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Abstract: This research aims to present an analysis of the behavior of multiple Remotely
Piloted Aircraft Systems (multi-RPAS) flying in formation, a key aspect of advanced aerial
mobility in the aerospace industry. This involves the positioning and relative distance in
three dimensions (3D) of two RPAS, taking into account their operational requirements and
limitations, recognizing the operating states, and addressing potential situations encoun-
tered during formation flight. For this study, the “Conformance and Fault Injection—CoFl”
methodology is employed. This methodology guides the user towards a comprehensive
understanding of the system and enables the creation of a set of finite state machines repre-
senting the system’s behavior under study. Consequently, models and requirements for the
behavior of multi-RPAS flying in formation are presented. By applying the CoFI methodol-
ogy to inject faults into the operation and predict behavior in anomalous situations, both
normal and abnormal behavior models, as well as the flight behavior requirements of the
multi-RPAS formation, are outlined. This analysis is expected to facilitate the identification
of formation flight behavior in multi-RPAS, thereby reducing associated operational risks.

Keywords: drone; multi-RPAS; CoFI; fault injection; formation flying; conformance testing;
advanced air mobility

1. Introduction

The RPAS industry has experienced significant growth, with the global drone market
projected to reach $42.8 billion by 2025, driven by technological advancements such as
real-time decision-making, flight endurance, and cost reductions [1,2]. These systems have
demonstrated versatility across different industries, such as military, civil, and commercial
applications, due to their ability to access hazardous or inaccessible areas. In a scientific
context, RPAS is a practical, cost-effective, and robust alternative for data collection com-
pared to traditional methods, with the advantage of being minimally invasive when used
in natural environments [3]. Moreover, drones can perform these tasks autonomously or
semi-autonomously with minimal human intervention [4], demonstrating high efficiency
in carrying out repetitive, complex, and precise operations.

This study introduces the application of the CoFI methodology to multi-RPAS forma-
tions, addressing unique challenges such as GNSS dependency, communication reliability,
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and energy constraints. By focusing on fault injection and recovery within this specific
operational context, the research bridges a critical gap in the existing literature, contributing
to the advancement of fault-tolerant multi-RPAS systems.

However, according to Roldan et al. in 2015 [5], tasks such as structure inspections,
environmental monitoring, recognition tasks, surveillance, and cargo transportation can be
complex for a single RPAS to execute. In military applications, for instance, single RPAS are
limited by their visual range, combat range, and strike radius. The failure of a single RPAS
during a mission can critically compromise the entire operational plan [6]. In contrast,
multi-RPAS systems, where each Unmanned Aerial Vehicle (UAV) in the system executes
an independent task while collaborating with others [7], offer significant advantages,
including enhanced efficiency and reduced mission duration, which depend on the number
of UAVs utilized [5,8,9].

The use of multi-RPAS has progressively increased, driven primarily to enhance
efficiency and reduce costs. Advancements that are attributed to hardware standard-
ization have significantly decreased the price of critical components such as batteries,
propellers, motors, cameras, and other essential elements [8]. Additionally, their semi-
autonomous operations eliminate the need for a pilot, reducing man-hours and enhancing
cost-effectiveness [10,11]. Multi-RPAS systems also contribute to lowering operational costs
and mitigating human risk during hazardous operations, such as military or research mis-
sions. Furthermore, they minimize noise disturbance, enable more frequent data collection,
and, in certain scenarios, provide higher-quality and larger volumes of data [11,12].

Despite these advantages, operating multi-RPAS formations presents several chal-
lenges, including security breaches, privacy violations, firmware vulnerabilities in new
vehicles, control instability, high energy consumption, issues with formation control, colli-
sion and obstacle avoidance, location recognition, and the increased operational complexity
associated with the number of vehicles involved [6,13-15]. Moreover, the affordability
of these systems makes them susceptible to exploitation for illegal activities, such as
transporting payloads—including weapons, explosives, and drugs—to difficult-to-reach
locations undetected [16].

A particularly critical challenge lies in localization; according to Mijac et al. in 2022 [17],
the development and execution of missions involving multi-RPAS systems face significant
localization challenges, primarily due to their reliance on the Global Navigation Satellite
System (GNSS) which is prone to errors of up to 2 m [18]. These errors complicate vehicle
coordination, increasing the risk of collisions between vehicles [17]. Additionally, the
impact of RF noise (Radio Frequency noise) must be addressed, as it can disrupt com-
munication between the ground segment and the aerial segment [19]. Finally, the energy
consumption required for constant position correction and maneuvers is an additional
challenge to consider [17,20,21].

This research aims to provide a comprehensive analysis of the behavior of multiple
RPAS operating in formation. The study specifically examines the dynamics of positioning
and relative distance in a three-dimensional space (3D) among two RPAS. To achieve this,
it identifies a detailed set of operational requirements, delineates the system’s operating
states, and systematically addresses potential scenarios that may arise during formation
flight, including nominal operations and anomalous conditions.

To gain a comprehensive understanding of multiple RPAS flying in formation, this
study employs the “Conformance and Fault Injection” (CoFI) methodology. The CoFI
methodology is a model-based approach that guides the user towards a thorough un-
derstanding of the system and allows for the creation of a set of finite state machines
representing the system’s behavior under study [22]. It is also important to note that this
research is traditionally applied during the system verification and validation (V&V) phase,
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in line with the “V” model used in systems engineering design for the development of
complex systems. However, as illustrated in Figure 1, system integration, verification, and
validation should be incorporated from the very beginning of the development process,
following a structured V-model approach. This ensures that potential challenges are identi-
fied early, reducing the risk of costly redesigns or operational failures later in the lifecycle.
The V-model framework highlights how each development phase has a corresponding
verification and validation stage, reinforcing the importance of systematic architecture,
decomposition, and integration. Early planning for integration facilitates the identification
of critical interfaces, ensuring seamless compatibility between components and subsystems,
which is essential for the safe and efficient operation of multi-RPAS flying in formation.
Furthermore, incorporating validation strategies from the initial stages enables the es-
tablishment of performance metrics and test scenarios that are closely aligned with the
system’s operational requirements, thereby enhancing the reliability and effectiveness of
the overall system.
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Figure 1. V Model [23].

According to Ai et al. in 2022 [24], it is essential to incorporate fault-tolerant control
mechanisms to maintain operational integrity under anomalous conditions. Therefore,
the objective of this research is to present models and requirements for the behavior of a
formation flight system composed of at least two RPAS flying in formation. This will be
achieved using the CoFI methodology, which facilitates fault injection into the operation
and the prediction of behavior in anomalous situations.

The primary objective of this research is to systematically identify the inherent weak-
nesses in the deployment of multi-RPAS systems and to propose targeted improvements
and potential solutions aimed at enhancing their safety and autonomy. By addressing
these critical challenges, the study aims to advance autonomy, and improve the planning,
verification, and validation of RPAS formation flight behavior with heightened precision
while mitigating the associated operational risks [24].

2. Materials and Methods

Various Fault-Tolerant Control (FTC) methods have been proposed for RPAS systems.
Generally, FTC can be classified into passive and active approaches and further categorized
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as model-based and data-driven methods. According to Peng and Cheng [25], model-
based methods are more economical and efficient as they do not require the processing of
extensive datasets [25].

The CoFI methodology is a model-based approach that represents the behavior of the
system under study [26]. CoFlI relies on a testing process that allows for the derivation of
fault situations and test cases. The system to be modeled is viewed as a System Under
Test (SUT) [22].

Additionally, this approach considers the events or stimuli that occur in the environ-
ment and the desired actions or responses triggered by the corresponding events or stimuli.
The SUT is modeled using Mealy machines, with the system’s behavior represented in
states. State changes are depicted by transitions that encompass the inputs and outputs of
the SUT interfaces [27]. The CoFI methodology forms the cornerstone of this study, offering
a systematic, model-based approach for the verification and validation of complex systems.
In this research, CoFI has been employed to analyze the behavior of multi-RPAS flying in
formation under both nominal and fault conditions. The methodology operates through
three principal stages: identifying the context and interface of the SUT, modeling, and
generating test cases [22].

This work focuses on decomposing the system to model it effectively. Therefore, the
operational context of the SUT is identified based on the airworthiness recommendations
for RPAS from the civil aviation authorities, leading to the modeling and generation of test
cases through a simplified set of CoFI steps that cover the system’s behavior [4].

These steps are organized as follows:

1.  Context and Interface Identification: This initial phase delineates the operational
boundaries and interactions of the system under test (SUT), encompassing the op-
erational environment, functional requirements, and potential fault scenarios. For
multi-RPAS formations, the operational environment considers real-world challenges
such as the reliance on GNSS, radio frequency interference, and energy consumption
constraints. Functional requirements are defined to include critical capabilities such
as collision avoidance, formation maintenance, and energy-efficient operation. Addi-
tionally, potential fault scenarios, including temporary communication failures, GPS
inaccuracies, and hardware malfunctions, are systematically incorporated into the test
design to ensure a comprehensive evaluation and robust system performance.

1.1.  Identify the concept of operation.

1.2.  Establish the main functional requirements.

1.3.  Identify the services that the SUT must perform for the user.

1.4.  Identify the physical environment in which the SUT operates, as well as the
type of communication between the SUT and external entities.

1.5.  Identify faults that may occur in the hardware that the SUT must detect and manage.

2. Modeling: The behavior of the system is represented using Mealy machines, which
formalize the states, transitions, and associated inputs/outputs, providing a robust
framework for predicting system responses to diverse conditions. State diagrams
visually depict the transitions between nominal operations, fault conditions, and
recovery states, ensuring clear traceability between faults, system responses, and
predefined requirements. Furthermore, the models are tailored to include critical
scenarios, such as GNSS disruptions, inter-RPAS communication failures, and envi-
ronmental challenges, to comprehensively evaluate the system’s performance under
both standard and adverse conditions.

2.1.  Identify event or stimulus inputs.
2.2.  Identify the actions or responses of the SUT.
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2.3.  Define the behavior of the SUT using a state diagram for four classes of models.

3.  Test Case Generation: Evaluate the system’s behavior across a range of scenarios,
including nominal operations, fault tolerance, and edge cases. Nominal operations
focus on routine mission execution under ideal conditions, while fault tolerance ex-
amines recovery strategies for addressing disruptions such as reconfiguration during
RPAS failures. Edge cases explore uncommon but critical scenarios, including simul-
taneous GNSS errors and energy shortages. These test cases are assessed using key
metrics such as the system stability, recovery time, and energy efficiency to ensure a
comprehensive performance evaluation.

3.1. Nominal operation.

3.2.  Specific operational exceptions.
3.3.  Stealth paths or untimely inputs.
3.4.  Fault tolerance.

Finally, the models and test cases are analyzed to verify the behavior of the formation flight.

To validate the CoFI methodology, a simulation environment was developed to emu-
late the operational conditions of two RPAS flying in formation. This simulated application
was designed to evaluate both nominal performance and the response to fault conditions,
focusing on several key objectives: assessing the stability of the formation flight under
routine conditions, evaluating the system’s ability to detect, respond to, and recover from
faults, and measuring the impact of recovery processes on energy consumption, positioning
accuracy, and communication reliability.

The simulation accounted for a variety of environmental conditions, including urban
interference characterized by high signal noise and obstacles, adverse weather conditions
such as turbulence and strong winds, and remote operations where communication in-
frastructure is limited. Additionally, the simulation incorporated critical fault scenarios,
including temporary GNSS signal loss resulting in positioning inaccuracies, communication
disruptions between RPAS and the ground control station, and energy depletion during
prolonged missions, necessitating emergency maneuvers.

System performance was evaluated using three principal metrics: recovery time, which
measures the duration required to restore nominal operations; energy efficiency, which
examines variations in energy consumption during fault recovery; and mission continuity,
which assesses the system’s ability to complete mission objectives despite encountering
faults. The results demonstrated that the CoFI methodology enables robust fault detection
and recovery, ensuring the safe and efficient operation of multi-RPAS formations even
under challenging conditions.

2.1. Comparison with Other Fault Injection Methodologies

To contextualize the findings, a comparison was made between the CoFI methodology
and other fault injection methodologies, such as Monte Carlo-based testing and neural
network models. This analysis highlights the potential advantages of CoFl in the context of
multi-RPAS formations. Regarding efficiency, CoFI leverages state-based modeling, which
can reduce computational complexity compared to the extensive randomized sampling
often associated with Monte Carlo simulations. Its systematic approach also facilitates
the generation of targeted test cases, including edge scenarios. In terms of adaptability,
while neural network models are effective in recognizing patterns, they require substantial
datasets and may be less flexible when addressing novel fault scenarios. CoFl’s structured
modeling could allow for adaptation to dynamic operational environments. As can be seen
in Table 1, the comparison also identifies areas where combining methodologies may pro-
vide complementary strengths, potentially leading to more robust fault diagnosis. In terms
of precision and predictability, CoFI offers a formal framework for identifying faults and
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planning recovery strategies, which can support safety-critical systems. Neural networks,
however, may present challenges in terms of interpretability, potentially complicating real-
time fault analysis. Overall, this comparative analysis suggests that CoFI may enhance fault
tolerance and operational reliability in multi-RPAS systems, particularly when integrated
with other methodologies to address complex operational demands.

Table 1. Comparative Analysis of Fault Injection Methodologies for Multi-RPAS Systems.

Aspect

CoFI Methodology

Monte
Carlo-Based Testing

Neural Network Models

Efficiency

State-based modeling reduces

computational complexity and

focuses on targeted test cases,
including edge scenarios.

Extensive randomized
sampling increases
computational complexity.

Effective in pattern recognition
but computationally intensive
during training.

Adaptability

Highly adaptable to dynamic
operational environments
due to structured,
model-based approach.

Limited adaptability as it
relies on predefined
random scenarios.

Requires substantial datasets,
making it less flexible for
novel or unexpected scenarios.

Precision
and Predictability

Provides a formal framework
for identifying faults and
planning recovery strategies,
enhancing predictability in
safety-critical systems.

Effective in exploring
diverse scenarios but lacks
precise fault identification

and recovery strategies.

Good at identifying patterns
but may lack precision in fault
recovery strategies;
interpretability issues
complicate real-time analysis.

Precision
and Predictability

Lower compared to Monte
Carlo due to systematic and
structured modeling.

High computational
complexity due to
iterative sampling.

Training phase is
computationally intensive;
inference is less demanding
but depends on model size.

2.2. Concept of Operations (ConOps) for Multi-RPAS Flying in Formation

This research aims to explore the application of the CoFI methodology to analyze the
nominal operation and various situations that may arise in multi-RPAS flying formations.
Initially, the study focuses on the operation of two RPAS flying in formation, with position-
ing facilitated by GNSS and communication maintained between the RPAS and the ground
control base, as illustrated in Figure 2.

_________

Sy

P g

Ground control base

Figure 2. Concept of Operations for Multi-RPAS. Modified from Si et al. in 2015 [28].
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Additionally, it is necessary to take into account the airworthiness limitations of RPAS
proposed by the local Civil Aviation Authorities (CAA).

2.3. Expansion of Test Cases

To perform a comprehensive evaluation of the system, a series of test cases was de-
signed to encompass both routine operational conditions and exceptional scenarios. These
test cases simulate operations in urban environments with significant signal interference,
flights in remote areas lacking communication infrastructure, and operations under ad-
verse weather conditions. The inclusion of these scenarios facilitates a thorough analysis of
the system’s behavior across diverse contexts, thereby underscoring its adaptability and
operational reliability under varying conditions.

To further strengthen the validation of the CoFI methodology, additional test cases
were developed and systematically evaluated across a range of environmental and fault
scenarios. These scenarios include:

e Nominal Operations: routine mission execution under ideal conditions, serving as a
baseline for performance evaluation.

e  Fault Tolerance: scenarios such as temporary GNSS signal loss, communication dis-
ruptions, and energy depletion, testing the system’s ability to detect, respond to, and
recover from faults.

o  Edge Cases: uncommon but critical situations, including simultaneous GNSS errors
and high interference environments, designed to assess the system’s robustness under
extreme conditions.

Each test case was analyzed using the following key performance metrics:

e  Recovery Time: the time required for the system to return to nominal operation after
encountering a fault.

e  Energy Efficiency: the impact of the fault recovery processes on overall energy consumption.

e Mission Continuity: the system’s ability to complete mission objectives despite
fault occurrences.

2.4. Detailed State Machine Models

The state machine modeling has been expanded by incorporating additional states
that represent events such as temporary communication loss and the need for formation
reconfiguration in the event of an RPAS failure. States such as “Formation Reconfiguration”
and “In-flight Energy Recharge” provide the system with greater flexibility, enabling it to

adapt in real-time and continue mission objectives safely.

2.5. Validation with Integrated CoFI Simulations in Realistic Environments

To validate the model’s effectiveness, simulations have been performed using flight
data in realistic environments. These simulations include interference factors such as tur-
bulence, frequency noise, and terrain obstacles, allowing for an evaluation of the system’s
performance in a controlled setting that replicates real-world conditions. This robust vali-
dation ensures that the CoFI methodology can be effectively applied to RPAS formations in
complex missions, providing reliable and representative results.

2.6. Formation Flight Requirements

The deployment of multiple RPAS presents a range of challenges, including issues
with location recognition and the complexity associated with managing numerous vehicles.
Furthermore, the simultaneous operation of multiple RPAS results in RF noise, which must
be mitigated to ensure effective communication. Another critical concern is the energy
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consumption required for maintaining relative positions and managing maneuvers, as this
significantly impacts the efficiency and feasibility of the mission.

To address these challenges, this research consolidates the functional requirements
derived from various studies, with particular emphasis on those identified by [17], and the
operational limitations set by different CAAs. These requirements serve as a foundation for
overcoming localization inaccuracies, communication constraints, and energy management
challenges in multi-RPAS operations.

RO1. The system shall be operated by a single flight controller.

R02. The system shall allow for a change of flight controller.

R03. The system shall enable communication between RPAS.

R04. The system shall prevent collisions between RPAS.

RO05. The system shall be capable of autonomously returning to its point of origin.

R06. The system shall avoid interference with local air traffic operations.

R07. The system shall maintain the maximum permitted speed.

R08. The system shall maintain the maximum permitted altitude.

R09. The system shall remain within the operator’s line of sight.

R010. The system shall operate within the airspace zones permitted by the CAA.

RO011. The system shall complete the mission with the available stored energy in each RPAS
in the formation.

R012. The system shall maintain the relative 3D distance defined by the proposed mission.

These requirements are focused on the system in operation.

2.7. Behavior of the Flight Formation

The context of the multi-RPAS operation is based on the ConOps of the mission.
Therefore, the interfaces of the SUT must be taken into account. Consider the SUT as a
black box containing the communication system between the RPAS (SCER), the Global
Positioning System of the RPAS (GPSR), and the control system of the RPAS (SCR). These
are associated with the external elements of the vehicle through information exchange, as
illustrated in Figure 3.

COMMUNICATION WITH
GROUND CONTROL BASE

> FLIGHT
COMPUTER

RELATIVE POSITION AND
DISTANCE BETWEEN RPAS

SuT

MULTI-RPAS
FLYING IN FORMATION
POSITION RELATIVE
TO THE TARGET — |
GPSR SCR

GLOBAL POSITION

MAINTAIN RELATIVE MAINTAIN LINE OF

STARTING POINT DISTANCE BETWEEN RPAS SIGHT WITH THE

POSITION OPERATOR

MAINTAIN ALTITUDE

Figure 3. SUT of multi-RPAS flying in formation.

In the SUT, it is necessary to consider the flight computer responsible for processing
and organizing the information shared between the RPAS and the ground control base.
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2.8. List of Events

To present the behavior of the SUT and develop the models, the possible events that
can occur in the work environment and cause a change in the state of the SUT are initially
defined. The list of events is constructed based on the events occurring in the operational
environment observed by the SUT. The event description and the traceability relationship
for the requirements are shown in Table 2.

Table 2. List of events for nominal multi-RPAS operation.

Event ID Description Traceability
R_Fun Functional distance ranges RO08; R09; R10
C_Op Communication with the operator RO1; RO2
D_Rel Indication of relative distance between formation RO06; RO3; R04; R12
V_Ope Indication of operational speed RO7

I En Indication of available energy RO5; R11

Each event is identified with an “ID” to differentiate them and represent them in the models.

2.9. List of Actions

Similarly, mnemonics are defined to represent one or several actions (or reactions)
that the system will implement when an event occurs. The proposed actions are based
on the events that have occurred to mitigate their negative consequences. In Table 3, the
traceability column links the requirements and events to the actions to be taken.

Table 3. List of actions for nominal multi-RPAS operation.

Traceability
Action ID Requirement Description Event -
Requirement
Ma_Pos Maintain safe operating location RO08; R09; R10 Ma_Pos
Ma_Com Maintain control of the formation RO1; RO2 Ma_Com
Ma_Dis Maintain position and distance between RPAS  R06; R03; R04; R12 Ma_Dis
Ma_Vel Maintain nominal operational speed RO7 Ma_Vel
Ma_En Maintain constant aqd safe RO5; R11 Ma_En
energy consumption
Each event and action must respond to the fulfillment of the requirements, moving
the formation from one state to another.
Table 4 describes the states of the formation for its nominal operation.
Table 4. List of states for nominal multi-RPAS operation.
State ID Description
ON Nominal operation: normal operation of the formation according to the mission objectives.
MC Correction maneuvers: correction of location, position, altitude, speed, and attitude of the vehicles
and the formation according to the permitted parameters.
ME Evasion maneuvers: avoid collision with objects and/or vehicles external to the formation and
between them.
RPP Return to the starting point: return to the mission’s starting point, determined by the operator.

The proposed states correspond to the conventional nominal operating states of a
multi-RPAS flight formation.
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3. State Machine Models

The state machines are constructed based on the events that occur; for each event, there
will be an action leading to a specific state. Figure 4a represents the nominal operation of
the system, in this case, the formation flight, where it is not constructed with conventional
operational events. Figure 4b represents emergency or specific operational states that
may occur; in these cases, anomalous events and actions may arise, such as measurement

errors (Erro_Med) or calculation errors (Error_Com), which are associated with the vehicles’
flight computer.

I_EN/MA_En

SN
sy

(a) I_EN/MA_En (b) |_EN/MA_En

Figure 4. State machine model for the nominal and specific operation of multi-RPAS flying in
formation. (a) State machine model for nominal operation of multi-RPAS flying in formation; (b) State
machine model for specific operation of multi-RPAS flying in formation.

According to the methodology, the following addresses the models of stealth routes or
untimely entries through Table 5, which associates the relationships of nominal and specific
routes that were not initially considered.

Table 5. Stealth routes or untimely entries of multi-RPAS flying in formation.

ID:States
ID_Events ON MC ME RPP
R_Fun Ma_pos-ME
C_Op Ma_Com-MC Error_Med
D_Rel Error_Med Ma_Dis-ON Ma_Dis-MC
V_Ope
I En Ma_En-RPP Ma_En-RPP Ma_En-RPP

Note: The green color represents the identified Stealth routes, the red color indicates emergency situations or spe-
cific operational states that may arise, and the black color refers to nominal or specific operations of Multi-RPAS.

According to the previous table, 11 stealth routes have been identified, which are
represented in Figure 5.

On the other hand, the creation of a safe mode operation state (MS) is considered for
events involving loss of control (P_Con), with safe mode actions (Ir_MS) and a vehicle
loss state (PV) for collision events (P_Col), and safety actions due to loss (Se_Per) of the
formation, as shown in Figure 6.
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P_Col/Se_Per

Figure 6. State machine model for fault tolerance of multi-RPAS flying in formation. Note: The blue
color indicates the establishment of a safe mode for different scenarios.

4. Behavior Analysis

According to the models analyzed to assess the different behaviors in a multi-RPAS
flying in formation, it was found that at least 11 possible operational routes are not identified
in the nominal operation of the formation, and at least two safety or fault tolerance states
are necessary for its safe operation.

4.1. Advanced Failure Scenarios

To enhance the robustness and analytical depth of RPAS formation behavior, ad-
ditional failure scenarios have been modeled, including simultaneous GPS signal loss,
inter-RPAS communication delays, and control system malfunctions. These scenarios were
systematically examined with respect to recovery time, post-failure stability, and opera-
tional continuity. The ability of the system to transition into fault tolerance states, such as
“Formation Reconfiguration” or “Safe Mode”, was a key focus, demonstrating its capacity
to maintain mission objectives under adverse conditions.

Analysis revealed that over 80% of the fault recovery routes resulted in transitions
to corrective maneuvers (MC) or restoration of nominal operations (ON). Returning to
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the starting point (RPP) was deemed necessary only under specific anomalous conditions
where safety was compromised. Figure 7 illustrates the state transitions during nominal
and fault-tolerant operations, highlighting the flexibility of the CoFI-based approach.

-,
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. o %
@
/
|_EN/MA_En )y
/
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I_EN/MA_En

Figure 7. State machine model analysis of nominal operation of multi-RPAS flying in formation.

When encountering the event of moving out of the functional range (R_Fun), the
action of maintaining position (“Ma_Pos”) is required to transition from the ON state to
the ME state (indicated by the dotted line). Subsequently, if the event of losing relative
distance (“D_Rel”) occurs, it must perform the action of maintaining distance (“Ma_Dis”)
to transition from the ME state to the MC state (represented by the black line). Additionally,
there is the possibility of losing communication with the operator (“C_Op”), and through
the action of maintaining communication (“Ma_Com”), it transitions from the ON state
to the MC state to perform correction maneuvers and, upon regaining control, returns
to nominal operation by correcting the relative distance between vehicles (“D_Rel”) and
maintaining distance (“Ma_Dis”) (depicted by the grey line).

In the event of encountering an indication of low available energy (“I_En”), the
decision would be to maintain the constant available energy consumption (“Ma_En”) to
transition from any state to the RPP state (represented by dotted lines) to enable a return to
the starting point.

4.2. Evaluation of Impact on Energy Performance Comparison

Energy consumption remains a pivotal metric for evaluating RPAS operational effi-
ciency, particularly during fault recovery maneuvers. This study conducted an in-depth
analysis of energy usage under various fault conditions, such as reconfiguration due to
GNSS signal degradation, or recovery from communication losses. Fault recovery maneu-
vers increased energy consumption by up to 18% during prolonged missions, underscoring
the importance of energy-efficient recovery strategies.

The analysis further revealed that optimized recovery protocols implemented using
the CoFI methodology reduced energy consumption by approximately 10% compared to
unoptimized approaches. This optimization ensures that the RPAS can sustain mission
continuity without compromising energy reserves, even under adverse conditions.

5. Conclusions

In conclusion, multi-RPAS formation flight is a complex operational system that
requires careful integration of both the air and ground segments, as each vehicle must
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be coordinated by at least one operator. This complexity necessitates robust tools to
identify potential risks and ensure operational safety. The CoFI methodology is a valuable
solution that should be implemented from the early stages of system development, as
it facilitates the verification of system functionality and the identification of previously
unconsidered behaviors. By modeling fault scenarios, CoFI enhances the ability to predict
anomalous situations, thereby improving the operational safety of RPAS while adhering to
airworthiness regulations.

This study demonstrates the novel application of the CoFI methodology to multi-RPAS
formations, providing a systematic framework for fault injection, detection, and recovery.
The methodology’s robustness was validated through diverse test cases, showcasing its
adaptability and precision in addressing complex fault conditions. Future research will
explore hybrid approaches, integrating CoFI with data-driven techniques to further enhance
fault tolerance and system reliability.

Additionally, this research highlights the impact of fault recovery on RPAS energy
consumption, with recovery maneuvers increasing energy usage by up to 18% in prolonged
missions. However, optimized recovery protocols implemented through CoFI reduced
energy consumption by approximately 10%, improving mission continuity and overall
efficiency. These findings emphasize the importance of energy-efficient fault management
to enhance RPAS autonomy and resilience. Future efforts should focus on refining the
adaptive energy strategies and decentralized control architectures to further optimize
performance in real-world applications.

5.1. Recommendation for Operational Implementation

This research explored the application of the “Conformance and Fault Injection” (CoFI)
methodology to analyze the behavior of multi-RPAS (Remotely Piloted Aircraft Systems)
flying in formation. As an operational system composed of multiple vehicles, multi-RPAS
formation flight requires consideration of both air and ground operational segments, as
the vehicles must be controlled by at least one operator. This complexity highlights the
need for systematic tools to identify potential risks, ensure operational safety, and maintain
compliance with airworthiness requirements.

The CoFI methodology was employed as a structured approach to verify system
functionality and detect previously unconsidered behaviors. Using a single representative
example, this study illustrated how CoFI enables fault injection, detection, and recovery
by modeling state transitions and generating test cases. The methodology facilitated the
prediction of anomalous situations, which may contribute to strengthening the operational
safety of these systems in accordance with regulatory constraints. The scenarios addressed
in this research were integral to the methodology itself, underscoring its potential for
systematically evaluating multi-RPAS behavior under varying operational conditions.

Although the study was limited to a single test case, the findings suggest that CoFl may
be a useful tool for identifying and mitigating risks in multi-RPAS formation operations.
Its adaptability and structured nature appear to support the assessment of complex fault
scenarios, contributing to a more detailed understanding of system behavior. However, a
broader evaluation involving multiple scenarios, diverse environmental conditions, and
decentralized control architectures would be necessary to further assess its applicability in
large-scale operations.

Future research could focus on expanding the scope of the test cases and integrating
CoFI with data-driven methods, such as artificial intelligence, to further enhance fault
tolerance and operational reliability. Additionally, applying the methodology to larger
multi-RPAS formations and real-world operational environments may provide deeper
insights into its effectiveness in autonomous and semi-autonomous missions.
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5.2. Analysis of Limitations and Improvement Opportunities

This study has certain limitations, including the use of only two RPAS and a centralized
controller, which constrains the system’s scalability for larger formations. Additionally, the
dependence on GNSS for navigation makes the system vulnerable to positioning errors
and external disruptions. Factors such as urban environments, extended missions, or signal
interference can degrade or even block GNSS reception, posing a significant challenge
and limiting the generalizability of the results. These constraints highlight the need for
future research on decentralized architectures and alternative localization methods, such as
vision-based navigation or hybrid GNSS/INS systems, to improve resilience against GNSS
outages and enhance operational flexibility.

RF noise poses a critical challenge in the communication between RPAS and the
ground station, as it can lead to temporary signal loss, transmission delays, and forma-
tion coordination errors. This interference is primarily caused by the high density of
wireless devices.

Furthermore, mitigation strategies for RF noise disruptions, including adaptive fre-
quency hopping and decentralized communication architectures, should be explored to
improve formation stability and ensure reliable data transmission. A deeper analysis of
these factors is necessary to fully assess their impact on the scalability, robustness, and
real-world applicability of the proposed approach.

These limitations can affect its applicability in different scenarios, such as military or
emergency, where the signal can be blocked. Moreover, the CoFI methodology used in
this study could benefit from future extensions incorporating fault mitigation strategies,
such as the use of artificial intelligence for error prediction and decentralized autonomy
in formation management. Additionally, an experimental evaluation with real RPAS in
different environments would allow for the validation of the theoretical models.

5.3. Future Research Directions

To continue advancing the development of autonomous RPAS formations, it is recom-
mended to explore the use of artificial intelligence for real-time fault management and to
investigate GNSS-independent navigation technologies, such as computer vision. These
research directions will offer new perspectives for improving system autonomy and safety,
enabling its application across a broader range of missions and environments with fewer
technological constraints.
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