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Abstract: With the continuous advancement of drone technology, drones are demonstrating a trend
toward autonomy and clustering. The detection of airborne objects from the perspective of drones is
critical for addressing threats posed by aerial targets and ensuring the safety of drones in the flight
process. Despite the rapid advancements in general object detection technology in recent years, the
task of object detection from the unique perspective of drones remains a formidable challenge. In
order to tackle this issue, our research presents a novel and efficient mechanism for adjacent frame
fusion to enhance the performance of visual object detection in airborne scenarios. The proposed
mechanism primarily consists of two modules: a feature alignment fusion module and a background
subtraction module. The feature alignment fusion module aims to fuse features from aligned adjacent
frames and key frames based on their similarity weights. The background subtraction module is
designed to compute the difference between the foreground features extracted from the key frame
and the background features obtained from the adjacent frames. This process enables a more effective
enhancement of the target features. Given that this method can significantly enhance performance
without a substantial increase in parameters and computational complexity, by effectively leveraging
the feature information from adjacent frames, we refer to it as an efficient adjacent frame fusion
mechanism. Experiments conducted on two challenging datasets demonstrate that the proposed
method achieves superior performance compared to existing algorithms.

Keywords: drone-to-drone detection; airborne vision; spatio-temporal information; feature fusion;
deep learning

1. Introduction

Drones have become readily accessible and extensively employed in various fields,
including mapping [1], security [2,3], agriculture [4], express delivery [5], and numerous
others [6]. In the forthcoming years, the use of autonomous and intelligent drones is
expected to rise exponentially. To ensure secure flight and mitigate the potential risks
associated with drones, the development of drone-to-drone detection technology assumes
paramount significance [7–9]. Notably, this research domain remains largely unexplored,
offering ample opportunities for investigation and advancement.

In contrast to conventional object detection methods, drone-to-drone detection en-
counters numerous challenges. Primarily, within an aerial visual context, drone targets
often exhibit diminutive sizes and lack distinct texture features, rendering them susceptible
to background interference, thereby impeding their detection. Furthermore, the aerial
backdrop in air-to-air scenarios encompasses intricate and dynamic elements. The presence
of cloud formations in the atmosphere leads to a heightened frequency of drone targets
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materializing or vanishing. In contrast to ground-to-air drone detection, drones in mid-
flight possess the capability to capture drone targets from oblique or overhead perspectives,
resulting in potentially intricate backgrounds comprising urban landscapes or natural
terrains. Additionally, drone targets exhibit varied characteristics as they are capable of
rotating along any axis. This rotational capability can lead to significant alterations in
the appearance of drones, including changes in their shape, size, and color. Moreover,
achieving a harmonious trade-off between accuracy and speed is imperative when de-
tecting drone targets. Compared to ground-level imagery, airborne vision typically offers
higher-resolution images. However, the processing of such high-resolution images poses a
significant challenge for drone platforms in terms of memory and computational capabili-
ties. Simultaneously, object detection tasks utilizing airborne vision frequently necessitate
low-latency processing, thereby intensifying the trade-off between model computation and
detection accuracy.

In recent research, several scholars have made enhancements to the general object
detection algorithm, specifically tailored for small drone object detection tasks [10,11].
However, as these studies do not incorporate temporal information, their performance falls
below optimal levels. Research has demonstrated that the human visual system possesses
remarkable sensitivity in detecting object motion. In object detection tasks, humans depend
not only on static features but also on temporal variations exhibited by objects [12,13].
Considering this perspective, although the visual properties of small drone targets may
be constrained, their motion characteristics can be leveraged to enhance precision. A
recent approach known as Tiny Airborne object Detection (TAD) [14] capitalizes on the
motion characteristics of drone targets. The authors proposed a framework that diverges
from general object detection, as it exclusively employs motion data between consecutive
frames to pinpoint the drone target. Unlike prevailing techniques that rely on optical
flow estimation or background subtraction for capturing motion cues, their approach
demonstrated high efficiency, requiring minimal model parameters and achieving fast
processing speed. Initially, the authors constructed a motion pattern model by computing
the local similarity of the feature image. Subsequently, the consistency of motion was
directly described by calculating the local similarity of motion patterns. Next, a simple
network was employed to facilitate the positioning of the object’s center. Finally, a separate
network branch was utilized to make predictions regarding the coordinates of the bounding
box. Nevertheless, this method is accompanied by certain drawbacks. First, the method
cannot identify targets whose motion trajectory is perpendicular to the imaging plane of
the camera’s field of view or hovering targets. Second, this method cannot identify drone
targets larger than 32 × 32 pixels because it can only extract the edge motion features
of the target, which can lead to the incorrect positioning of the target. In addition to the
aforementioned approach, several researchers [15–17] have proposed utilizing multi-frame
information to enhance model performance. However, these methods suffer from issues
such as excessive computational steps or a substantial increase in calculations. Meanwhile,
in the context of aerial visual scenes, employing an excessive number of video frames to
enhance object detection performance, particularly for drone-to-drone detection, holds
limited significance. Undoubtedly, the final frame result holds greater importance. Blindly
increasing the number of video frames in an attempt to enhance performance will inevitably
impede the efficiency of obtaining the final frame result.

To address the aforementioned challenges and effectively leverage temporal informa-
tion, we propose an efficient mechanism for fusing adjacent frames. This mechanism fully
utilizes the motion of target pixels between adjacent frames and the key frame to achieve
optimal results. The mechanism we propose can be inserted into general object detection
frameworks, similar to the attention mechanism. This allows for the detection of targets
with motion trajectories perpendicular to the imaging plane of the camera’s field of view or
hovering targets and the enhancement of the target characteristics. In addition, the general
object detection algorithm can recognize objects with different scales. First, similar to the
TAD algorithm [14], we establish pixel correspondence between features of adjacent frames
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and key frames by employing local similarity calculation. This approach enables us to
model pixel motion, as depicted in Figure 1. Next, we utilize the pixel motion information
to acquire data analogous to optical flow, enabling the alignment of adjacent frame features
with key frame features. Subsequently, the aligned features and key frame features are
fused using similarity weights. Simultaneously, we employ pixel motion information to ex-
tract background information from adjacent frame features for the purpose of background
subtraction. The main contributions of our work can be summarized as follows:

• We propose an efficient mechanism for adjacent frame fusion, consisting of two mod-
ules that entail minimal parameter increment and impose negligible computational
overhead. Our mechanism is designed to be plug-and-play, ensuring ease of im-
plementation. It has been validated on two datasets, NPS [18] and FL-Drone [7],
demonstrating significantly enhanced effects.

• We propose a feature alignment fusion module, which distinguishes itself from intri-
cate alignment techniques such as optical flow estimation and deformable convolution.
Instead, this module utilizes local similarity calculation to align the features of adja-
cent frames with those of key frames and subsequently use them for feature fusion.
Simultaneously, a comprehensive ablation study was conducted to substantiate the
effectiveness of the proposed feature alignment fusion module.

• We propose a background subtraction module, drawing inspiration from the back-
ground subtraction technique in moving object detection. This module subtracts the
background features of the adjacent frames from the foreground features of the key
frame to enhance the target features and enhance the model’s accuracy.

Figure 1. Pixel motion diagram. The previous frame is shown in the upper-left corner, the key
frame is shown in the lower-left corner, and the pixel motion diagram of the feature obtained using
local similarity calculation is shown on the right. It can be regarded as an optical flow visualization
diagram, in which color is used to represent different motion directions, as indicated by the color
wheel next to it. Two target motion states can be seen in the image: the upper target moves to the
left, and the lower target moves downward, consistent with the corresponding parts of the pixel
motion diagram.

2. Related Works
2.1. Small Object Detection

In recent years, various methods have been proposed to address the issue of small
object detection. The primary challenge in detecting small objects is the limited represen-
tation loss during feature extraction. Existing methods for small object detection have
been enhanced by building upon mainstream object detection network models, mainly
through data augmentation, multi-scale feature fusion, super-resolution, and increasing
the number of detection heads. The data augmentation method involves copying and
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pasting the small target or adding extra image data to the dataset using a specific propor-
tional matching strategy. This approach helps enhance the model’s robustness to some
extent and addresses the issue of unclear visual features and limited target information
for the small target [19–21]. The multi-scale feature fusion method aims to enhance the
detection accuracy of small targets by leveraging both the low-level high-resolution and
high-level strong feature semantic information of the network [22–24]. The super-resolution
method reduces the feature difference between small-scale targets and large-scale targets
through feature mapping and learning high-resolution feature representation of small
targets, thereby improving the detection accuracy of small targets [25–27]. Increasing the
number of detection heads involves enhancing the detection capability for small targets,
aiming to improve the accuracy of their detection. Examples of algorithms employing this
approach include Tph [28] and FasterX [29]. Increasing the number of detection heads
can alleviate the negative impact of severe target scale changes. However, since these
algorithms do not utilize temporal information, their performance may be suboptimal.
Additionally, when existing methods are directly applied to airborne visual scenes, several
problems may arise. Data augmentation may only be effective for specific datasets and
scenes, while methods involving super-resolution, multi-scale feature fusion, or increasing
the number of detection heads can increase the computational burden. Therefore, it is
necessary to further balance the relationship between accuracy and speed.

2.2. Video Object Detection

In airborne vision, it is crucial to utilize temporal information from videos to enhance
the accuracy of the model. On one hand, data obtained through airborne vision usually
consist of video data (i.e., image sequence). On the other hand, when the target cannot
be identified in a single frame of a static image, it is necessary to utilize contextual spatio-
temporal information from video data to enhance target features. This method of utilizing
video information to enhance the model’s performance is known as video object detection.
Video object detection can be categorized into two groups based on the utilization of
temporal information: leveraging the spatio-temporal consistency of target motion and
feature aggregation. The spatio-temporal consistency methods of target motion mainly
include post-processing methods [30,31] and tracking-based video object detection [32].
The feature aggregation method aggregates frame features at different distances from key
frames, including adjacent frame features and long-term frame features, to enhance the
features of objects. Examples of this method include FGFA, MEGA, and Transvisdrone.
FGFA [33] mainly uses optical flow to align features extracted from adjacent frames with
those extracted from the key frame and then fuses these features to enhance detection
accuracy. MEGA [34] comprehensively considers global and local feature information and
proposes a long-range memory module, allowing the key frame to obtain broader and
more complete feature information. Transvisdrone [17] combines YOLOv5 [35] and the
Video Swin model [36] to enhance drone detection in challenging scenes by learning the
spatio-temporal dependence of drone motion. However, these methods only consider
the full utilization of information from adjacent frames or long-term frames, focusing on
enhancing model accuracy, without further consideration of how to efficiently leverage this
information. They are usually improved based on the two-stage object detection algorithm.
Consequently, these methods are time-consuming, and some are not end-to-end, which
increases the number of steps in model training.

Starting from the practical application of airborne vision, this paper focuses on effi-
ciently utilizing adjacent frames to enhance the characteristics of small targets, improve the
model’s performance, avoid significantly increasing computational load, and align more
closely with the time-sensitive nature of airborne vision tasks. An efficient plug-and-play
adjacent frame fusion mechanism is proposed, which consists of two modules. The first
module utilizes the aligned features to fuse and enhance the target features based on their
similarity, whereas the second module leverages the background of the adjacent frames to
enhance the target features. Unlike the video object detection algorithm mentioned above,
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we thoroughly incorporate target motion information and background feature information
from adjacent frames. Due to these purposeful designs, the algorithm is better suited for
airborne vision scenes and the detection of small targets such as drones.

3. Proposed Method

In this section, we introduce the technical details of our efficient adjacent frame fusion
mechanism. Specifically, our method is very simple and mainly includes three key parts,
as shown in Figure 2. In the mechanism, the local similarity calculation is first performed
to obtain the similarity volume, which is utilized in the subsequent feature alignment
fusion module and the background subtraction module. It is worth noting that the local
similarity calculation is performed on the features of the key frame and the adjacent frames
extracted through the network. Therefore, feature extraction needs to be performed first,
which means the efficient adjacent frame fusion mechanism needs to be inserted into the
network backbone.

Figure 2. The framework of the efficient adjacent frame fusion mechanism. The mechanism mainly
includes three key parts: (1) local similarity calculation, (2) the feature alignment fusion module, and
(3) the background subtraction module.

3.1. Local Similarity Calculation

Some researchers [37] have found that in the optical flow field of 100 ImageNet videos
calculated by FlowNet, the edge distribution of the optical flow field along the vertical axis
and the horizontal axis is mainly concentrated near zero, as shown in Figure 3.

Figure 3. Optical flow field of sampled 100 ImageNet VID videos computed by FlowNet in horizontal
and vertical dimensions [37].

Compared with the ImageNet video dataset, the targets in airborne vision are typically
smaller. Due to the long distance between the target and the airborne camera, the target does
not move significantly in adjacent frames. In addition, the presence of the downsampling
layer in the neural network reduces the size of the feature image. Therefore, unlike optical
flow estimation [38,39], to obtain the motion trajectory of pixels, we utilize local similarity
calculation as a simple and effective way to establish the motion relationship between
adjacent frame feature pixels and key frame feature pixels. Local similarity calculation, also
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known as cost volume, is widely used in optical flow estimation [38,40]. In the TAD [14]
algorithm, this method is used to obtain pixel motion modeling and motion consistency
modeling. The method calculates the cosine similarity between the feature vector of each
position in the feature map and its surrounding feature vector. The process is formulated
as follows:

Sim(A, B) =
A · B

∥A∥∥B∥ (1)

Sk
ijmn = Sim( f T

ij , f T−1
(i−⌊k/2⌋+m)(j−⌊k/2⌋+n)), 0 ≤ m, n < k. (2)

where Sim(A, B) is the cosine similarity between A and B. f T ∈ RH×W×D represents the
features from the key frame. f T

ij represents the feature vector of position (i, j) in f T . The

meaning of f T−1
(i−⌊k/2⌋+m)(j−⌊k/2⌋+n) is similar to f T

ij , representing the feature vector from the

previous frame. Sk
ijmn represents the cosine similarity between the feature vector of position

(i, j) in f T and the k neighborhood feature vector in f T−1, and S ∈ RH×W×k×k represents
the similarity volume. For ease of understanding, the calculation is shown in Figure 4.

Figure 4. Local similarity calculation.

3.2. Feature Alignment Fusion Module

The feature alignment fusion module uses the aligned adjacent frame image features
for fusion. Existing feature alignment methods [33,41–43] often use Deformable Convolu-
tional Networks (DCNs) [44] or optical flow estimation methods [38] to align adjacent frame
features with key frame features, which greatly increases the amount of computation or the
number of parameters. However, in airborne visual scenes, the motion relationship informa-
tion between the adjacent frame features and the key frame features can be used to align the
features. In this approach, the similarity volume S is used for feature alignment, requiring
only a minimal increase in computation without introducing additional parameters.

The alignment process is shown in Figure 5. First, the most similar local feature
relative positions are found in a similar volume. The deeper the color, the more similar
they are. It can be seen that the red position is the most similar relative position between
the adjacent frame features and the key frame features. For example, the (−1,−1) shown
in the first rectangle means that the position of the key frame feature (i, j) is most similar
to the position of the adjacent frame feature (i − 1, j − 1). These relative positions can
then be combined to form something similar to optical flow, which is the trajectory of all
feature positions, called Feature T → Feature T−1. Then, use Feature T → Feature T−1 to
warp f T−1 to obtain the aligned adjacent frame features. The specific operation process of
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warping can be seen on the right side of the figure. For the convenience of the display, the
feature vectors in each row are marked with different colors, and the warping process of the
middle nine feature vectors is illustrated here. The red arrow indicates the displacement
from Feature T → Feature T−1, aligning the adjacent frame features with the key frame
features through this warping operation. Then, we use weighted addition to fuse the
features. The weight is obtained from the result of the previous local similarity operation,
that is, the similarity value at the red position of Feature T → Feature T−1. The process is
formulated as follows:

FT→T−1, Smax = fmax(S) (3)

f̄ T−1 = W( f T−1, FT→T−1) (4)

f̂ T = f T + Smax · f̄ T−1 (5)

where fmax(·) represents the Find max indexes step in Figure 2. This operation is per-
formed on S to obtain FT→T−1 ∈ RH×W×2, similar to an optical flow graph, denoted as
Feature T → Feature T−1. It obtains the maximum value corresponding to each feature
position in the similarity value. W(·, ·) represents the process of aligning the adjacent frame
features. f̄ T−1 ∈ RH×W×D refers to Aligned Feature T−1 in Figure 2. Finally, we obtain
f̂ T ∈ RH×W×D through weighted fusion.

Figure 5. The process of alignment.

3.3. Background Subtraction Module

Inspired by the background subtraction method [45] in moving object detection, we
use a similar method to eliminate background information and highlight the foreground.
The core idea of background subtraction is to subtract the determined or real-time updated
background model from the current frame in the image sequence. Although the principle
of background subtraction is simple, this method is mainly applied to fixed camera scenes.
In airborne vision, background changes that are too fast or too complex can easily lead to
poor results. How to obtain the background information of the target is very important.

The background subtraction module refers to the subtraction between the foreground
information of the key frame and the background information of the adjacent frame to
further strengthen the target feature. In this module, we use a method similar to that in the
feature alignment fusion module to obtain the target background information. Unlike the
feature alignment fusion module, where the goal is to find the most similar position to the
key frame, this module aims to find the most dissimilar position to the key frame, which
can be regarded as the background information of the target. For the position containing
the target semantics, the most dissimilar position represents the background, whereas for
the background, the most dissimilar position may contain the target semantics. We adopt
the idea of background subtraction to subtract the background information of adjacent
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frames from the key frame features, thereby separating the background information from
the target semantic information to further enhance features. Ablation experiments were
carried out to verify the feasibility of the method. The process is formulated as follows:

FB = fmin(S) (6)

f B = W( f T−1, FB) (7)

f F = Conv1×1( f̂ T − f B) (8)

where fmin(·) denotes the Find min indexes step in Figure 2, which finds the relative
position of the adjacent frame feature vector that is most dissimilar to the key frame feature
vector. FB ∈ RH×W×2 can be regarded as the optical flow for acquiring the background
position, known as the background flow. f B ∈ RH×W×D represents the background feature
obtained after using the adjacent frame warp, referred to as Background in Figure 2. Then,
f B is subtracted from f̂ T obtained by the feature alignment fusion module.

Finally, the result from subtraction is input into a 1 × 1 convolution to obtain
f F ∈ RH×W×D fused with the adjacent frame. Throughout the process, it is evident that
in the proposed mechanism, only the last 1 × 1 convolution increases the number of
parameters. This is a negligible increase compared to the network parameters.

4. Experiments
4.1. Experimental Setup

Datasets. We used the FL [7] and NPS [18] datasets. The FL dataset contains 14 videos
with a total of 38,948 frames of grayscale images. These images were captured by airborne
vision and include indoor and outdoor scenes. The resolution is 640 × 480 or 752 × 480,
and the target size ranges from 9 × 9 to 259 × 197, with an average size of 25.5 × 16.4.
The NPS dataset contains 50 videos with a total of 70,250 frames of color images. These
images were also captured by airborne vision. The resolution is 1920 × 1280 or 1280 × 760,
and the target size ranges from 10 × 8 to 65 × 21, with an average size of 16.2 × 11.6. We
used the clean version annotations released by Ashraf [15], and the datasets were divided
as described in [17]. For the FL dataset, we used half of the frames in each video as the
training set and the other half as the test set. For the NPS dataset, we allocated videos with
video IDs #01–#36 as the training set, videos with video IDs #37–#40 as the validation set,
and videos with video IDs #41–#50 as the test set.

Implementation details and metrics. In order to facilitate comparison with existing
SOTA methods, we used YOLOv5l [35] as the basic framework, consistent with the latest
video-object detection [17] and small object detection [28] methods. The training and testing
configurations followed those outlined in [17]. Training only used frames with provided
annotations. For the evaluation, we evaluated every fourth frame. The experiments
were performed on an Intel Xeon W-2245 CPU and NVIDIA RTX 3090 24G GPU. In the
experiments, we inserted the proposed efficient adjacent frame fusion module into the P3
layer of YOLOv5, that is, after the second C3 module. The evaluation metrics included
average precision at IoU = 0.5 (AP), precision (P), recall (R), F1-score (F1), parameters
(Param.), Giga Floating-point Operations Per Second (GFLOPs), and frames per second
(FPS) to highlight the efficiency of the proposed mechanism.

4.2. Comparison with State of the Art

We compared our method with state-of-the-art methods on the FL and NPS datasets.
All compared methods were implemented using their official code or MMdetection. As
shown in Table 1, performance-wise, our method outperformed the other methods by 0.6%
in terms of the AP metric on the FL dataset. Additionally, when using only two frames of
information, our method achieved the same AP value as the Transvisdrone method. The
reason why the AP metric achieved by our method was not as good as that of Transvisdrone
(f = 5) on the NPS dataset is that the algorithms use different amounts of information.
Transvisdrone (f = 5) uses information from four adjacent frames, whereas our method
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only uses information from one adjacent frame. Moreover, the FL and NPS datasets are
significantly different. Table 1 shows that the FL dataset is more challenging to learn
compared to the NPS dataset, which suggests that our method may perform better on
challenging datasets. In terms of throughput, which was measured in frames per second
on the RTX3090 24G, the proposed method outperformed the state-of-the-art methods,
demonstrating the great advantage of our algorithm. Specifically, our approach was
1.5 times faster than the other methods. In summary, it can be concluded that the advantages
of our method are evident in terms of both accuracy and speed.

Table 1. Comparison of different methods.

Method AP-FL AP-NPS FPS

FCOS [46] 62.4 83.7 28
Mask-RCNN [47] 68.9 89.5 29
YOLOv5-tph [28] 67.2 92.5 27
Dogfight [15] 72.0 89.1 2
Transvisdrone (f = 2) [17] 71.7 94.0 30
Transvisdrone (f = 5) [17] 72.6 94.9 30
Ours 73.2 94.0 45

The optimal results for each metric are shown in bold in the table. All tables below do the same.

4.3. Ablation Experiments and Analysis

In order to verify the efficiency of the proposed module, we conducted ablation
experiments on the FL dataset.

Ablation study of frame resolution. Using different resolution inputs allows for a
trade-off between performance and throughput. We used four different resolutions (1280,
800, 640, and 480) to compare the performance of the proposed method. The baseline
(YOLOv5l) was also used to compare the advantages of the proposed method. Table 2
shows that our method achieved a 4.7% higher AP compared to the baseline. However,
the number of parameters only increased by 0.07 M, the computation only increased by
3.3 GFLOPs, and the speed was slower than the baseline by 6 FPS. These results indicate that
the computational load introduced by our mechanism was acceptable. When comparing
the first and third rows in the table, it can be observed that our method achieved the same
AP value as the baseline but with a 75% reduction in computation and more than twice the
speed of the baseline. Similarly, when comparing the fourth and fifth rows, it can be seen
that the FPS was twice as fast even with a reduction of only 0.3% in the AP.

Table 2. Ablation study of frame resolution.

Method Resolution AP P R F1 Param. (M) GFLOPs FPS

Baseline 1280 68.5 73.5 66.6 69.9 46.10 430.6 51

Ours

480 67.8 66.5 68.3 67.4 46.17 61.0 133
640 68.5 69.5 67.6 68.5 46.17 108.5 113
800 72.9 73.4 71.0 72.2 46.17 169.5 90

1280 73.2 73.5 72.3 72.9 46.17 433.9 45

Effect of different modules. We explored the influence of different modules on the
480-resolution experiment, as shown in Table 3. It can be seen that the weighted addition
of values calculated through local similarity yielded better results compared to direct
addition. Additionally, it can be seen that both the feature alignment fusion module and
the background subtraction module improved the performance of the model with only a
small increase in computation. Therefore, it can be concluded that it is feasible to use local
similarity calculation to align features and extract the background.
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Table 3. Ablation study of different modules. Align and weighted add, subtract, and both refer to
the feature alignment fusion module, background subtraction module, and efficient adjacent frame
fusion mechanism, respectively.

Method AP P R F1 Param.
(M) GFLOPs FPS

Baseline 59.5 64.9 62.0 63.4 46.10 60.5 147
Align and directly add 63.0 65.6 61.7 63.6 46.17 61.0 139
Align and weighted add 65.0 65.3 64.8 65.0 46.17 61.0 137
Subtraction 61.7 64.0 57.1 60.3 46.17 61.0 138
Both 67.8 66.5 68.3 67.4 46.17 61.0 133

Effect of insertion position. In the previous experiment, we inserted the proposed
mechanism into the P3 layer of YOLOv5l, that is, after the second C3 module. We also
compared the effects of different layers within the network, as shown in Table 4. P4 refers
to inserting the mechanism after the third C3 module, and P5 refers to inserting it after the
fourth C3 module. It can be seen that the insertion of the mechanism at P3 worked the best.

Table 4. Results of the mechanism at different insertion positions.

Method AP P R F1 Param.
(M) GFLOPs FPS

P3 67.8 66.5 68.3 67.4 46.17 61.0 133
P4 58.9 66.7 58.6 62.4 46.37 61.0 132
P5 61.4 67.4 63.9 65.6 46.37 61.0 131

Effect of neighborhood size. We investigated the influence of different neighborhood
sizes K on the generation of the similarity volume, as shown in Table 5. The experimental
results indicate that a larger K does not necessarily lead to better performance. This also
verifies two observations: Firstly, in airborne vision, targets do not move significantly in
adjacent frames. Secondly, the existence of downsampling layers in the neural network
reduces the size of the image, resulting in small movement of targets in the feature map.

Table 5. Results of the mechanism with different neighborhood sizes.

Method AP P R F1 Param.
(M) GFLOPs FPS

K = 3 67.8 66.5 68.3 67.4 46.17 61.0 133
K = 5 66.4 64.7 69.8 67.2 46.17 61.0 124

4.4. Visualization

We evaluated the changes in the feature heatmaps observed when using the pro-
posed mechanism in YOLOv5l, as shown in Figure 6. The first and second rows show the
original images with feature heatmaps before and after applying the mechanism, respec-
tively. In order to better show the effect of the mechanism, we show feature heatmaps
in the third and fourth rows, corresponding to before and after applying the mechanism,
respectively. The last row shows the detection results, where the red box indicates the
ground truth and the green box indicates the prediction box. Observing the images, it can
be seen that the activation value of the target center feature increases after applying the
mechanism, and the target features are enhanced. The comparison between the images
in the third and fourth rows in the fourth column shows that the left target features are
clearly enhanced.
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Figure 6. Visualization of feature heatmaps before and after applying the mechanism. The first
to the third columns display NPS dataset images, whereas the fourth to sixth columns display FL
dataset images (best viewed at 300% zoom).

5. Conclusions

In this paper, we propose an efficient adjacent frame fusion mechanism for airborne
visual scenes. The experimental results show that the proposed mechanism can significantly
improve the performance of the model by using only the features of an adjacent frame.
Compared to state-of-the-art methods, our proposed mechanism is faster and better with
fewer parameters. From this, we can conclude that it is not necessary to use a mechanism
with high computational complexity to obtain pixel motion in airborne visual scenes, as
local similarity calculation can achieve good results. Therefore, our mechanism, along with
the TAD algorithm, is effective. Additionally, using only one adjacent frame to improve
the detection performance of the key frame is more suitable for time-sensitive scenes in
drone-to-drone detection.

At the same time, this perspective also provides alternative approaches to airborne
visual object detection. To ensure accuracy and accelerate model operation, a small model
combining adjacent and key frames can be used instead of a large model focusing solely on
a single frame. Another option is to use low-resolution multi-frame images as inputs to
reduce computation while maintaining accuracy.

In subsequent research, we will conduct more experiments to explore the effect of the
mechanism at different levels in the network. Additionally, we will explore more efficient
fusion design when using multi-frame adjacent frames and how to mitigate any reduction
in the speed of detecting results for the last frame.
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