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Abstract: In this study, the thrust performance of a staggered rotor system in-ground effect (IGE)
and out-of-ground effect (OGE) while considering the interaction on wake characteristics were
investigated experimentally. A thorough comprehension of their performance holds significant
importance for trajectory planning, aircraft design, landing safety, and energy-efficient landings.
The complex interactions within staggered rotor systems and the impact of ground effects make
rotor distance and ground interactions critical factors influencing near-ground flight performance.
The study investigated the influence and enhancements of rotor thrust performance through an
examination of rotor speed, lateral distance, and altitude. Experimental tests were conducted on two
small-scale rotor models to assess the effects of these parameters. These experiments compared the
performance of staggered rotor systems with isolated rotors, analyzing the competition mechanism
between the thrust loss caused by interference and the thrust gain of rotors IGE. Furthermore,
emphasis was placed on analyzing the thrust gain issues exhibited by staggered rotor systems under
the condition of H = 2R. Additionally, the analysis was focused on identifying prominent relative
positions for thrust performance and parameters for improving thrust performance in ground effects
in staggered rotor systems.

Keywords: aerodynamic interference; ground effect; drones; staggered rotor

1. Introduction

In recent years, the swift advancement of distributed electric propulsion technology
and advancements in flight control have propelled the growth of eVTOLs equipped with
multi-rotor systems, thereby opening new avenues for Urban Air Mobility (UAM) [1–5].
Moreover, UAM aircraft face the challenge of navigating complex urban traffic environ-
ments and undergoing frequent takeoff and landing processes [6,7]. The presence of ground
effect amplifies the risk of accidents during low-altitude flight and the rotorcraft’s takeoff
and landing procedures [8]. Many new drone configurations cannot be evaluated for
ground effect intensity using traditional theories [9]. Thus, it is imperative to study the
effect of ground on the operation of new types of rotorcraft.

The primary parameter through which ground effect impacts rotorcraft is rotor
thrust, typically measured by the ratio of IGE to OGE rotor thrust. While extensive
research has been conducted on the single-rotor ground effect, including model estab-
lishment [10,11], computational fluid dynamics simulations [12–15], and experimental
flow visualization [16,17], which have validated the reliability of thrust ratio models [10],
it is important to note that existing studies have shown limitations in directly applying
single-rotor IGE models to multi-rotor aircraft [18,19]. This limitation presents challenges
for the control of multi-rotor aircraft during takeoff, landing, and low-altitude flight.

Drones 2024, 8, 118. https://doi.org/10.3390/drones8040118 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8040118
https://doi.org/10.3390/drones8040118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-5990-1039
https://doi.org/10.3390/drones8040118
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8040118?type=check_update&version=1


Drones 2024, 8, 118 2 of 18

Multi-rotor aircraft are subject to intensified ground effects due to rotor interactions.
Sanchez-Cuevas [19] enhanced the Cheeseman-Bennett model for the planar quadrotor
ground effect by integrating rotor interactions into the flight controller. Similarly, He [20]
proposed a singularity-free planar multi-rotor quasi-steady ground effect model, which,
based on experiments, considers blade geometry and rotor interactions. Both studies
observed heightened ground effects at equivalent distances from the ground.

Comprehending the principles of multi-rotor ground effects necessitates visualization
studies of the flow field. Yonezawa [21] conducted numerical studies on quadrotors of
varying configurations, revealing that reducing rotor distance fosters a more pronounced
outwash region between rotors, thus intensifying the ground effect. However, instances
of thrust loss in the multi-rotor ground effect have also been documented. Dekker [22]
conducted flow visualization studies on parallel rotor systems in ground effect, uncovering
that augmenting rotor distance engenders asymmetric backflow, causing fluctuation and
loss of rotor thrust. This phenomenon was further elucidated by Healy [23], who observed
that recirculation effects induce significant turbulence. Tanabe [24] employed numerical
simulations to illustrate the principle of power increase followed by a decrease in quadrotor
aircraft approaching the ground, attributed to recirculation effects. Otsuka [25] observed
thrust loss with increasing rotor distance in measurements of quadrotor systems, attributing
it to circulation flow effects.

Besides planar configurations, coaxial rotors [26,27] and staggered rotors [28,29] have
showcased remarkable performance. However, owing to the intricate rotor interactions
arising from rotor overlap, performance in the ground effect may vary. Experimental
studies by Silwal [30] on coaxial rotors suggest that rotor interactions and ground effect
are in competition, with individual rotor performance exhibiting non-monotonic variation
with altitude. Numerical simulations of the tandem rotor ground effect [31] observed
recirculating flow in the middle of the rotors. In visualization studies of scaled tandem
rotor systems in ground effect conducted by Ramasamy [32], it was observed that rotor
height above ground affects outflow velocities differently along the longitudinal and lateral
axes. Tan [33] conducted numerical simulations of tandem rotors, revealing radial outward
expansion in the overlap region of the rotors, with radial outward flow exhibiting greater
velocity peaks. Mehrabi [34] conducted experiments on non-overlapping tandem rotors
in the ground effect, showing the occurrence of fountain flow near the non-overlapping
tandem rotors. The interaction between the wake of tandem rotors and fountain flow
influences rotor performance.

Research on the ground effect of multi-rotors mainly focuses on planar rotors, coaxial
rotors, and tandem rotors. For the new configuration of staggered-rotor aircraft, the lateral
distance between the top rotor and the bottom rotor will have an important impact on the
effectiveness of ground effects. Previous research has mainly focused on the tandem rotor
CH-47 and its scaled model under fixed parameters, while careful consideration of multiple
factors such as ground height and lateral distance is of great significance for studying the
ground effects of staggered rotors.

The paper presents experiments on the thrust of staggered rotor systems IGE, aiming
to investigate the thrust of the staggered rotor and the impact of the ground on thrust
enhancement IGE. It particularly focuses on examining how height above ground and
lateral distance influence rotor systems, contributing to the assessment of the feasibil-
ity of utilizing staggered rotor configurations for eVTOL operations in UAM, especially
during near-ground flight and the takeoff and landing processes. Firstly, the paper pro-
vides a brief overview of the flow model of staggered rotor IGE, outlines the experimental
setup, and discusses the choice and configuration of experimental variables. Secondly,
in order to maintain experimental rigor, we validate the accuracy of the experimental
equipment and conduct an error analysis. Thirdly, the paper delves into a detailed dis-
cussion of the effects of three parameters, rotor speed, altitude above ground, and lateral
distance, on rotor thrust performance in ground effect and the enhancement of thrust per-
formance. Furthermore, the paper conducts a comparative analysis between isolated rotor



Drones 2024, 8, 118 3 of 18

systems and staggered rotor systems to elucidate the evolution of ground effect in staggered
rotor systems.

2. Methods
2.1. Experimental Setup and Instrumentation

Figure 1 describes the significant flow patterns in the staggered rotor system, which
operates IGE. In the top view, the top rotor rotates counterclockwise (ccw) around the rotor
axis, while the rotation direction of the bottom rotor is clockwise (cw). Owing to the spatial
asymmetry of the system, the complex flow near the ground lacks symmetry, resulting in
distinct performance characteristics of the staggered rotor IGE.
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(a) 

Figure 1. Ground surface flow diagram.

The experiment used a T-MOTOR 1855 propeller integrated with carbon fiber. A single
propeller consists of two blades, each having a radius of 9 inches (228.6 mm) and a pitch of
5.5 inches (139.7 mm). To normalize the connection between distance and rotor radius, h
is defined as h = H/R, where H is the distance from the center of the bottom rotor to the
ground and R is the rotor radius. From the actual design and safety considerations of the
staggered rotorcraft, the vertical distance of rotors is fixed at 0.3R; l is defined as l = L/R,
and the meaning of L is the lateral distance between the rotors. Figure 2 illustrates the
experimental instruments and definitions used in the experiment.
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2.2. Operating Conditions 

Figure 2. Experimental setup and the definitions. (a) 3D model diagram of experimental setup;
(b) Top view of staggered rotor; (c) Side view of staggered rotor.

Prior to the experiment's start, specialized equipment is used to detect the vibration of
the experimental equipment. The second-order natural frequency of the testbed is between
93 and 154 Hz, while the highest frequency of the rotor under all test conditions is 58.3 Hz.
According to the experimental results, the natural frequency of the experimental device
does not have an impact under these experimental conditions. As shown in Figure 3,
when receiving the throttle signal from the remote control, the electronic speed controller
(ESC) controls the motor rotation. Real time rotation angular velocity can be displayed
on the remote control. Meanwhile, the thrust can be measured by the load cell. The main
equipment for the experiment is shown in Table 1.
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Figure 3. The principle behind the experimental setup.

Table 1. Main equipment for testing.

Equipment Details

Propeller T-MOTOR 1855 (T-motor, Nanchang, China)

Motor JFRC U4114 Brushless DC motor (KV: 320 RPM/V) (RCmodel,
Yongzhou, Chnia)

Load cell ZNLBM-IIX (Sensitivity: 1.5 mV/V) (Shenghongchuang, Xi’an, China)

Electronic governor Master SPIN 66 Pro ESC (Provide angular velocity feedback) (JETI
model, Hong Kong, China)

Receiver JETI DUPLEX channel receiver (Signal reception) (JETI model, Hong
Kong, China)
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2.2. Operating Conditions

The unloaded rotor speed was referenced from previous staggered rotor UAVs [35,36],
but considering the decrease in rotor speed during the landing process, speeds commonly
ranging from 1000 to 3500 were selected. Under these conditions, the Reynolds number
at the blade tip is between 0.26 × 105–1.15 × 105, the blade tip velocity is between 24 and
84 m/s, the blade tip Mach number is between 0.05 and 0.25, and the lateral distances
are 0, 0.5, 1.0, 1.5, and 2.0, respectively. In the current study, ground height conditions
are considered at h = 0.5, 1.0, 1.5, and 2.0, with the bottom rotor height (h) extending
up to 3.5 above the ground. According to the theory proposed by Leishman [37] and
experimental results from Lokesh Silwal [30], it is believed that being 3R above the ground
can be considered an OGE condition. Tan J.F.’s research [33] indicates that the primary
influence of the ground on tandem rotors occurs near the rotors. At the extreme positions
in the experiment, the distances from the center of rotor rotation to the edge of the table
are 3.38 R and 4.38 R, respectively. Therefore, this experimental condition is considered
appropriate. Table 2 illustrates the operational conditions of the experiment.

Table 2. Design of experiments.

Variables Values

RPM 1000, 1500, 2000, 2500, 3000, 3500
l 0, 0.5, 1, 1.5, 2.0, 2.0
h 0.5, 1.0, 1.5, 2.0

2.3. Performance Metrics

An important parameter for assessing rotorcraft is the thrust in hover. The thrust
formula for a single-rotor OGE is as follows:

T =
1
2

ρπR2(ΩR)2CT (1)

- T represents the thrust,
- ρ represents the density of the air,
- A represents the rotor disk area,
- Ω represents the rotation speed,
- R represents the rotor radius.
- CT can be derived from Equation (1) and expressed as:

CT =
2T

ρA(ΩR)2 (2)

The ratio of rotor thrust IGE Tige to rotor thrust OGE Toge, denoted Tige/Toge, represents
the intensity of the ground effect. This ratio compares the thrust under IGE conditions
to the thrust under OGE conditions. It provides insight into how the ground affects the
rotor’s performance and helps assess the significance of the ground effect in different
operational scenarios.

3. Error Analysis and Validation

To demonstrate the credibility and measurement accuracy of the experimental results,
new experimental verifications were conducted. Tests were performed using 1 kg and
4 kg mass standard blocks, and after multiple measurements, the results were recorded as
1.003 kg and 4.004 kg, respectively. The maximum measurement deviation was found to be
0.3%, indicating that the measurement accuracy of the sensor aligns with the requirements
of the experiment. The measurement error of angular velocity is attributed to the motor’s
structure. Depending on the chosen motor, the systematic error is 4.26 RPM.
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The thrust coefficient (y) is calculated based on the rotational speed (x1) and thrust (x2).
According to the calculation method of uncertainty [38], the determination of uncertainty
is as follows:

u2
y =

(
∂y
∂x1

ux1

)2
+

(
∂y
∂x2

ux2

)2
+ · · ·+

(
∂y

∂xn
uxn

)2
(3)

Substitute the thrust coefficient:

∆C2
T =

(
1

ρA(ΩR)2 ∆T

)2

+

(
−2

ρAΩ3R2 ∆Ω
)2

=

(
CT
T

∆T
)2

+

(
−2CT

Ω
∆Ω
)2

(4)

∆CT
CT

=

√(
∆T
T

)2
+ 4
(

∆Ω
Ω

)2
(5)

According to calculations, the maximum measurement error of CT is 1.4%

4. Results and Analysis

Firstly, the thrust of the isolated rotor OGE and IGE was exhibited. Secondly, the
influences of rotor speed, distance above the ground, and lateral distance on the thrust IGE
were assessed, along with their impact on Tige/Toge. In the analysis, the isolated rotor system
was also introduced as a contrast to evaluate the performance of the staggered rotors.

4.1. Isolated Rotor Performance

For comparative experiments on the staggered rotor system under conditions with-
out interference between rotors, it’s essential to first conduct thrust experiments on an
isolated small-scaled rotor rotating at various speeds and heights above the ground.
This process involves comparing the experimental results with the model derived from
theoretical deductions [10] to establish a baseline understanding of the isolated rotor’s
performance characteristics.

The isolated rotor experiment was conducted in the absence of another rotor and its
supporting structure. Figure 4 illustrates the relationship between rotor thrust and rota-
tional speed at different heights. The thrust, at various distances from the ground, changes
with rotor speed and approximates a quadratic function. Notably, the thrust increases as
the altitude decreases. In Figure 5, the trend of CT calculated by the formula varies with
rotor speed. CT increases with an increase in rotor speed and decreases with altitude. This
observation aligns with the expected behavior of rotor systems IGE conditions.
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Measuring the strength of the ground effect is another critical parameter, represented
by Tige/Toge. According to Cheeseman and Bennett’s theoretical model [10],

Tige/Toge = 1/
[
1 − (R/4h)2

]
. It’s significant to observe that this model does not account

for rotor speed as a factor. In Figure 6, it is observed that changes in rotor speed have
minimal impact on the thrust ratio for the isolated rotor. In Figure 7, the curve’s error bars
represent the deviation measured at different speeds. The theoretical predicted model and
actual experimental results coincide when 1.0 ≤ h ≤ 2.0. However, at h = 0.5, experimental
values deviate significantly from theoretical predictions. This discrepancy is attributed to a
singularity in the model occurring at h = 0.25 and at h = 0.5, being close to the singularity
position, causing prediction failure. Considering the disappearance of the ground effect
for the isolated rotor, it is generally assumed that the ground effect disappears at h = 2.0,
which is consistent with the behavior of a single-rotor helicopter.
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Figure 7. Theoretical and experimental comparison.

4.2. Staggered Rotor System Performance

For a rotorcraft in the hovering state, the thrust of the rotor is a direct and significant
performance indicator. The newly configured staggered rotorcraft has shown a significant
improvement in thrust performance within limited spatial dimensions [29]. However,
similar to the periodic thrust fluctuations observed in coaxial dual-rotor systems during
operational states [39], a comparable scenario is evident in staggered rotors. When two
rotors intersect, the variation in rotor chord thickness during the intersection process
influences thrust changes. Additionally, airflow near the rotor induced by rotor attachment
vortices causes variations in certain regions, affecting rotor thrust. However, during
rotor interaction with ground effects, upwash and downwash of airflow are amplified or
weakened in different regions, leading to more complex flow patterns. Periodic fluctuations
in rotor thrust become unpredictable, significantly affecting measurement precision. Due
to limitations in sensor sampling frequencies, accurately capturing these thrust variations
is challenging. Therefore, in situations where thrust exhibits periodic changes, selecting the
median thrust proves to be a reliable and practical approach to assess thrust performance.

4.2.1. Effects of Rotor Speed

The rotor speed affects two aspects of the multi-rotor performance IGE. Firstly, it affects
aerodynamic thrust, and secondly, it affects the thrust ratio. In Figure 8, the thrust of the
rotor continues to exhibit an approximately quadratic relationship with rotor speed, resem-
bling the behavior observed in previous isolated rotor studies. As rotor speed increases and
the altitude decreases, the augmentation effect of ground on rotor aerodynamics becomes
more pronounced. Similar trends are observed in experiments with other lateral distances,
indicating the consistent influence of rotor speed and ground proximity on aerodynamic
performance across varying configurations.

In isolated rotors, the rotational speed typically does not significantly affect the ratio
of tensile forces, but this has not been conclusively proven in staggered rotor systems with
aerodynamic interference. Figure 9 depicts the ratio of IGE to OGE for lateral distances of
0.5 and 1.5. It is apparent that the ratios measured for the staggered rotor system under
different speed conditions are nearly equal. The minor fluctuations in the curves fall within
the acceptable range of experimental error. Similar trends are observed for other lateral
distances as well. Therefore, the impact of rotor speed on the thrust ratio in the staggered
rotor system can be neglected. In the ground effect of planar multi-rotors, experimental
results from Otsuka [25] and Conyers [16] indicate that rotor speed has a minor impact on
Tige/Toge. This observation is further supported by the rotor ground effect aerodynamic pre-
diction models proposed by He [3], and Sanchez-Cuevas [19]. Consequently, in subsequent
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studies, the comparison of thrust ratios at different speeds will no longer be conducted.
Instead, the thrust ratios measured at different speeds will be averaged for analysis.

Drones 2024, 1, x FOR PEER REVIEW 9 of 18 
 

  

(a) (b) 

Figure 8. (a) Thrust variation with rotor speed at l = 0.5; (b) Thrust variation with rotor speed at l = 

1.5. 

In isolated rotors, the rotational speed typically does not significantly affect the ratio 

of tensile forces, but this has not been conclusively proven in staggered rotor systems with 

aerodynamic interference. Figure 9 depicts the ratio of IGE to OGE for lateral distances of 

0.5 and 1.5. It is apparent that the ratios measured for the staggered rotor system under 

different speed conditions are nearly equal. The minor fluctuations in the curves fall 

within the acceptable range of experimental error. Similar trends are observed for other 

lateral distances as well. Therefore, the impact of rotor speed on the thrust ratio in the 

staggered rotor system can be neglected. In the ground effect of planar multi-rotors, ex-

perimental results from Otsuka [25] and Conyers [16] indicate that rotor speed has a minor 

impact on Tige/Toge. This observation is further supported by the rotor ground effect aero-

dynamic prediction models proposed by He [3], and Sanchez-Cuevas [19]. Consequently, 

in subsequent studies, the comparison of thrust ratios at different speeds will no longer 

be conducted. Instead, the thrust ratios measured at different speeds will be averaged for 

analysis. 

  

(a) (b) 

Figure 9. (a) Staggered rotor system Tige/Toge variation at l = 0.5; (b) Staggered rotor system Tige/Toge 

variation at l = 1.5. 

4.2.2. Effects of Ground Distance 

1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

30

35

40

T
h
ru

st
(N

)

Ω(r/min)

 OGE

 h = 0.5

 h = 1.0

 h = 1.5

 h = 2.0

1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

30

35

40

T
h
ru

st
(N

)

Ω(r/min)

 OGE

 h = 0.5

 h = 1.0

 h = 1.5

 h = 2.0

1000 1500 2000 2500 3000 3500

1.05

1.10

1.15

1.20

1.25

1.30

T
ig

e/
T

o
g

e

Ω(r/min)

 h = 0.5

 h = 1.0

 h = 1.5

 h = 2.0

1000 1500 2000 2500 3000 3500
0.7

0.8

0.9

1.0

1.1

1.2

T
ig

e/
T

o
g

e

Ω(r/min)

 h = 0.5

 h = 1.0

 h = 1.5

 h = 2.0

Figure 8. (a) Thrust variation with rotor speed at l = 0.5; (b) Thrust variation with rotor speed at
l = 1.5.
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Figure 9. (a) Staggered rotor system Tige/Toge variation at l = 0.5; (b) Staggered rotor system Tige/Toge

variation at l = 1.5.

4.2.2. Effects of Ground Distance

The varying distances above the ground lead to different effects of the ground on rotor
aerodynamics. In general, closer proximity to the ground results in a more pronounced
ground effect. However, due to the fountain effect of multi-rotors, which promotes the
development of turbulent regions, researchers such as Otsuka, Conyers, Stephen and
Healy et al. [16,23,25] has discovered some contradictory conclusions. Regarding various
configurations of staggered rotors, the influence of ground clearance on rotor systems
requires thorough investigation. Different factors, such as rotor spacing, rotor geometry,
and ground conditions, can influence the aerodynamic interactions between the rotors and
the ground, leading to varied effects on performance. Therefore, comprehensive studies
are vital to understanding how the parameters influence the aerodynamics of staggered
rotor systems IGE.
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Given the spatial arrangement of rotors, we introduce another set of comparative
variables. The experimental outcomes encompass measurements of isolated top rotors
and isolated bottom rotors, both IGE and OGE. The top rotor is sampled starting from
a distance of 0.8R from the ground, while the bottom rotor is sampled starting from a
distance of 0.5R from the ground. The total aerodynamic thrust outcomes are employed to
compare the isolated system of two rotors with the staggered rotor system. The sampling
approach is determined by the distance in the staggered rotor system. The sampling
conditions for the top rotor are consistent with those for the staggered rotor system, and
the same applies to the bottom rotor. Adding two isolated rotor systems as a comparison
can eliminate the influence of aerodynamic interference between rotors, making it easier to
compare the performance of rotor systems at different ground heights. Previous studies
on unloaded flight experiments [35] indicate that the operating condition for this rotor
model is approximately 1500 RPM. Considering the loaded flight of the aircraft, 2000 RPM
is chosen as a typical operating condition for the subsequent study on thrust variation.

Figure 10 illustrates that whether it is a two-isolated rotor system or a staggered rotor
system, the closer they are to the ground, the more significant the improvement in thrust
performance. At the same distance above the ground, compared with the two isolated rotor
systems, the staggered rotor system still experiences thrust loss. This loss can be attributed
to the alteration in the angle of attack of the bottom rotor due to its immersion in the
downwash flow generated by the top rotor [40]. In conditions closer to the ground (h = 0.5),
the ground evidently improves the performance of the staggered rotors, thereby alleviating
the thrust loss caused by the interference of the bottom rotor. However, under conditions
far from the ground (h = 2.0), this interference becomes more pronounced. In situations of
low altitude, the ground constrains the free flow of the rotor wake, resulting in reduced
inflow, increased rotor blade angle of attack, and hence increased thrust. Conversely, under
conditions of high altitude, due to the effect of air viscosity, rotor tip vortices gradually
decay and spread, weakening the ground’s restriction on wake flow and causing the wake
to more closely resemble free flow, thereby resulting in decreased thrust of the rotor system.
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Figure 10. Thrust variation with the distance from the ground.

Figure 11 illustrates the decrease in the ratio of thrust with increasing distance from the
ground for each rotor system. Both the staggered rotor system and the two-piece isolated
rotor system show a decrease in the ratio of thrust with increasing altitude above ground,
without encountering anomalies in the ratio as observed in planar multi-rotor systems.
Otsuka and Healy [23,25] suggest that induced effects of rotor tip vortices causing fountain
flow near the blade tip are factors contributing to thrust loss, yet in the staggered rotor
system, where the two rotors overlap spatially, such induced fountain flow near the rotor
tip is absent. Considering the point where the ground effect is typically assumed to vanish
for helicopters, h = 2.0, some differences emerge in the performance of staggered rotors. In
the staggered rotor system, significant ground effect is still observable in regions where
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rotor overlap is substantial l ≤ 1.0, with the ratio near 1.05. This phenomenon occurs due
to the limited influence of ground effect on the wake of isolated rotors under conditions
relatively distant from the ground. Conversely, in the staggered rotor system, compared
with the isolated rotor, the overlapping of rotors leads to a higher downwash intensity [32].
Consequently, when the rotor tip vortices reach the ground, they maintain a relatively
high intensity, and the ground’s restriction on the wake remains noticeable, reducing rotor
inflow and thus resulting in the continued presence of the ground effect.
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4.2.3. Effects of Lateral Distance

The lateral distance characterizes the size of overlap region, affecting the downwash,
the inflow, the outwash and upwash flow near the ground surface.

Figure 12 illustrates that with the increase in lateral distance, the thrust at different
distances above the ground increases. However, as shown in Figure 13, with the elevation
in the lateral distance, Tige/Toge decreases. The opposite trends between changes in thrust
values and changes in thrust ratios are associated with aerodynamic interference in the
staggered rotor system. Similar to staggered rotor systems without ground effect, as the
lateral distance expands, the bottom rotor gradually moves away from the interference of
the top rotor’s downwash, and the top rotor also moves away from the interference zone
of the bottom rotor’s rotor tip vortices, leading to improved thrust performance. When
the lateral distance is small, the contraction of the top rotor downwash passes through the
bottom rotor disc, causing a portion of the wake to be included within the downwash of the
bottom rotor. The flow pattern formed near the ground is closer to that of an isolated rotor,
but near the rotor’s axis of rotation, the ground may exhibit more pronounced stagnation
effects. As the lateral distance expands, the overlap region of the rotors reduces, and
the intensity of the downwash diminishes. Consequently, the stagnation effect weakens,
leading to a reduction in the improvement of thrust performance, resulting in a decrease in
the thrust ratio.



Drones 2024, 8, 118 12 of 18

Drones 2024, 1, x FOR PEER REVIEW 12 of 18 
 

rotor, but near the rotor’s axis of rotation, the ground may exhibit more pronounced stag-

nation effects. As the lateral distance expands, the overlap region of the rotors reduces, 

and the intensity of the downwash diminishes. Consequently, the stagnation effect weak-

ens, leading to a reduction in the improvement of thrust performance, resulting in a de-

crease in the thrust ratio. 

 

Figure 12. Rotor thrust variation with lateral distance. 

 

Figure 13. Tige/Toge variation with lateral distance. 

5. Discussion 

The fountain effect generally refers to the phenomenon where multiple airflows from 

the rotor ground effect collide with the ground, forming a stagnation region where the 

airflow has nowhere to go but ultimately rises. A large amount of turbulence is generated 

by the downwash airflow hitting the ground and changing direction. Simulations and ex-

periments conducted by several scholars [20,22,23,32,33] using different propeller blades, 

airfoil shapes, and pitches have consistently demonstrated the existence of fountain flow. 

The fountain flow brings a significant amount of turbulence, further promoting turbu-

lence development and causing it to rise to the rotor plane, resulting in reduced thrust for 

the rotor. According to the research by He [20] and our experiments, changes in rotor 

speed have almost no effect on the thrust loss caused by the fountain flow. The staggered 

rotor system exhibits both inhibitory and enhancing effects, consistent with the conclusion 

of Silwal [30] et al. The loss caused by the fountain flow represents an inhibitory effect, 

and similarly, the top rotor has an inhibitory effect on the bottom rotor, while the ground 

effect manifests as an enhancing effect, as shown in Figure 14. The specific competitive 

0.0 0.5 1.0 1.5 2.0
6

7

8

9

10

11

12

T
h

ru
st

(N
)

l(L/R)

 h = 0.5  h = 1.0

 h = 1.5  h = 2.0

 OGE

0.0 0.5 1.0 1.5 2.0

1.0

1.1

1.2

1.3

1.4

T
ig

e/
T

o
g

e

l(L/R)

 h=0.5  h=1.0

 h=1.5  h=2.0

Figure 12. Rotor thrust variation with lateral distance.
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5. Discussion

The fountain effect generally refers to the phenomenon where multiple airflows from
the rotor ground effect collide with the ground, forming a stagnation region where the
airflow has nowhere to go but ultimately rises. A large amount of turbulence is generated
by the downwash airflow hitting the ground and changing direction. Simulations and
experiments conducted by several scholars [20,22,23,32,33] using different propeller blades,
airfoil shapes, and pitches have consistently demonstrated the existence of fountain flow.
The fountain flow brings a significant amount of turbulence, further promoting turbulence
development and causing it to rise to the rotor plane, resulting in reduced thrust for the
rotor. According to the research by He [20] and our experiments, changes in rotor speed
have almost no effect on the thrust loss caused by the fountain flow. The staggered rotor
system exhibits both inhibitory and enhancing effects, consistent with the conclusion of
Silwal [30] et al. The loss caused by the fountain flow represents an inhibitory effect, and
similarly, the top rotor has an inhibitory effect on the bottom rotor, while the ground
effect manifests as an enhancing effect, as shown in Figure 14. The specific competitive
mechanism depends on the relative strengths of the enhancing and inhibitory effects and
warrants further discussion.
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5.1. Combination of Rotor to Rotor Interactions and Ground Effect

As the staggered rotor system approaches the ground, it encounters complex flow
dynamics characterized by rotor-vortex-ground coupling interference. In this scenario, the
mutual interference between rotors induces certain thrust losses while the rotor experiences
an increase in thrust IGE. The combined influence of these two effects results in intricate
variations in the thrust of the staggered rotor system. This interplay between aerody-
namic interference and ground effect underscores the complexity of rotorcraft dynamics,
particularly in low-altitude flight scenarios. Further analysis and experimentation are
crucial to fully understand and optimize the performance of staggered rotor systems in
such conditions.

5.1.1. Impact on Thrust IGE

From Figure 10, it is evident that the sum of thrusts from two isolated rotor systems
is significantly greater than that of most staggered configurations, indicating that the
complex interference between rotors affects the performance of staggered rotor systems.
However, this does not necessarily imply that this influence on rotor thrust performance is
unfavorable. Under the condition where l = 2.0, the staggered rotor thrust is even slightly
greater than that of the two isolated rotors. This could be ascribed to the reduction in the
overlap area, causing the top rotor’s downwash to contract almost completely, avoiding the
inflow region of the bottom rotor. Thus, the interference experienced by the bottom rotor is
minimal, while the shedding of the bottom rotor tip vortices induces upwash on the tip
region of the top rotor, causing a marginal increase in system thrust. In Figure 12, within the
two regions where (h = 0.5) and (l ≤ 1.0), and (h = 1.0) and (l ≤ 0.5), the thrust performance
of the rotors remains nearly unchanged with increasing lateral distance. This is because, in
these scenarios, where the rotor is at a low altitude, the improvement in thrust performance
due to ground effect predominates. The ground effects on the aerodynamics of the staggered
rotor system far outweigh the effect of aerodynamic interference within the system. This is
attributed to the low altitude, where the ground effect predominantly enhances the thrust.
The aerodynamic influence of the ground on the staggered rotor system surpasses the
impact of aerodynamic interference within the system. However, as the altitude increases,
the ground effect weakens, and a balance point is reached where the influence of the ground
and aerodynamic interference within the system are of similar magnitude. With further
increases in distance above the ground, where the intensity of the ground effect is lower
than the balance point, the effects of aerodynamic interference between rotors become more
significant. Increasing the lateral distance results in a noticeable improvement in rotor
thrust performance under these conditions.

In Figure 15, in different experimental ranges, these two types of interference exhibit
significant differences in their effects on thrust, ultimately manifesting as optimal thrust
performance at (l = 2.0) and (h = 0.5) and poorest performance at (l = 0) and (h = 2.0).
With the increase in lateral distance and the decrease in distance above the ground, thrust
performance improves significantly. However, the difference lies in that the increase in
lateral distance brings about a nearly uniform enhancement in performance, whereas the
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influence of distance from the ground shows a more pronounced increase within the range
of 0.5 ≤ h ≤ 1.0.
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5.1.2. Impact on Thrust Ratio IGE

Figure 16 illustrates how the thrust ratio varies with lateral distance and distance above
the ground, corresponding to variations in thrust. Unlike thrust performance, however,
the ratio value reflects the gain of the rotor ground effect in different configurations. With
an increase in lateral distance, the ratio tends to decrease, with this trend being more
pronounced under conditions closer to the ground. Among all rotor configurations tested,
the ground effect is most significant for (l = 0), with a thrust increment of up to 32.8%.
The region where the ground effect significantly improves rotor performance remains
predominantly under conditions of closer proximity to the ground and smaller lateral
distance, consistent with the previous analysis.
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5.2. Effect on the Top and Bottom Rotors at h = 2.0

In the previous analysis, it was observed that some rotor configurations still exhibit
significant ground effects at (h = 2.0). Subsequent analysis will investigate the impact on
the top and bottom rotors separately.

Figure 17 illustrates the variation of the ratio for the top rotor, bottom rotor, and
staggered rotor system at h = 2.0 and h = 0.5. The thrust is compared to that of the staggered
rotor system separately in OGE conditions. It is noteworthy that almost all bottom rotors
exhibit thrust performance without ground effect and even experience slight thrust losses at
h = 2.0. For isolated rotors, the closer they are to the ground, the more significant the ground
effect becomes, while in the staggered rotor system, the opposite phenomenon occurs. At
h = 2.0, the top rotor contributes nearly all of the thrust enhancement, which is entirely
contrary to the scenario at h = 0.5, where the bottom rotor predominantly contributes to
the enhancement. The top rotor continues to demonstrate significant thrust augmentation
within the range of 0 ≤ l ≤ 1.5, with the maximum thrust increment reaching 109.5%. This
implies that at h = 2.0, the performance of the staggered rotor system IGE, the top rotor
primarily contributes to thrust enhancement, while the bottom one, due to being affected
by the fountain flow effects, downwash of the top rotor, and ground influence, exhibits a
pseudo-OGE state.
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The disparity in thrust performance between the rotors in the staggered rotor system
at h = 2.0 can likely be attributed to the combined effects of fountain flow and turbulent
development. The non-coplanar arrangement of the two rotors in the staggered rotor system
induces asymmetrical fountain flow, which may contribute to the differences in thrust
performance. Previous studies [22,23,25] have indicated that fountain flow rises to the rotor
plane, generating substantial turbulence that can lead to rotor thrust loss. In staggered rotor
configurations with partially overlapping regions, the fountain flow may rise even higher,
and the presence of a multi-stream downwash could lead to multiple fountain flows. The
mixing of these multiple fountain flows may further enhance turbulence development, as
observed in studies such as Tan’s research [33] on the ground effect of tandem rotor systems.
Due to the vertical separation between the top and bottom rotors, the turbulence induced
by fountain flow likely predominantly affects the bottom rotor, while the top largely avoids
the turbulent interference zone. As the lateral distance expands, the upward extent of
the fountain flow decreases. However, the bottom rotor also avoids interference from the
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top rotor, and their effects are of comparable magnitude. Consequently, the bottom rotor
exhibits a pseudo-OGE state with a thrust ratio of 1. The increased lateral distance reduces
the strength of the downwash in the staggered rotor system, weakening the impact of
downwash IGE while enhancing the inflow to the top rotor, resulting in reduced thrust.

6. Conclusions and Future Work

The study primarily concentrates on evaluating the performance of staggered rotors
under the influence of ground effects. Under these conditions, the following conclusions
have been drawn:

(1) In the ground effect, increasing rotor speed improves the thrust performance of both
isolated rotor and staggered rotors, but the rotor speed barely affects the ratio of thrust
IGE or OGE.

(2) As the distance above the ground increases, both isolated rotors and staggered rotors
experience a decrease in thrust performance and thrust ratio. The position where the
ground effect disappears for staggered rotor systems is farther away (hoge > 2.0) com-
pared to the position where the ground effect disappears for isolated rotor systems.

(3) As the lateral distance expands, the staggered rotor thrust improves, but the ratio of
thrust decreases.

(4) The weakening effect of mutual interaction between staggered rotors and the strength-
ening effect of ground effect both coexist. The impacts of these two effects distribute
differently: while the increase in lateral spacing leads to a uniform reduction in the
interaction between rotors, affecting both thrust performance and thrust ratio almost
evenly, the enhancement of ground effect due to decreasing distance from the ground
experiences a sharp increase within the 0.5 ≤ h(H/R) ≤ 1.0 interval.

(5) At h(H/R) = 2.0, certain configurations of staggered rotor systems are still influenced
by ground effect. In this scenario, the thrust variation of bottom rotor behaves similarly
with OGE state while the top rotor thrust experience an increase.

The thrust of the staggered rotors was measured using a validated experimental setup
and contrasted with that of the isolated rotor under the same conditions. The investigation
examined the underlying mechanisms driving variations in thrust, which result from
interactions among rotors and between rotors and the ground. Understanding these
interactions can offer valuable insights for optimizing the design of multi-rotor drones.

Our work will consider the ground effects of staggered rotors and introduce variables
such as rotor radius, angle of attack, power, etc. By considering key parameters like rotor
radius, lateral spacing, and height above ground as variables, through training a regression
analysis model, we will develop a surrogate model capable of accurately predicting the
ground effect aerodynamic forces of staggered rotors. Subsequently, we plan a rational
flight path for the autonomous landing of the aircraft. Perform flow field visualization
studies on ground effect experiments of staggered rotors with specific parameters, aiming
to fully elucidate the flow phenomena observed and reveal flow patterns.
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