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Abstract: A proposed strategy for managing airspace and preventing illegal drones from compro-
mising security involves the use of autonomous drones equipped with three key functionalities.
Firstly, the implementation of YOLO-v5 technology allows for the identification of illegal drones and
the establishment of a visual-servo system to determine their relative position to the autonomous
drone. Secondly, an extended Kalman filter algorithm predicts the flight trajectory of illegal drones,
enabling the autonomous drone to compensate in advance and significantly enhance the capture
success rate. Lastly, to ensure system robustness and suppress interference from illegal drones, an
adaptive fast nonsingular terminal sliding mode technique is employed. This technique achieves
finite time convergence of the system state and utilizes delay estimation technology for the real-time
compensation of unknown disturbances. The stability of the closed-loop system is confirmed through
Lyapunov theory, and a model-based hardware-in-the-loop simulation strategy is adopted to stream-
line system development and improve efficiency. Experimental results demonstrate that the designed
autonomous drone accurately predicts the trajectory of illegal drones, effectively captures them using
a robotic arm, and maintains stable flight throughout the process.

Keywords: drones; capture; vision-based servoing; trajectory prediction; fast nonsingular terminal
sliding mode

1. Introduction

Rotor drones [1], known for their vertical takeoff and landing capabilities, excep-
tional stability during hovering, agile flight maneuvers, and ease of control, have found
widespread applications in aerial photography, mapping, logistics, and search and rescue
operations [2]. However, the affordability and accessibility of rotor drones have led to a
proliferation of illegal usage driven by curiosity, invasion of privacy, commercial interests,
or political motives [3]. Illegal drones pose a grave threat by infringing upon personal
privacy and disrupting social order. Existing measures for managing airspace primarily
rely on radio frequency jammers and similar devices to interfere with and neutralize illegal
drones [4]. Nevertheless, the effectiveness of radio frequency jammers is limited due to
their shorter range and inability to detect autonomous drones, resulting in decreased effi-
ciency in congested radio frequency areas [5]. Moreover, using radio frequency jammers
in densely populated regions is unsuitable as it may endanger ground personnel when
the illegal drones plummet to the ground [6]. Therefore, the most viable approach to
combatting illegal drones lies in autonomously identifying, tracking, and capturing them,
while ensuring a stable flight state and transporting them to secure zones. Considering the
high mobility characteristic of illegal drones [7] and maintaining stable flight conditions
during the identification, tracking, and capture process poses a formidable challenge.

Drones 2024, 8, 127. https://doi.org/10.3390/drones8040127 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8040127
https://doi.org/10.3390/drones8040127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-3665-4797
https://orcid.org/0000-0003-2046-5676
https://doi.org/10.3390/drones8040127
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8040127?type=check_update&version=3


Drones 2024, 8, 127 2 of 17

In recent years, there has been a widespread application of intelligent perception
components such as cameras [8], millimeter-wave radar [9], and LIDAR [10] in mobile
robots. By incorporating cameras with deep learning-based object detection algorithms
like YOLO (You Only Look Once) [11], SSD (Single Shot MultiBox Detector) [12], and
RetinaNet [13], these robots have demonstrated exceptional recognition capabilities for
shapes and colors, enabling the accurate tracking of illegal unmanned aerial vehicles
(drones). Cameras, with their lightweight and compact design, do not compromise the
payload capacity of autonomous drones [14]. When compared to millimeter-wave radar
and LIDAR, cameras are the most suitable choice for identifying illegal drones.

Visual servoing applies visual sensors to acquire real-time image information and uti-
lizes these data to accomplish objectives such as target tracking, localization and navigation,
posture control, and feedback control [15]. This technology enables the precise positioning,
path planning, posture adjustment, and autonomous control of robots [16]. Visual servoing
encompasses Position-based Visual Servoing (PBVS) and Image-based Visual Servoing
(IBVS) [17]. PBVS involves establishing a mapping relationship between the autonomous
drone and the target drone in relation to the inertial coordinate system [18], requiring GPS
information. However, commercial GPS information has a positioning error of up to 1 m,
which is larger than the size of the target drones. On the other hand, IBVS directly defines
image plane coordinates using image features, rather than task space [19]. Its fundamental
principle involves calculating control variables from the error signal and converting them
into the motion space of the autonomous drone. By employing the obtained image error for
closed-loop feedback control, the autonomous drone can move towards the target drone
and accomplish the tracking process.

Considering the maneuverability of illegal drones, if the position of the illegal drone
in the next moment can be predicted in advance during the tracking process, it would be
beneficial for the trajectory planning [20] of the autonomous drone, allowing it to reach
the capture position earlier and improve capture efficiency. Currently, trajectory prediction
methods mainly include interpolation methods, linear regression, filtering methods, dy-
namic model methods, and machine learning methods [21]. The position signal of the illegal
drone obtained using computer vision techniques contains noise [22]. Interpolation meth-
ods are sensitive to noisy data or outliers, resulting in prediction deviations. In addition,
interpolation methods are usually based on linear or polynomial interpolation principles,
making it difficult to reflect complex nonlinear relationships. Linear regression models have
a trade-off between bias and variance. When the model complexity is insufficient, underfit-
ting may occur, meaning the model fails to fit the data well. On the other hand, when the
model complexity is too high, overfitting may occur, whereby the model performs well on
the training data but poorly on new data. Dynamic model methods and machine learning
methods both involve solving complex mathematical optimization problems, especially
for nonlinear and non-convex problems, which can be time-consuming. Filtering methods
mainly include Kalman filtering [23], particle filtering, etc. Among them, the Extended
Kalman Filter (EKF) algorithm [24], which is an extension of the KF algorithm, can be used
for nonlinear models, and is highly acclaimed for its low computational complexity and
fewer computational resource requirements. It provides a feasible solution for real-time
and efficient state estimation and trajectory prediction.

Configuring an automatically triggered robotic arm beneath the autonomous drone,
which closes and grasps the unauthorized drone upon catching up with it, is crucial.
However, during this process, the autonomous drone is susceptible to strong interference,
which can potentially lead to a crash. Enhancing the robustness of the system is vital
to mitigate the risk of a crash. The real-time estimation of external disturbances and
compensation for unknown disturbances are key challenges in achieving stable flight
for autonomous drones. Time Delay Estimation Control (TDC) is a nonlinear control
strategy that effectively addresses unknown disturbances in dynamic control problems
with complex nonlinear effects [25]. TDC utilizes the previous state of the system to estimate
the current collective dynamics. It offers a concise and efficient model-free control strategy.
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TDC is suitable for handling continuous and slow-varying unknown disturbances [26].
However, when impact signals exist within the system, the control effectiveness of TDC
can be weakened. Therefore, combining TDC with other robust control algorithms can
compensate for estimation errors and enhance the robustness of the control system.

Sliding mode control is a robust, fast-response, and simple implementation non-
linear control strategy [27]. It suppresses system parameter disturbances and external
disturbances by introducing sliding manifolds and quickly responds to changes in system
states [28]. With advances in sliding mode control theory [29], Fast Non-Singular Terminal
Sliding Mode Control (FNTSM) has emerged in recent years [30]. It achieves the finite-time
convergence of system states and improves control robustness. Therefore, for a class of un-
deractuated drone systems containing time-varying uncertain nonlinearities, unknown, and
impulsive disturbances, the complex external disturbances are generalized as an aggregated
unknown term. Based on Terminal Sliding Mode Control (TSMC), FNTSM is introduced to
construct a composite controller. The traditional PD-type sliding manifold is upgraded to a
PID-type sliding manifold, which obtains faster transient response and smaller steady-state
error through the integral term [31]. Furthermore, to avoid the drawback of fixed high gain
coefficients that may lead to system oscillations and trigger high-frequency unmodeled
terms, a parameter adaptive updating mechanism is introduced into the PID-type sliding
manifold to achieve the adaptive tuning of control parameters. The derivative of the control
gain is proportional to the sliding manifold, which is beneficial for suppressing the adverse
effects of noise. Without changing the structure of the sliding manifold, the increase in gain
automatically adjusts with the change of the sliding manifold and accelerates convergence
speed when the sliding variable deviates from the sliding manifold.

The contributions of this work can be further emphasized as follows: (1) In order
to suppress the interference of illegal drones on autonomous drones and maintain stable
flight, sliding mode control is introduced into Target Drone Control (TDC), forming a
new robust control strategy integrating adaptive PID-type sliding manifold, TDC, and
fast non-singular terminal sliding mode, which has strong robustness and characteristics
of model-free control. (2) In order to reach the capture position in advance and improve
capture efficiency, the EKF algorithm is integrated into IBVS to estimate the future position
of the target drone, providing feasible solutions for real-time and efficient state estimation
and trajectory prediction. The superiority of the proposed methods is verified through
counter drone capture experiments.

The remaining parts of this paper are organized as follows: Section 2 presents the
system design, including the modeling of the counter drone dynamics, IBVS method,
EKF trajectory prediction, and controller design. Section 3 presents hardware-in-the-loop
simulation and flight experiments. Section 4 concludes the paper.

2. System Design

The system diagram in Figure 1 depicts the remote communication between the
ground station and the counter drone, which is equipped with an onboard computer
featuring autonomous flight capabilities and intelligent perception using a camera to detect
the illegal drone. The proposed airspace management strategy incorporates three critical
technologies: IBVS, a trajectory prediction module based on the EKF, and a non-linear
robust controller.

The core idea of the counter capture strategy is to integrate IBVS and EKF algorithms to
estimate the future position of the illegal drone. The mechanical arm is then used to capture
the target at a specified velocity, ultimately bringing the illegal drone to a designated area.
Subsequently, key issues such as the dynamic modeling of the counter drone, IBVS, and
trajectory prediction will be discussed.
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Figure 1. Schematic diagram of the capture process of counter drone.

2.1. Counter Drone Dynamics Modeling

The dynamics model of the drone is utilized for designing robust controllers. The
counter drone is a quadcopter, which is a nonlinear, underactuated, and strongly coupled
dynamic system with four input control signals and six output states. As shown in Figure 2,
the counter drone is considered as a rigid body model, experiencing the lift generated by
four motors and its own weight, with three position coordinates and three attitude angles.
The figure depicts the world coordinate system oe − xeyeze denoted as {e} and the body
coordinate system ob − xbybzb denoted as {b}.
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Figure 2. Force diagram of counter drone.

The counter drone dynamics model consists of both position dynamics and attitude
dynamics models, with the position dynamics model encompassing horizontal and vertical
channel dynamics models [32].

The horizontal channel dynamics model is established based on the Newton–Euler
dynamics theory [33]:

..
pe

h = gRψθh − ηh (1)

where
..
pe

h =
[ ..

X
..
Y
]

represents the horizontal acceleration in the world coordinate system;
X and Y represent the positions in the xe and ye directions under the world coordinate
system, respectively;

.
X and

.
Y represent the speeds in the xe and ye directions in the world

coordinate system, respectively; Rψ =

[
sin ψ cos ψ
− cos ψ sin ψ

]
; θh = [ϕ θ]T; ψ represents the

yaw angle; ϕ represents the roll angle; θ represents the pitch angle; ηh represents the
horizontal disturbance.
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The dynamic model of the vertical channel is established as follows:

..
pe

z =
f
m

cos ϕ cos θ − g − l
.
pe

z
m

+∆P (2)

where f = f1 + f2 + f3 + f4 is the total thrust of the drone; pe
z = [Z],

.
pe

z = [
.
Z], and

..
pe

z = [
..
Z]

are the displacements, velocities, and accelerations in the z direction in the world coordinate
system, respectively; m is the total mass of the drone; g is the acceleration of gravity; l is
the drag coefficient; and ∆P is the mechanical hand dynamics term.

We define ηz as follows:

ηZ = f + l
.
pe

Z +

 0
0

mg

− f cos ϕ cos θ − ∆P × m (3)

where ηz can be considered as a lumped uncertainty term that includes counter drone
gravity, torque, manipulator dynamics, and external disturbances. Then the above formula
can be changed to:

m
..
pe

z = f − ηz (4)

The following content is the posture dynamics model

Ga + τ = J
.

ω
b
+ ωb × Jωb (5)

where τ =
[
τx τy τz

]T represents the torque of the propeller relative to the body axis;

J =

 Jxx
Jyy

Jzz

 denotes the rotational inertia about the three axes of the counter

drone; ωb =
[
ωb

x ωb
y ωb

z

]T
= [p q r]T corresponds to the angular velocity in the body

coordinate system;
.

ω
b stands for the angular acceleration in the body coordinate system;

and Ga =
[
Gaϕ Gaθ Gaψ

]T signifies the gyroscopic torque experienced by the drone.Gaϕ

Gaθ

Gaψ

 =

 JRPq(ω1 − ω2 − ω3 + ω4)
JRPq(−ω1 + ω2 − ω3 + ω4)

0

. (6)

Based on the small perturbation assumption, we obtain

.
p = 1

Ixx

[
τx + qr(Iyy − Izz)− JRPqΩ

]
.
q = 1

Iyy

[
τy + qr(Izz − Ixx)− JRPqΩ

]
.
r = 1

Izz
[τz + qr(Izz − Ixx)]

. (7)

where Ω = ω1 − ω2 − ω3 + ω4.

2.2. Image-Based Visual Servoing Method

During the theoretical analysis phase, two fundamental assumptions are provided.

Assumption 1: The relative position between the counter drone’s body coordinate system and the
camera coordinate system remains constant.

Rotation matrix

Rb
c =

0 0 1
1 0 0
0 1 0

. (8)
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Assumption 2: The counter drone can record in real time the center coordinates p(xi, yi)of the
illegal drone, which are acquired via machine vision methodologies, such as YOLO-v5 [34], and can
be used to predict its future trajectory center coordinates p̂(x̂i, ŷi).

The core idea of IBVS is to achieve the coincidence of the future trajectory center
coordinates p̂(x̂i, ŷi) of the illegal drone and the center coordinates of the manipulator
claw in the pixel coordinate system {i} [35]. The relative positional relationships between
the camera, camera plane, and the illegal drone are illustrated in Figure 3. In the figure,
oc − xcyczc represents the camera coordinate system, and oi − un represents the pixel
coordinate system.
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The counter drone is equipped with a forward pinhole camera fixed on its lower
part, denoted as coordinate system C = {Xc, Yc, Zc}. [vu, vn]T and λ represent the image
plane axis and the camera focal length, respectively. The quadcopter drone is an under-
actuated system. To decouple the dynamics of the quadcopter, a virtual camera frame
Ξ = {Xv, Yv, Zv} is introduced. The origin of Ξ(Oc) coincides with C, and the Xv axis is
always parallel to the Xe axis. Additionally, the definition of the virtual image plane is
similar to the definition of the image plane in C.

Assuming the illegal drone is a stationary target point P, with the world coordinate and
the virtual camera frame, Ξ(Oc) is ep = {ex, ey, ez}T and vp = {vx, vy, vz}T , respectively.
Their transformation equations can be expressed as

vp = RT
ϕ(

ep − Ov) (9)

where

Rϕ =

1 0 0
0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ

. (10)

Differentiating vp with respect to time

v .
p =

.
R

T
ϕ(

ep − Ov)− RT
ϕ

.
Ov

= −sk
( .

ϕex

)
RT

ϕ(
ep − Ov)− RT

ϕ

.
Ov

= −sk
( .

ϕex

)
vp − v

. (11)

where the linear velocities of the illegal drone in the framesworld coordinate and virtual

camera frame Ξ(Oc) are denoted as
.

Ov =
[

evx, evy, evz

]T
and v =

[
vvx, vvy, vvz

]T
,

respectively, with the unit vector ex = [1, 0, 0]T .
Let the coordinates of the illegal drone P in the virtual image plane be labeled as P.

The perspective projection equation in camera frame Ξ(Oc) is then expressed as:

p =

[vu
vn

]
=

λ
vx

[vy
vz

]
(12)
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Substituting the above equation into Equation (11), the visual servoing equation is
obtained, and the expression for the illegal drone P in the virtual image plane is:

.
p = Jv

.
rv (13)

where
Jv =

[vu/vx −λ/vx 0 −vn
vn/vx 0 −λ/vx vu

]
(14)

Through the Jacobian matrix Jv in Equation (13), it is evident that
.
rv =

(
vT ,

.
ϕ
)T

is not
related to the pitch and yaw angles of the counter drone. To maintain the stability of the
counter drone’s flight, the desired pitch and yaw angles are set to zero.

Equation (13) expresses how the illegal drone moves in the image plane when the
camera is in motion. For visual servoing, the focus is on its inverse problem—given the
motion of the illegal drone in the camera plane, we determine the camera’s motion.

We then transform Equation (13) into:
.
rv = J−1

v
.
p (15)

.
p = λp(pd − p) (16)

The first term of
.
rv =

(
vT ,

.
ϕ
)T

corresponds to the velocity of the drone in the z-axis
direction, denoted as B. Under the assumption of small perturbation linearization, the
second term represents the angular rate of the desired roll angle. With this, the dynamic
deconstruction of the counter drone in visual servoing is concluded.

2.3. Extended Kalman Filter Trajectory Prediction

To reach the interception position in advance, the EKF algorithm is employed to predict
the position of the illegal drone in pixel coordinates. The EKF algorithm utilizes Taylor
series expansion to linearize the treatment of nonlinear systems, followed by recursive
computation and estimation. Its nonlinear expression is given by{

xk = f(x̂k−1, uk−1, ϖk−1) + A(xk − x̂k−1) + ϖkϖk−1
zk = h(x̃k, vk) + H(xk − x̃k) + Vvk

. (17)

In the equation, f(x) and h(x) represent the nonlinear mapping relationship; k is
the time step; xk is the state vector; uk is the control vector; ϖk is the process noise; zk
is the measurement vector; vk is the measurement noise; k−1 corresponds to the pre-
vious time step; p(ϖk−1) ∼ N(0, Q); p(vk−1) ∼ N(0, R); p(ϖkϖk−1) ∼ N(0, ϖkQϖT

k );
p(Vvk−1) ∼ N(0, VQVT); Q = E

[
ϖk−1 ϖk−1

T
]

is the observation error covariance matrix;

R = E
[
vk vk

T] is the measurement error covariance matrix.
The linearization process is as follows:

A = ∂ f
∂x

∣∣∣
x̂k−1,uk−1

ϖ = ∂ f
∂ϖ

∣∣∣
λ̂k−1,uk−1

H = ∂h
∂x

∣∣∣
x̃k

V = ∂h
∂v

∣∣∣
x̃k

(18)

The linearized equation for Formula (11) is as follows:{
xk = x̃k + A(xk − x̂k−1) + ϖkϖk−1z
zk = z̃k + H(xk − x̃k) + Vvk

(19)

The prediction process comprises a prediction equation and a correction equation.
Prediction Equation:
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{
x̂−K = f(x̃k−1, uk−1, 0)
P−

K = APk−1AT + ϖkQϖT
k

(20)

Correction Equation: 
Kk =

P−
k HT

HP−
k HT+VRVT

x̂−k = x̂−k + Kk
(
Zk − h(x̂−k , 0)

)
Pk = (I − KkH)P−

k

. (21)

where P−
k = E

[
(xk − x̂−k )(xk − x̂−k )

T
]
; Zk represents the true value of the visual servoing

feedback; x̂−k is the a priori estimate; I is the identity matrix.
Directly predicting the coordinates in (x,y), we can define:

f (x, y) =
[

x2 + xy + 2
y2 + xy + 2

]
. (22)

obtaining
A =

[
2x + y x

y 2y + x

]
. (23)

We then define
h(L, θ) =

[√
x2 + y2

arctan y
x

]
(24)

and obtain

H =


x√

x2+y2

y√
x2+y2

− y

x2
(

y2

x2 +1
) 1

x2
(

y2

x2 +1
)
. (25)

2.4. Controller Design

The goal of controller design is to endow the counter drone with high maneuverability
and precision during the interception of the illegal drone, suppress disturbances caused by
the illegal drone to the system, and achieve strong robustness.

Following the core idea of IBVS, the tracking error is defined as:{
ex = xr − x̂i
ey = yr − ŷi

(26)

In the equation, ex and ey represent the tracking errors in the horizontal and vertical
directions between the predicted center and the visual servoing center, respectively. (xr, yr)
denotes the coordinates of the visual servoing target point, chosen here as the center
of the manipulator claw in the camera plane. p̂(x̂i, ŷi) represents the coordinates of the
predicted center.

The drone’s control process is illustrated in Figure 4. To ensure the precise and rapid
tracking of the target center in visual servoing, a controller is designed. We take the vertical
channel as an example.

The following sliding mode surface [20] is chosen

s =
.
sy + k1sy + k2sig(sy)

p. (27)

where k1, k2 > 0; 0 < p < 1.
To eliminate oscillations and achieve finite-time convergence, the FTSM reaching law

is employed.
sy = ey + βsig(

.
ey)

γ (28)

where sig(y)γ = |y|γsign(y), sign() is the sign function; β > 0; 1 < γ < 2.
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The system’s stabilization time is

ts =
β
− 1

γ

1 − 1
γ

∣∣ey (0)|1−
1
γ (29)

Since
..
ey =

..
yr −

..
ŷi, considering Equation (4), the control law is designed as follows:

uz = mvz + η̂z (30)

where v =
..
yr + β−1γ−1sig(

.
ey)

2−γ
+ k1sy + k2sig(

.
sy)

p.
Due to the inability to establish an accurate mathematical model for the impact dis-

turbance at the moment of interception, the TDE technique is employed for online esti-
mation and real-time compensation of unknown disturbances. This approach enables
the acquisition of the nominal model of the controlled object, thereby simplifying the
controller structure.

Based on the vertical channel’s dynamic model (4), in conjunction with Equation (27),
the TDE technique is utilized to obtain η̂z:

η̂z = ηz(t−k) = uz(t−k) − m
..
yr(t−k). (31)

where t represents the current time, and (t − k) corresponds to the current time delayed by
k time. The complete expression of the control law is:

uz = m(
..
yr + β−1γ−1sig(ey)

2−γ + k1sy + k2sig(sy)
p)︸ ︷︷ ︸

FNTSM

+

u(t−k) − m
..
yr(t−k)︸ ︷︷ ︸

TDE

. (32)

Similarly, the control law’s expression for the horizontal channel is

uh = m
( ..

xr + β−1γ−1sig(ex)
2−γ + k1sx + k2sig(sx)

p
)

︸ ︷︷ ︸
FMTSM

+

u(t−k) − m
..
xr(t − k)︸ ︷︷ ︸

TDE

. (33)

Taking the vertical channel as an example to demonstrate the stability of the proposed
controller, the Lyapunov design is formulated as

V =
1
2

s2
y. (34)
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The derivative with respect to time is
.

V = sy
.
sy. (35)

Taking the derivative of Equation (28) and substituting it into Equation (35), we get

V = sy

( .
ey + βγ| .

ey
∣∣γ−1..

ey

)
. (36)

By simultaneously solving Equations (30) and (31), we obtain
..
ey + β−1γ−1sig(

.
ey)

2−γ
+ k1sy + k2sig(sy)

p = σ. (37)

For the estimation error σ of TDE, there always exists a positive number φ such that σ
is bounded, i.e., |σ| ≤ φ.

Substituting Equation (37) into Equation (36), we get:

.
V = −syβγ

∣∣ey
∣∣γ−1

[
−σ + k1sy + k2sig(s y

)p]
. (38)

The above equation is further discussed in the two cases

.
V = −syβγ

∣∣ .
ey
∣∣γ−1

[(
k1 −

σ

sy

)
sy + k2sig

(
sy
)p
]

, (39)

and
.

V = −syβγ
∣∣ .
ey
∣∣γ−1

[
k1sy +

(
k2

σ

sig
(
sy
)p

)
sig
(
sy
)p
]

(40)

For equation (39), when
∣∣sy
∣∣ > k−1

1 |σ|,
.

V < 0, the sliding surface can converge to the
region in finite time ∣∣sy

∣∣ ≤ ε1. (41)

where ε1 ≜ k−1
1 φ.

For Equation (40), when
∣∣sy
∣∣p > k−1

2 |σ|,
.

V < 0, the sliding surface can converge to the
region in finite time ∣∣sy

∣∣ ≤ ε2. (42)

where ε2 ≜ p
√
(k−1

2 ϕ) .
Combining Equations (41) and (42), the sliding surface converges in finite time to∣∣sy

∣∣ ≤ εmin. (43)

where εmin ≜ min(ε1, ε2).

3. Simulation and Experimentation

To validate the effectiveness of the proposed control strategy, Hardware in the Loop
(HITL) [36] simulation experiments were conducted for algorithm verification. The HITL
experiment involved the Robot Operating System (ROS) [37], Gazebo11 3D dynamic
simulation software [38], and the Pixhawk 4 (PX 4) flight controller [39]. A repeatable,
risk-free, and realistic simulation environment was established, incorporating physics
characteristics such as collisions and aerodynamics to enhance development quality and
efficiency. Subsequently, real flight experiments were conducted to optimize parameters
during actual flights, further confirming the effectiveness of the proposed control strategy.

3.1. Hardware in the Loop Experiment

To simulate the states of actual flight, multiple states were set in the HITL simulation
experiment, including environment initialization, take-off direction, target search, and
tracking. Firstly, relevant scenes were created in the Gazebo 3D dynamic simulation
environment, configured with capture objects, and simulated using an RGB camera to
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emulate a CCD industrial camera. Leveraging the distributed communication of the ROS
system, target information was acquired, and the drone state was dynamically adjusted
according to the proposed control strategy, reflecting real-time changes in the simulation
scene. Finally, the PX 4 was used to control the drone to execute target capture tasks, as
depicted in Figure 5 in the simulation scenario.
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To reduce the requirements placed on the graphics card and enhance simulation
efficiency, a red ball is used as a substitute for the illegal unmanned aerial vehicle. In the
experiment, the red ball undergoes three-dimensional random movement with speeds
set at 1 m/s, 5 m/s, and 10 m/s. The counter drone employs the same robust control
strategy for tracking and capture. In the absence of EKF prediction, the tracking error in
pixel coordinates is shown in Figure 6. When the tracking error is less than 20 pixels, it is
considered as successfully tracking the target. In the HITL simulation experiments, the
red ball moves at the aforementioned speeds, and the probabilities of the counter drone
successfully tracking the target are 100%, 90%, and 12%, respectively. When EKF prediction
is applied, the tracking error in pixel coordinates is shown in Figure 7, and the probabilities
of the counter drone successfully tracking the target are 100%, 98%, and 80%, respectively.
A comparison between Figures 6 and 7 indicates that the use of EKF prediction improves
the capture success rate and shortens the capture time. By predicting the future position of
the target in advance, the drone can adjust its own state earlier for better target capture.
When the red ball moves at a speed of 10 m/s, the counter drone approaches its thrust
limit to catch up with the ball, and the pitch angle approaches 70◦ during acceleration. The
HITL simulation results demonstrate that using EKF prediction allows for better target
capture. As the target speed increases, both the drone’s flight speed and pitch angle show
an increasing trend. Lower speeds result in a more stable capture process. The HITL
simulation experiments also validate the robustness of the FNTSM-TDE control strategy.

Through HITL simulation experiments, the capture strategy is adjusted and optimized
to more accurately capture the illegal unmanned aerial vehicle. In the visual servo system,
controllers are designed by fully utilizing visual information, and the EKF algorithm is
employed to predict the future trajectory of the illegal drone. Using the proposed controller
as the underlying flight control strategy, the predicted trajectory is combined with the
drone’s state, enabling the counter drone to obtain a feedforward control effect and enhance
the capture success rate.
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3.2. Flight Experiment

The counter drone comprises the drone mainframe and a manipulator suspended
underneath. The top of the counter drone is equipped with the MID-360 laser radar,
utilizing Simultaneous Localization and Mapping (SLAM) technology to create a high-
resolution environmental map. By integrating SLAM technology and Inertial Measurement
Unit (IMU) data, the counter drone obtains its own position, velocity, and acceleration.
The system also includes an industrial camera and an on-board computer. The on-board
computer is equipped with an Intel Core i7-1165G7 processor with 4 cores and 8 threads,
used for running SLAM programs, recognizing the illegal drone, and running the EKF
trajectory prediction program. The FNTSM-TDE control strategy operates within the PX 4,
controlling the drone state and triggering manipulator actions.

The hardware composition schematic is shown in Figure 8. To meet the demands of
rapid capture, the manipulator employs a passive triggering mechanism, utilizing elastic
elements to store potential energy. When in contact with the illegal drone, the potential
energy is converted into kinetic energy, causing the manipulator claws to close and capture
the illegal drones. This design avoids the need for electronic devices such as sensors and
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drivers, and the weight of the manipulator is only 50 g, reducing the complexity and weight
of the counter system.
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Figure 8. Counter drone system hardware structure diagram.

In the actual capture experiment, YOLOv5 technology was employed for target detec-
tion. To enhance tracking performance, a dataset comprising 6000 relevant drone images
was collected and created. After 2500 iterations, the average Intersection over Union (IOU)
on the test set reached 80%. To ensure accuracy and real-time capability, the video stream
captured by the camera had a resolution of 1920 × 1080 pixels and a frame rate of 60 FPS.
The overall system workflow is illustrated in Figure 9.
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Figure 9. Schematic diagram of the overall system structure.

The flight experiment code is identical to the HITL, with the main difference lying in
the source of sensor data. In the flight experiment, sensor signals come from the real world,
whereas HITL receives sensor signals from the Gazebo 3D dynamic simulation software. In
the experiment, the drone initially operates in the position mode, moving to a specified
location. The counter drone possesses autonomous search capabilities, rotating around
the Z-axis of its body to locate the target and bring the illegal drone into the camera’s
field of view. Three capture experiments are conducted with the illegal drone flying at
speeds of 1 m/s, 2 m/s, and 4 m/s, respectively. At the beginning of each experiment,
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the two drones are 8 m apart. Once the counter drone identifies the illegal drone, it
autonomously predicts the future trajectory, adjusts its own state in real time, and tracks
and captures the target. The capture process from the camera’s perspective is illustrated in
Figure 10, where the YOLOv5 algorithm interprets the position of the illegal drone in the
camera plane, and the EKF estimates its future trajectory. The four sub images represent
the images and recognition effects captured by the drone at different positions and attitude
angles, respectively. The pixel error curve during the capture process is shown in Figure 11.
Due to the EKF algorithm predicting the trajectory of the illegal drone in advance, the
tracking error rapidly converges to zero. In experiments without the EKF algorithm, the
convergence time of the tracking error increased by a factor of 2.
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The eight subplots in Figure 12 depict capture scenes of the counter drone, demonstrat-
ing its autonomous tracking of the illegal drone and the automatic triggering and capture of
the illegal drone by the manipulator. Once the manipulator makes contact with the illegal
drone, the elastic elements are automatically triggered, and the claws of the manipulator
capture the illegal drone.
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4. Conclusions

This paper presents an airspace management strategy based on IBVS, utilizing a
counter drone equipped with a robotic arm to capture illegal drones. The strategy achieves
triple functionality: utilizing a neural network model based on the YOLO-v5 architecture
for the visual recognition of an illegal drone, employing EKF for the advanced prediction
of illegal drone flight trajectories to enhance capture success rates, utilizing a lightweight
passive trigger mechanical hand weighing only 50 g for drone capture to reduce the weight
and complexity of the capture system, and proposing the FNTSM-TDE control strategy to
suppress the interference of rogue drones with counter UAVs during capture moments.
This strategy features advantages of model-free control and finite-time convergence. The
effectiveness of the proposed control strategy is validated through HITL simulation ex-
periments and real flight tests. The EKF algorithm is employed to predict rogue drone
trajectories in advance, resulting in the accelerated convergence of tracking errors to zero.
Compared to capture strategies without EKF configuration, the convergence time is halved,
thus enhancing capture success rates. Future efforts will focus on conducting capture
experiments in more diverse scenarios to further enhance the robustness and practicality of
the system.

5. Patents

The key technology disclosed in the paper has been applied for an invention patent
in China, named an unpowered adaptive fast linkage manipulator and a drone capture
device, patent No. 202311365289.2.
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