing of customizable 3-D-printable self-adjustable
glasses. Chall. Sustain. 2014, 2, 30–40. [CrossRef]

14. Irwin, J.L.; Oppliger, D.E.; Pearce, J.M.; Anzalone, G. Evaluation of RepRap 3D Printer Work-shops in K-12
STEM. In Proceedings of the 122nd ASEE Conference, Seattle, WA, USA, 14–17 June 2015.

15. Gonzalez-Gomez, J.; Valero-Gomez, A.; Prieto-Moreno, A.; Abderrahim, M. A New Open Source 3D-Printable
Mobile Robotic Platform for Education. In Advances in Autonomous Mini Robots; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 49–62.

16. Schelly, C.; Anzalone, G.; Wijnen, B.; Pearce, J.M. Open-source 3-D printing technologies for education:
Bringing additive manufacturing to the classroom. J. Vis. Lang. Comput. 2015, 28, 226–237. [CrossRef]

17. Pearce, J.M.; Blair, C.M.; Laciak, K.J.; Andrews, R.; Nosrat, A.; Zelenika-Zovko, I. 3-D printing of open source
appropriate technologies for self-directed sustainable development. J. Sustain. Dev. 2010, 3, 17–29. [CrossRef]

18. Fox, S. After the factory [Manufacturing renewal]. Eng. Technol. 2010, 5, 51–61.
19. Pearce, J.M. Applications of open source 3-D printing on small farms. Organ. Farming 2015, 1, 19–35.

[CrossRef]
20. Pearce, J.M. Building Research Equipment with Free, Open-Source Hardware. Science 2012, 337, 1301–1304.

[CrossRef] [PubMed]
21. Pearce, J.M. Open-Source Lab: How to Build Your Own Hardware and Reduce Research Costs; Elsevier: New York,

NY, USA, 2014.
22. Baden, T.; Chagas, A.M.; Gage, G.J.; Marzullo, T.C.; Prieto-Godino, L.L.; Euler, T. Correction: Open labware:

3-D printing your own lab equipment. PLoS Biol. 2015, 13, e1002175. [CrossRef] [PubMed]
23. Coakley, M.; Hurt, D.E. 3D Printing in the Laboratory. J. Lab. Autom. 2016, 21, 489–495. [CrossRef] [PubMed]

http://dx.doi.org/10.1017/S026357471000069X
http://dx.doi.org/10.1089/3dp.2013.0003
http://dx.doi.org/10.1007/s12130-999-1026-0
http://makezine.com/tag/3d-printer-shootout/
http://dx.doi.org/10.1016/j.mechatronics.2013.06.002
http://dx.doi.org/10.3390/technologies5010007
http://dx.doi.org/10.1108/13552541211231563
http://dx.doi.org/10.1109/ICOM.2011.5937174
http://dx.doi.org/10.12924/cis2014.02010030
http://dx.doi.org/10.1016/j.jvlc.2015.01.004
http://dx.doi.org/10.5539/jsd.v3n4p17
http://dx.doi.org/10.12924/of2015.01010019
http://dx.doi.org/10.1126/science.1228183
http://www.ncbi.nlm.nih.gov/pubmed/22984059
http://dx.doi.org/10.1371/journal.pbio.1002175
http://www.ncbi.nlm.nih.gov/pubmed/25996924
http://dx.doi.org/10.1177/2211068216649578
http://www.ncbi.nlm.nih.gov/pubmed/27197798

J. Manuf. Mater. Process. 2017, 1, 2 30 of 32

24. O’Neill, P.F.; Ben Azouz, A.; Vázquez, M.; Liu, J.; Marczak, S.; Slouka, Z.; Chang, H.C.; Diamond, D.;
Brabazon, D. Advances in three-dimensional rapid prototyping of microfluidic devices for biological
applications. Biomicrofluidics 2014, 8, 52112. [CrossRef] [PubMed]

25. Pearce, J.M.; Anzalone, N.C.; Heldt, C.L. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping
Paper-Based Microfluidics. J. Lab. Autom. 2016, 21, 510–516. [CrossRef] [PubMed]

26. Rimock, M. An Introduction to the Intellectual Property Law Implications of 3D Printing. Can. J. Law Technol.
2015, 13, 1–32.

27. Laplume, A.; Anzalone, G.C.; Pearce, J.M. Open-source, self-replicating 3-D printer factory for small-business
manufacturing. Int. J. Adv. Manuf. Technol. 2016, 85, 633–642. [CrossRef]

28. Tech, R.P.G.; Ferdinand, J.-P.; Dopfer, M. Open Source Hardware Startups and Their Communities; Springer
International Publishing: Cham, Switzerland, 2016; pp. 129–145. [CrossRef]

29. Troxler, P.; van Woensel, C. How Will Society Adopt 3D Printing; T.M.C. Asser Press: Den Haag,
The Netherlands, 2016; pp. 183–212. [CrossRef]

30. Kleszczynski, S.; zur Jacobsmühlen, J.; Sehrt, J.T.; Witt, G. Error detection in laser beam melting systems by
high resolution imaging. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA,
6–8 August 2012.

31. Kleszczynski, S.; zur Jacobsmühlen, J.; Reinarz, B.; Sehrt, J.T.; Witt, G.; Merhof, D. Improving process stability
of laser beam melting systems. In Proceedings of the Frauenhofer Direct Digital Manufacturing Conference,
Berlin, Germany, 12–13 March 2014.

32. Zur Jacobsmuhlen, J.; Kleszczynski, S.; Witt, G.; Merhof, D. Robustness analysis of imaging sys-tem for
inspection of laser beam melting systems. In Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–4. [CrossRef]

33. Concept Laser. Metal Additive Manufacturing Machines. 2016. Available online: http://www.
conceptlaserinc.com/ (accessed on 10 November 2016).

34. Faes, M.; Abbeloos, W.; Vogeler, F.; Valkenaers, H.; Coppens, K.; Goedemé, T.; Ferraris, E. Process Monitoring
of Extrusion Based 3D Printing via Laser Scanning. Comput. Vis. Pattern Recognit. 2014, 6, 363–367. [CrossRef]

35. Volpato, N.; Aguiomar Foggiatto, J.; Coradini Schwarz, D. The influence of support base on FDM accuracy
in Z. Rapid Prototyp. J. 2014, 20, 182–191. [CrossRef]

36. Wu, H.; Wang, Y.; Yu, Z. In situ monitoring of FDM machine condition via acoustic emission. Int. J. Adv.
Manuf. Technol. 2016, 84, 1483–1495. [CrossRef]

37. Atli, A.V.; Urhan, O.; Ertürk, S.; Sönmez, M. A computer vision-based fast approach to drilling tool condition
monitoring. J. Eng. Manuf. 2006, 220, 1409–1415. [CrossRef]

38. Bradley, C.; Wong, Y.S. Surface texture indicators of tool wear—A machine vision approach. Int. J. Adv.
Manuf. Technol. 2001, 17, 435–443. [CrossRef]

39. Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.:
Sebastopol, CA, USA, 2008.

40. Edinbarough, I.; Balderas, R.; Bose, S. A vision and robot based on-line inspection monitoring system for
electronic manufacturing. Comput. Ind. 2005, 56, 986–996. [CrossRef]

41. Golnabi, H.; Asadpour, A. Design and application of industrial machine vision systems. Robot. Comput.
Integr. Manuf. 2007, 23, 630–637. [CrossRef]

42. Ji, S.; Zhang, X.; Zhang, L.; Wan, Y.; Yuan, J.; Zhang, L. Application of computer vision in tool condition
monitoring. J. Zhejiang Univ. Technol. 2002, 30, 143–148.

43. Kerr, D.; Pengilley, J.; Garwood, R. Assessment and visualization of machine tool wear using computer
vision. Int. J. Adv. Manuf. Technol. 2006, 28, 781–791. [CrossRef]

44. Klancnik, S.; Ficko, J.; Pahole, I. Computer Vision-Based Approach to End Mill Tool Monitoring. Int. J. Simul.
Model. 2015, 14, 571–583. [CrossRef]

45. Lanzetta, M. A new flexible high-resolution vision sensor for tool condition monitoring. J. Mater. Process.
Technol. 2001, 119, 73–82. [CrossRef]

46. Li, Y.; Li, Y.F.; Wang, Q.L.; Xu, D.; Tan, M. Measurement and defect detection of the weld bead based on
online vision inspection. IEEE Trans. Instrum. Meas. 2010, 59, 1841–1849. [CrossRef]

47. Pfeifer, T.; Wiegers, L. Reliable tool wear monitoring by optimized image and illumination control in machine
vision. Measurement 2000, 28, 209–218. [CrossRef]

http://dx.doi.org/10.1063/1.4898632
http://www.ncbi.nlm.nih.gov/pubmed/25538804
http://dx.doi.org/10.1177/2211068215624408
http://www.ncbi.nlm.nih.gov/pubmed/26763294
http://dx.doi.org/10.1007/s00170-015-7970-9
http://dx.doi.org/10.1007/978-3-319-31686-4_7
http://dx.doi.org/10.1007/978-94-6265-096-1_11
http://dx.doi.org/10.1109/ETFA.2014.7005262
http://www.conceptlaserinc.com/
http://www.conceptlaserinc.com/
http://dx.doi.org/10.13140/2.1.5175.0081
http://dx.doi.org/10.1108/RPJ-12-2012-0116
http://dx.doi.org/10.1007/s00170-015-7809-4
http://dx.doi.org/10.1243/09544054JEM412
http://dx.doi.org/10.1007/s001700170161
http://dx.doi.org/10.1016/j.compind.2005.05.022
http://dx.doi.org/10.1016/j.rcim.2007.02.005
http://dx.doi.org/10.1007/s00170-004-2420-0
http://dx.doi.org/10.2507/IJSIMM14(4)1.301
http://dx.doi.org/10.1016/S0924-0136(01)00878-0
http://dx.doi.org/10.1109/TIM.2009.202822
http://dx.doi.org/10.1016/S0263-2241(00)00014-2

J. Manuf. Mater. Process. 2017, 1, 2 31 of 32

48. Wang, W.H.; Hong, G.S.; Wong, Y.S.; Zhu, K.P. Sensor fusion for online tool condition monitoring in milling.
Int. J. Prod. Res. 2007, 45, 5095–5116. [CrossRef]

49. Hurd, S.; Camp, C.; White, J. Quality Assurance in Additive Manufacturing through Mobile Computing; Springer:
Cham, Switzerland, 2015; pp. 203–220.

50. Baumann, F.; Roller, D. Vision based error detection for 3D printing processes. MATEC Web Conf. 2016, 59,
06003. [CrossRef]

51. Straub, J. Initial work on the characterization of additive manufacturing (3D printing) using soft-ware image
analysis. Machines 2015, 3, 55–71. [CrossRef]

52. OpenCV. OpenCV library 2016. Available online: http://opencv.org/ (accessed on 10 November 2016).
53. Python. Welcome to Python.org 2016. Available online: https://www.python.org/ (accessed on 10

November 2016).
54. Raspberry, P. Teach, Learn, and Make with Raspberry Pi 2016. Available online: https://www.raspberrypi.

org/ (accessed on 3 December 2016).
55. Microsoft. Learn to Develop with Microsoft Developer Network|MSDN 2016. Available online: https:

//msdn.microsoft.com/en-us/default.aspx (accessed on 13 November 2016).
56. Gewirtz, D. Adding a Raspberry Pi case and a camera to your LulzBot Mini—Watch Video

Online—Watch Latest Ultra HD 4K Videos Online 2016. Available online: http://www.zdnet.com/article/
3d-printing-hands-on-adding-a-case-and-a-camera-to-the-raspberry-pi-and-lulzbot-mini/ (accessed on
30 November 2016).

57. Printer3D. Free IP Camera Monitoring for 3D printer with old webcam usb in 5min—3D Printers English
French & FAQ Wanhao Duplicator D6 Monoprice Maker Ultimate & D4, D5, Duplicator 7. 2017. Available
online: http://www.printer3d.one/en/forums/topic/free-ip-camera-monitoring-for-3d-printer-with-old-
webcam-usb-in-5min/ (accessed on 18 March 2017).

58. Carmelito. Controlling and Monitoring your 3D printer with...|element14|MusicTech 2016. Available
online: https://www.element14.com/community/community/design-challenges/musictech/blog/2016/
03/16/controlling-your-3d-printer-with-beaglebone-and-octoprint (accessed on 18 March 2017).

59. Simon, J. Monitoring Your 3D Prints|3D Universe 2017. Available online: https://3duniverse.org/2014/01/
06/monitoring-your-3d-prints/ (accessed on 18 March 2017).

60. Ken, V. Logitech C170 webcam mount for daVinci 3D Printer by KenVersus—Thingiverse. 2015. Available
online: http://www.thingiverse.com/thing:747105 (accessed on 18 March 2017).

61. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Washington, DC, USA, 20–25 September 1999; Volume 2,
pp. 1150–1157.

62. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

63. Nuchitprasitchai, S.; Roggemann, M.C.; Havens, T.C. Algorithm for Reconstructing Three Dimensional
Images from Overlapping Two Dimensional Intensity Measurements with Relaxed Camera Positioning
Requirements to reconstruct 3D image. IJMER 2016, 6, 69–81.

64. Anzalone, G.C.; Wijnen, B.; Pearce, J.M. Multi-material additive and subtractive prosumer digital fabrication
with a free and open-source convertible delta RepRap 3-D printer. Rapid Prototyp. J. 2015, 21, 506–519.
[CrossRef]

65. Anzalone, G.; Wijnen, B.; Pearce, J.M. Delta Build Overview: MOST—Appropedia: The sustainability
wiki 2016. Available online: http://www.appropedia.org/Delta_Build_Overview:MOST (accessed on
13 June 2016).

66. Rostock. RepRapWiki 2016. Available online: http://reprap.org/wiki/Rostock (accessed on
5 November 2016).

67. Nuchitprasitchai, S.; Roggemann, M.; Pearce, J. Factors Effecting Real Time Optical Monitoring of Fused
Filament 3-D Printing. Prog. Addit. Manuf. 2017. [CrossRef]

68. OpenCV. Camera Calibration and 3D Reconstruction—OpenCV 2.4.13.2 documentation. 2016. Available
online: http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.
html#stereobm (accessed on 3 December 2016).

69. Dollar Tree, Inc. Floral Supplies, Party Supplies, Cleaning Supplies. 2016. Available online: https://www.
dollartree.com/ (accessed on 3 December 2016).

http://dx.doi.org/10.1080/00207540500536913
http://dx.doi.org/10.1051/matecconf/20165906003
http://dx.doi.org/10.3390/machines3020055
http://opencv.org/
https://www.python.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
http://www.zdnet.com/article/3d-printing-hands-on-adding-a-case-and-a-camera-to-the-raspberry-pi-and-lulzbot-mini/
http://www.zdnet.com/article/3d-printing-hands-on-adding-a-case-and-a-camera-to-the-raspberry-pi-and-lulzbot-mini/
http://www.printer3d.one/en/forums/topic/free-ip-camera-monitoring-for-3d-printer-with-old-webcam-usb-in-5min/
http://www.printer3d.one/en/forums/topic/free-ip-camera-monitoring-for-3d-printer-with-old-webcam-usb-in-5min/
https://www.element14.com/community/community/design-challenges/musictech/blog/2016/03/16/controlling-your-3d-printer-with-beaglebone-and-octoprint
https://www.element14.com/community/community/design-challenges/musictech/blog/2016/03/16/controlling-your-3d-printer-with-beaglebone-and-octoprint
https://3duniverse.org/2014/01/06/monitoring-your-3d-prints/
https://3duniverse.org/2014/01/06/monitoring-your-3d-prints/
http://www.thingiverse.com/thing:747105
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1108/RPJ-09-2014-0113
http://www.appropedia.org/Delta_Build_Overview:MOST
http://reprap.org/wiki/Rostock
http://dx.doi.org/10.1007/s40964-017-0027-x
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereobm
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereobm
https://www.dollartree.com/
https://www.dollartree.com/

J. Manuf. Mater. Process. 2017, 1, 2 32 of 32

70. Thing-O-Fun. Exploded Planetary Gear Set by Thing-O-Fun—Thingiverse. 2012. Available online: http:
//www.thingiverse.com/thing:18291 (accessed on 3 December 2016).

71. Jetty. Paper Crimper by jetty—Thingiverse. 2012. Available online: http://www.thingiverse.com/thing:
17634 (accessed on 3 December 2016).

72. Droffarts. Parametric pulley—lots of tooth profiles by droftarts—Thingiverse. Available online: http:
//www.thingiverse.com/thing:16627 (accessed on 12 March 2017).

73. Nuchitprasitchai, S. 3-D models. 2017. Available online: https://osf.io/utp6g/ (accessed on 5 April 2017).
74. Wijnen, B.; Anzalone, G.C.; Haselhuhn, A.S.; Sanders, P.G.; Pearce, J.M. Free and open-source control

software for 3-D motion and processing. J. Open Res. Softw. 2016, 4, e2.
75. MathWorks. Pricing and Licensing—MATLAB & Simulink. 2016. Available online: https://www.

mathworks.com/pricing-licensing.html?intendeduse=comm (accessed on 8 December 2016).
76. Nuchitprasitchai, S. Rod alarm—Appropedia: The sustainability wiki. 2016. Available online: http://www.

appropedia.org/Rod_alarm (accessed on 20 March 2017).
77. Barker, B. Thrown Rod Halt Mod—Appropedia: The sustainability wiki. Available online: http://www.

appropedia.org/Thrown_Rod_Halt_Mod (accessed on 20 March 2017).
78. Mahan, T. Raspberry Pi Control and Wireless Interface—Appropedia: The sustainability wiki. 2016.

Available online: http://www.appropedia.org/Raspberry_Pi_Control_and_Wireless_Interface (accessed on
20 March 2017).

79. Nuchitprasitchai, S.; Roggemann, M.; Pearce, J. An Open Source Algorithm for Reconstruction 3-D images
for Low-cost, Reliable Real-time Monitoring of FFF-based 3-D Printing. 2017, submitted.

80. Abidrahmank. OpenCV2-Python-Tutorials. 2014. Available online: https://github.com/abidrahmank/
OpenCV2-Python-Tutorials/ (accessed on 30 March 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.thingiverse.com/thing:18291
http://www.thingiverse.com/thing:18291
http://www.thingiverse.com/thing:17634
http://www.thingiverse.com/thing:17634
http://www.thingiverse.com/thing:16627
http://www.thingiverse.com/thing:16627
https://osf.io/utp6g/
https://www.mathworks.com/pricing-licensing.html?intendeduse=comm
https://www.mathworks.com/pricing-licensing.html?intendeduse=comm
http://www.appropedia.org/Rod_alarm
http://www.appropedia.org/Rod_alarm
http://www.appropedia.org/Thrown_Rod_Halt_Mod
http://www.appropedia.org/Thrown_Rod_Halt_Mod
http://www.appropedia.org/Raspberry_Pi_Control_and_Wireless_Interface
https://github.com/abidrahmank/OpenCV2-Python-Tutorials/
https://github.com/abidrahmank/OpenCV2-Python-Tutorials/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Experimental Equipment
	Theory
	Calculating Webcam Pixel Size and Focal Length
	Computer Vision Error Detection

	Experiments
	Image Pre-Processing
	Error Detection

	Validation

	Results
	Image Pre-Processing
	SIFT and RANSAC to Rescale and Rectification
	With Non-Rescale and Rectification

	Error Detection
	Horizontal Magnitude
	Horizontal and Vertical Magnitude

	Discussion
	Conclusions
	

