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Abstract: This paper introduces a developed multi-sensor integrated system comprising a thermal
infrared camera, an RGB camera, and a LiDAR sensor, mounted on a lightweight unmanned aerial
vehicle (UAV). This system is applied to the inspection tasks of levee engineering, enabling the real-
time, rapid, all-day, all-round, and non-contact acquisition of multi-source data for levee structures
and their surrounding environments. Our aim is to address the inefficiencies, high costs, limited data
diversity, and potential safety hazards associated with traditional methods, particularly concerning
the structural safety of dam bodies. In the preprocessing stage of multi-source data, techniques such
as thermal infrared data enhancement and multi-source data alignment are employed to enhance data
quality and consistency. Subsequently, a multi-level approach to detecting and screening suspected
risk areas is implemented, facilitating the rapid localization of potential hazard zones and assisting in
assessing the urgency of addressing these concerns. The reliability of the developed multi-sensor
equipment and the multi-level suspected hazard detection algorithm is validated through on-site
levee engineering inspections conducted during flood disasters. The application reliably detects
and locates suspected hazards, significantly reducing the time and resource costs associated with
levee inspections. Moreover, it mitigates safety risks for personnel engaged in levee inspections.
Therefore, this method provides reliable data support and technical services for levee inspection,
hazard identification, flood control, and disaster reduction.

Keywords: levee inspection; multi-sensor equipment; multi-level detection algorithm; suspected
hazards; flood emergency management

1. Introduction

Levee engineering serves as a crucial project to safeguard residents and agricultural
production from the devastating impacts of flooding [1,2]. With the onset of increased
rainfall during the flood season, the combined effects of floods and precipitation create
substantial pressure differentials between the upstream and downstream slopes of levee
structures. This often results in water easily backflowing through drainage pipes. Suppose
there is a permeable layer within the levee engineering, this can lead to seepage, and the
erosive effects of seepage may cause the loss of soil particles within the dam, forming weak
spots and eventually resulting in piping. Water hazards such as backflow, seepage, and
piping [3–5] may even lead to breaches and failures within the levee dam, posing severe
threats to human life and property. Consequently, monitoring levee hazards [6,7] in water
bodies such as rivers and lakes becomes a critical task during the annual flood control and
disaster prevention period.
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The environment surrounding levee engineering is complex, and patrol personnel find
it challenging to promptly identify potential risks, such as minor cracks and seepage, during
inspections, leading to low inspection efficiency. Particularly when encountering floods or
exceptional circumstances, there is a need to increase the intensity and frequency of levee
patrols and inspections, significantly heightening the safety risks for patrol personnel.

To overcome these challenges, we devised a multi-sensor system, integrating an
RGB camera, a thermal infrared camera, and LiDAR (as illustrated in Figure 1). This
advanced system is built upon a drone platform with a positioning and orientation system
(POS) [8]. The RGB camera [9] delivers high-resolution RGB images, enabling patrol
personnel to capture detailed visual information for visual interpretation. The LiDAR [10]
provides precise three-dimensional point cloud data with spatial information, facilitating
the quantification of surface morphology and structural features. Additionally, the thermal
infrared camera [11] detects the thermal distribution of objects, uncovering potential
areas with significant temperature variations. Simultaneously, we developed a set of
preprocessing methods for multi-source data and a multi-level algorithm for detecting
suspected hazardous situations.
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Figure 1. Establishing multi-sensor equipment on UAV platform. (a,d) AlphaAir 450 pocket LiDAR
system; (b) FLIR VUE Pro R camera; (c) BB4 mini UAV; (e) multi-sensor equipment on UAV platform.

In the algorithm development, our core idea was that levee engineering hazards gen-
erally involve seepage and water infiltration phenomena [12], with the flowing water tem-
perature usually lower than that of other materials. Based on this concept, we initially used
an improved dense nested attention network (DNA-Net) [13] to detect low-temperature
regions in contrast-enhanced thermal infrared images. During the experimental process,
we found that only image target detection typically identifies low-temperature targets
such as individual trees, small clusters of vegetation, flowing water, and mixed areas of
these features.

As is well known, the echo intensity of point clouds in pure water areas [14] is almost
zero. Although the water in hazardous situations may contain sediment, aquatic plants,
or other things, the overall echo intensity of the point cloud in this area remains low.
Moreover, the lower the echo intensity of the point cloud within the detected area, the
higher the water content. By combining the detection of low-temperature regions in thermal
infrared images with the echo intensity information of point clouds, we can screen and
quickly locate suspected hazard areas. Additionally, we can use the echo intensity of point
clouds within the mask area to assist in determining the degree of danger in suspected
hazard areas, facilitating the arrangement of regional inspection tasks. Furthermore, by
projecting suspected hazard areas onto RGB images, patrol personnel can conduct visual
interpretations based on the surrounding environment, further reducing their workload.



Drones 2024, 8, 90 3 of 23

Based on these principles, this paper aims to develop a multi-sensor integrated drone
system suitable for levee inspection and a relatively comprehensive multi-level hazard
detection algorithm process. The contributions of this paper are listed as follows:

(1) We developed a multi-sensor integrated drone system tailored towards levee engineer-
ing hazard inspection. On the basis of multi-sensor time synchronization, external pa-
rameter calibration between RGB and thermal infrared cameras is achieved, ultimately
unifying multi-source data within the same spatiotemporal framework. Additionally,
the temperature resolution capability of the thermal infrared camera at various drone
flight altitudes was examined to ensure the effectiveness of data collection.

(2) We annotated and constructed a dataset containing 739 sets of low-temperature
targets in thermal infrared images, and applied the trained network to detect low-
temperature areas in thermal infrared images. Subsequently, the echo intensity of
the LiDAR point cloud data was used to differentiate between water bodies, and
assess the potential danger level of suspected hazards. Finally, a visual interpretation
of the suspected hazard areas was conducted using RGB images, further enhancing
operational efficiency.

(3) We applied the multi-sensor integrated drone system and the multi-level suspected
hazard detection algorithm in the field during heavy rain in Heilongjiang Province,
China. We tested the applicability of the equipment and the effectiveness of multi-
level detection methods at the disaster site. Practice has proven that the approach
can provide robust support for the prevention and handling of potential hazards
and risks.

2. Related Levee Monitoring Methods

The monitoring methods used for levee hazards mainly include piezometers, seepage
pressure gauges, electrical resistivity tomography, isotope tracing, temperature tracing,
distributed fiber-optic temperature sensing, ground-penetrating radar systems, and hy-
perspectral imaging devices [15–17]. Piezometers are a traditional method for monitoring
seepage; they measure the height of the water column in the tube to indicate the mag-
nitude of the pore water pressure, detecting parameters such as dam seepage pressure,
groundwater level, and seepage around the dam. Piezometers have a simple structure,
are easy to manufacture and install, and are cost effective. However, they are prone to
human-induced damage, pipe clogging, and long-term monitoring is time-consuming and
labor-intensive, leading to potential errors and an information lag between measured data
and actual conditions. Seepage pressure gauges measure internal pore water pressure or
seepage pressure within structures. They feature high sensitivity, precision, and stability,
are capable of signal transmission over long distances without distortion, have strong
interference resistance, and are suitable for long-term observations.

Electrical resistivity tomography involves the penetration of liquids through anti-
seepage layers, increasing the dielectric constant or decreasing the resistivity of the anti-
seepage layer. Changes in capacitance and resistivity enable the monitoring of dam seepage
conditions. Isotope tracing involves introducing appropriate isotopic tracers into the up-
stream area of the leakage section. Continuous monitoring of the tracers downstream,
combined with hydrogeological material, allows for determining permeability coefficients
and identifying seepage speed and direction. Temperature tracking entails burying sus-
ceptible temperature sensors at various depths within the dam. Seepage water affects
the surrounding temperature field, and after the dissipation of temperature disturbances,
fixed-point temperatures are measured. Distributed fiber-optic temperature measurement
technology involves embedding optical cables inside the dam to achieve real-time tempera-
ture collection at various continuous measurement points along the dam. It allows for the
spatial positioning of measurement points. However, these methods require instruments to
be embedded within the dam, demanding careful construction to avoid structural damage
and induce new seepage. Maintenance and replacement are challenging if the instruments
are damaged and lack flexibility.
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Ground-penetrating radar systems [18] utilize antennas to emit high-frequency elec-
tromagnetic waves toward the tested dam. Recording the reflected waves through pulse
signals helps to detect internal features such as cracks and voids. However, the detection
resolution of ground-penetrating radar decreases with detection depth, and other noise
signals severely interfere with the quality of the reflected signals. Hyperspectral imaging
devices [19] can obtain ultra-high-resolution hyperspectral images [20] with outstanding
material identification capabilities. They can be used to monitor seepage locations based
on the backscatter characteristics of water-permeated areas. However, the volume of data
sharply rises with the increasing number of bands, and a high level of correlation between
adjacent bands leads to information redundancy. Although satellite remote sensing can
offer extensive data monitoring, its monitoring area and range cannot be adjusted in real-
time. Additionally, satellite remote sensing has a relatively lower image resolution, making
it challenging to capture surface details, and is more suitable for post-disaster analysis.

3. Materials and Methods

Due to the lack of adequate, reliable, and flexible monitoring technologies for levee
engineering, manual network patrols are still necessary in the face of severe flood control
situations [21]. Here, we develop multi-sensor equipment for levee inspection and hazard
identification based on a light and compact UAV platform [22]. This equipment can collect
diverse data in areas personnel may find inaccessible. Then, we propose a multi-source data-
based, multi-level algorithm for detecting potential hazards. The algorithm can identify
threats that are not readily observable by the human eye, thereby improving operational
efficiency and ensuring the personal safety of levee inspection personnel. The framework
is illustrated in Figure 2.
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3.1. Sensors

The equipment consists of a Global Navigation Satellite System (GNSS) [23] position-
ing and orientation system, a LiDAR system, and the FLIR VUE Pro R thermal infrared
camera [24]. This configuration can acquire high-precision, high-frequency position and
orientation data, three-dimensional LiDAR data, high-resolution RGB, and thermal in-
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frared images. Additionally, the LiDAR system and thermal infrared camera ensure that
the equipment can operate around the clock, facilitating day and night inspections.

According to Planck’s law [25], any object with a temperature above absolute zero
emits electromagnetic waves, including infrared radiation. The use of long-wave infrared
(7.5–14 µm), with solid penetration capabilities [26], allows for the observation of ground
objects through weather conditions such as clouds, haze, rain, and snow. Infrared cam-
eras use photosensitive components to detect the infrared radiation emitted by objects.
Through technologies such as photoelectric conversion and signal processing, these thermal
radiation signals are converted into electrical signals. Further processing and calculation
can transform electrical signals into visual grayscale images. Additionally, the higher the
temperature of an object, the stronger the electromagnetic wave signals it emits. If there
is a temperature difference between the detected target and the background, the energy
difference in radiation manifests as the edge contours of the detected target in the infrared
image. The FLIR Vue Pro R is a thermal imaging camera designed explicitly for small
UAVs. It can capture precise non-contact temperature measurements and embed calibrated
temperature data into each pixel. The technical specifications of the FLIR Vue Pro R camera
are detailed in Table 1.

Table 1. The technical specifications of the FLIR Vue Pro R camera.

Parameter Name Parameter Value

Thermal imager Uncooled Vanadium Oxide (VOx) Microbolometer
for Infrared Radiation Detection

Camera lens 19 mm (focal length); 32◦ × 26◦ (field of view, FoV)

Resolution 640 × 512

Pixel Size 17 µm

Wavelength Range 7.5–13.5 µm

Size 57.4 mm × 44.45 mm (including the lens)

Temperature Measurement Accuracy/
Radiation Measurement Accuracy ±5 ◦C or ±5% of the reading

Operating Temperature Range −20 ◦C to +50 ◦C

Thermal Sensitivity <50 mK (Capable of precisely measuring
temperature differences less than 50 mK)

LiDAR measures the distance from the target to the LiDAR receiver by emitting a
laser beam, obtaining accurate three-dimensional point cloud data. LiDAR-collected point
cloud data has high precision and good anti-interference ability, is unaffected by changes
in lighting conditions, and provides accurate spatial information. We selected the CHC
Navigation AlphaAir 450 pocket LiDAR [27] based on its lightweight and highly integrated
design concept. With a built-in camera, the entire payload weighs only 950 g, enabling
high-precision, high-density, and efficient real-time data acquisition. LiDAR technical
specifications are detailed in Table 2.

The RGB camera captures visible light reflected from the surface of an object during the
imaging process, influenced by both the object’s reflectivity and external lighting intensity.
Under sufficient illumination, the imaging quality is higher, containing richer information,
complete texture details, and more pronounced structural features. In overcast or nighttime
conditions, when the lighting intensity decreases, imaging quality significantly deteriorates.
However, the image information is acceptable, and it requires lower professional expertise
for levee patrol personnel, serving as an auxiliary judgment basis. Utilizing the built-
in 24-megapixel camera in the AlphaAir 450 LiDAR system, it can generate a digital
orthophoto map (DOM), digital surface model (DSM) [28], and colorized point clouds. The
technical parameters of the RGB camera are detailed in Table 3.
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Table 2. CHC Navigation AlphaAir 450 pocket LiDAR technical specifications.

Parameter Name Parameter Value

Weight 950 g

Field of View 70.4◦ (Horizontal) × 4.5◦ (Vertical)

Ranging 450 m (80% reflectivity, 0 klx)
190 m (10% reflectivity, 100 klx)

Ranging Accuracy 2 cm

Protection Level ≥IP64

Point Frequency 2.4 million points/s

Echo Count

Supports triple echo
240,000 points/second (single echo)
480,000 points/second (double echo)
720,000 points/second (triple echo)

Size 128 mm × 68 mm × 140 mm

Table 3. The technical parameters of the RGB camera.

Parameter Name Parameter Value

Resolution 6252 × 4168

Field of View 72.3◦ × 52.2◦

The Minimum Photographing Interval 0.8 s

Focal Length 16 mm

The multi-sensor integrated equipment we developed is an independent system
that can be mounted on a drone platform. In this study, it is deployed on the CHC
Navigation BB4 mini UAV [29] platform, providing a flight endurance of 50 min. The
technical specifications of the BB4 mini UAV platform are outlined in Table 4.

Table 4. The technical specifications of the CHC Navigation BB4 mini UAV platform.

Parameter Name Parameter Value

Size 1300 mm × 750 × 330 mm

Maximum Takeoff Weight 10 kg

Payload Weight 3 kg

Aircraft Wind Resistance ≥Level 7

Protection Level ≥IP55

Flight Duration Operating time with AlphaAir 450 mounted:
50 min; Empty load operation: 80 min

Single-flight Range >5 km

3.2. Multi-Sensor Integrated Equipment Based on UAV Platform
3.2.1. Time Synchronization

The unified time baseline requires ensuring that the absolute time accuracy of the
acquisition system is within a specific error range [30] and is capable of achieving ultra-
low-latency synchronous data collection for multiple sensors. In the AA450 system, the
synchronization method for the LiDAR and RGB camera is hard synchronization [31]. Due
to the different triggering mechanisms of the thermal infrared camera compared to regular
RGB camera, the synchronization between the thermal infrared camera and the AlphaAir
450 LiDAR system through soft synchronization. Soft synchronization may result in a lack
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of strict synchronization between the trigger times of the thermal infrared camera and the
AlphaAir 450 LiDAR system. Therefore, additional data preprocessing steps are required
to align the images.

In the AlphaAir 450 LiDAR system, the GNSS data, LiDAR data, and RGB camera
images can be processed and packaged in real time. To ensure the synchronization accuracy
and real-time requirements of the data, the system’s core processor is the STM32MP157.
This processor includes a dual-core Cortex-A7 and a Cortex-M4. The application on
the Cortex-M4 core uses an interrupt-driven approach to receive data from the inertial
navigation system, GPS module, and camera feedback signals. This ensures the accuracy of
the time tagging. The Linux system runs on the Cortex-A7 core, providing data packaging,
compression, and unified storage functions. External communication relies on interface
programs within the Linux system. Communication and data exchange between the Cortex-
A7 and Cortex-M4 occurs through an internal high-speed bus which minimizes data latency.
The GNSS module sends a PPS (pulse per second) signal every second, followed by the
output of time and location data through a data interface. The Cortex-M4 core collects
and processes these data. Approximately 10 ms after each PPS signal, the GNSS module
sends the time and location information via serial communication. The CPU captures this
trigger signal, receiving data from the module. The camera generates a feedback signal
when taking a photo. The Cortex-M4 core records when this signal occurs, similar to the
inertial navigation system synchronization signal, and attaches a time tag. The data are
then packaged and sent to the Cortex-A7 core for further processing.

3.2.2. Spatial Reference Standardization

Due to the maturity and widespread application of the AlphaAir 450 LiDAR system,
we did not conduct a separate extrinsic calibration for the camera–LiDAR system when
unifying the spatial reference. We devised a multi-sensor system by rigidly affixing the
FLIR Vue Pro R thermal infrared camera to the AlphaAir 450 device. Consequently, our
primary focus in this section is on addressing the extrinsic calibration between the thermal
infrared camera [32] and the AlphaAir 450 LiDAR system.

Based on the relationship between focal length f , flight height H, pixel size a, and
ground sample distance (GSD), as defined by Formula (1), the actual ground size repre-
sented by the pixels in thermal infrared and RGB images can be determined.

GSD = (H × a)/ f (1)

Due to the lower GSD of thermal infrared images, we initially employ a downsampling
approach on RGB images to reduce spatial disparities between the two types of images.
Subsequently, a feature point extraction algorithm is utilized to extract corresponding points
for matching, ultimately solving for the extrinsic matrix between the RGB camera and the
thermal infrared camera. However, thermal infrared images capture radiation information
from the terrain, while RGB images reflect information related to surface reflection. Due to
differences in imaging mechanisms, thermal infrared and RGB images exhibit significant
variations in texture, grayscale characteristics, and resolution. Traditional feature extraction
methods often rely on pixel grayscale gradients for feature point detection. However, the
instability of single-pixel grayscale and gradients between infrared and RGB images can
lead to feature matching errors or failures. Given the lower resolution of thermal infrared
images, our strategy involves the use of the Superpoint [33] network to extract as many
feature points as possible. In the feature matching stage, a multi-level feature matching
approach is employed to ensure the robustness of feature descriptors, thereby enhancing
the effective matching between thermal infrared and RGB images.

Superpoint has proposed a self-supervised framework comprising two networks:
the base detector and superpoint. The base detector detects corner points as candidate
feature points, while superpoint outputs feature points and descriptors. A synthetic
dataset is created using three-dimensional objects to train the network and enhance its
ability to extract corner points. Subsequently, the pre-trained network is applied to extract
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corner points from the publicly available MS-COCO dataset. Simultaneously, the original
photos in the dataset are subjected to rotation and scaling to generate new image data,
followed by another round of corner point extraction to ensure the network’s generalization
capability. Through empirical validation, the authors have demonstrated that Superpoint
can repeatedly detect interest points that are more diverse compared to other traditional
corner point detection methods.

In the feature-matching stage, assuming the set of feature points extracted from the
thermal infrared image is X = (x1, · · · , xm), and the collection of feature points extracted
from the RGB image is Y = (y1, · · · , yn), we select a feature point xm from the feature point
set X. Based on the descriptor, we calculate the Euclidean distance from point xm to all
feature points in a set Y. The closest point is denoted as yn1, and the distance between
their descriptors is indicated as dn1. The second closest neighbor and the distance between
their descriptors are represented as yn2 and dn2, respectively. The ratio of the distance
between the nearest and second nearest neighbors, denoted as r, is given by r = dn1/dn2.
When r ≤ 1, a smaller value of r corresponds to a more minor matching error. The initial
matching process is considered complete when r is less than the predefined threshold.

According to the a priori knowledge of the consistent slope of lines connecting nearby
matching points in two images, the initial set of matching points is constrained. Matches
with slopes exceeding a threshold are considered as erroneous matches, further improving
matching accuracy. Suppose a pair of matching points in thermal infrared and RGB images
have coordinates X(xRGB, yRGB) and Y(xTIR, yTIR), the slope of the line connecting these
two points is calculated as follows:

θ = arctan
yRGB − yTIR
xRGB − xTIR

(2)

Next, RANSAC [34] is employed to identify the optimal transformation matrix, elimi-
nate outliers, and obtain the final set of matching points denoted as F = {(Xm, Ym)}M

m=1;
M represent the total number of matching points obtained in the end.

3.2.3. Thermal Infrared Camera Temperature Resolution

A thermal infrared camera responds to the total infrared energy detected by the sensor,
with the majority of infrared energy coming from objects and only a minimal amount
from the camera itself. However, throughout the imaging process, it is not possible to
completely eliminate the impact of the surrounding materials on the detector and optical
path. The FLIR VUE PRO R camera has a measurement accuracy of ±5 ◦C. Without
compensation for ambient temperature, changes in the camera body or lens temperature
can significantly alter the temperature readings provided by the thermal imager. The
official recommendation for achieving ambient temperature compensation is to measure
the temperatures of the thermal imager and optical path from up to three different positions.
Due to factors such as atmospheric absorption and emissivity, an increase in observation
distance introduces uncertainties in the measurement values. The official documentation
indicates that the current error calculation values generally apply to laboratory or outdoor
short-range scenarios (within 20 m).

During levee inspection missions conducted using drones and multi-sensor equipment,
the first step involves planning flight routes based on on-site conditions. Potential flight ob-
stacles such as power lines, trees, and signal towers may arise within the monitoring range,
necessitating an adaptable approach to setting the flight altitude. Therefore, consideration
must be given to the impact of flight altitude on the sensitivity of the thermal imager. In
our mission, the ability of the thermal imager to discern surface temperatures is crucial. To
validate the accuracy of the thermal imaging camera data and assess the influence of flight
altitude on the thermal resolution, we arranged water bodies of varying temperatures,
shapes, and sizes on the ground. Temperature measurements were conducted using a
thermometer before and after takeoff, and thermal infrared images obtained at different
altitudes were analyzed. This process ensures that the selected thermal infrared camera’s
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temperature resolution can effectively observe low-temperature targets within the dam
inspection mission area. All FLIR thermal imagers are calibrated according to factory pa-
rameters during production. However, electronic components may age over time, leading
to calibration drift and inaccurate temperature measurements. To ensure the accuracy of
the thermal imager, it is recommended to perform regular calibration at the manufacturer’s
facility, with an annual calibration being suggested by the official guidelines.

3.3. Data Preprocessing
3.3.1. Infrared Image Enhancement

The original thermal infrared images we acquire typically exhibit lower grayscale
values for objects with lower temperatures, transitioning towards darker shades. In the
preprocessing stage, to facilitate the production of datasets and subsequent target detection
algorithms, we initially perform an inverse transformation on all thermal infrared image
pixels. Specifically, we subtract each pixel’s grayscale value from 255, resulting in objects
with lower temperatures appearing brighter with higher grayscale values, transitioning
towards white.

Due to the characteristics of the thermal infrared camera’s detection components and
variations in the distribution of surface temperatures, the thermal infrared images exhibit
noticeable grayscale changes only when there is a significant variation in ground tempera-
tures. As a result, the contrast in the obtained thermal infrared images is generally low, and
the edges of the targets may not be sufficiently sharp. Additionally, the rapid movement of
the UAV can exacerbate the blurring of thermal infrared images. Nevertheless, we aim to
utilize the contours and grayscale gradients formed by surface temperature distribution
variances to initially screen for potential hazard areas through target detection. Therefore,
in the data preprocessing stage, we opt to enhance the thermal infrared image through
contrast stretching [35]. The objective is to improve the contrast between the background
and targets, thereby enhancing the detection efficiency and accuracy of potential hazards
in levee engineering. We employ contrast stretching to enhance the image, extending the
grayscale values across the 0–255 range. The stretched pixel values can be calculated by the
following formula:

I(x, y)stretched =
(I(x, y)− Imin)× 255

Imax − Imin
(3)

3.3.2. Alignment of Thermal Infrared, RGB and Point Cloud Images

In Section 3.2.2, we computed the relative position relationship matrix between the
RGB and thermal infrared cameras, achieving a rough alignment. However, in practice, the
long-wave infrared camera requires non-uniformity correction (NUC) during operation to
reduce errors [36]. NUC will periodically pause the camera operation, delaying the time
between the thermal infrared camera and the RGB camera during aerial missions. Conse-
quently, when the thermal infrared and RGB cameras execute tasks in the air, achieving
complete time synchronization is impossible.

In our system, we record the capture time of the RGB camera and the trigger time
of the thermal infrared camera. Therefore, we utilize image pairs with spatial alignment,
obtaining trigger times tRGB for the RGB camera and tTIR for the thermal infrared camera.
We establish the time difference as the baseline time difference ∆tstd. Subsequently, we
calculate the time differences ∆ti for all pairs of RGB and thermal infrared images in flight
missions. In the AlphaAir 450 system, the accuracy of roll/pitch is 0.01◦, and the accuracy
of yaw is 0.04◦. We can calculate the image registration error caused by the delay in-camera
trigger times by utilizing the yaw angle during image capture and the time difference. A
schematic diagram is shown in Figure 3. Furthermore, FoV of the RGB camera entirely
encompasses that of the thermal infrared camera. Therefore, we re-crop RGB images to
match the size of the thermal infrared images. The pixels to be cropped from RGB images
can be calculated using the following formula:
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imgreshp[m] = imgRGB[m] +
(∆ti−∆tstd)∗VUAV

GSDTIR
∗ cos θ

imgreshp[n] = imgRGB[n] +
(∆ti−∆tstd)∗VUAV

GSDTIR
∗ sin θ

(4)

In the formula, imgreshp represents the cropped RGB image, imgRGB represents the
original RGB image, (m, n) represents the row and column indices of the thermal infrared
image after extrinsic parameter projection onto the RGB image, VUAV is the drone’s flight
speed, GSDTIR is the GSD of the thermal infrared image, and θ is the magnitude of the
yaw angle.
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In the AlphaAir 450 system, the RGB camera and the LiDAR sensor are highly inte-
grated. We performed orthophoto projection on the scanned point cloud obtained within
the FoV of the RGB camera, generating a two-dimensional point cloud image. With this,
the spatial relationship between the point cloud image and RGB image is strictly consistent,
with pixel values representing the echo intensity of the point cloud and implicitly convey-
ing positional information. So far, we have successfully achieved alignment among the
thermal infrared, RGB, and point cloud images.

3.4. Multi-Level Suspected Hazard Detection

Levee hazards are typically caused by the pressure difference in water levels on
both sides and the presence of permeable layers, usually occurring on the downstream
slope. However, the terrain on the downstream slope is complex, often covered with
vegetation, trees, rural roads, and more. In adverse weather conditions, such as heavy
rainfall, high-resolution RGB image detection and segmentation algorithms often prove
ineffective. The characteristics of long-wave infrared enable it to penetrate cloud cover and
rain, allowing for continuous operation in all weather conditions. This capability makes
infrared images valuable for providing reliable information even in challenging weather
conditions, presenting extensive and irreplaceable applications [37].

The uniqueness of potential hazards in dam engineering lies in the absence of regular-
ized shapes, sizes, positions, and textures. This makes it challenging for traditional meth-
ods that rely on handcrafted features, such as filtering, local contrast, low-rank methods,
and generic monitoring networks based on deep learning, to achieve satisfactory results.
Inspired by infrared small target detection algorithms [38–42], we employ segmentation-
based methods for the initial screening of dam hazards based on thermal infrared images.
Segmentation-based methods can generate outputs for both pixel-level classification and
localization. A previous study [13] designed a Dense Nested Interactive Module (DNIM)
to facilitate progressive interaction among high-level and low-level features. DNIM is
incorporated into our feature extraction module, and the structure is illustrated in Figure 4.
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In each layer of the DNIM, the first node exclusively receives feature propagation
from the dense plain skip connection, while the remaining nodes receive feature weights
from three directions, encompassing the dense plain skip connection and the nested bi-
directional interactive skip connection. A stack of feature maps, represented by Li,j, is
generated as:

Li,j =

{
Pmax(F (Li−1,j)), j = 0

[F [Li,k]
j−1
k=0,Pmax(F (Li+1,j−1)),U (F (Li−1,j))], j > 0

(5)

The features from multiple layers are iteratively blended at the intermediate convolu-
tion nodes of the skip connection before being progressively transmitted to the decoder
subnetworks. It can ensure that small-scale suspected hazards in deep layers are not missed
due to feature loss. However, owing to the semantic gap in the multi-layer feature fusion
stage of DNIM, the Channel and Spatial Attention Module (CSAM) is employed to enhance
these multi-level features adaptively, achieving improved feature fusion. CSAM consists of
a 1D channel attention map Mc ∈ Rci×1×1 and a 2D spatial attention map Ms ∈ R1×Hi×Wi :

Mc(L) = σ[MLP(Pmax(L)) + MLP(Pavg(L))]
Ms(L) = σ[ f 7×7(Pmax(Mc(L)⊗ L)),Pavg(Mc(L)⊗ L)]

(6)

where ⊗ denotes the element-wise multiplication, σ denotes sigmoid function, Ci, Hi, Wi
denote the number of channels, and the height, and width of Li,j, and Pmax(·) and Pavg(·)
denote max pooling and average pooling. f 7×7 represents a convolutional operation with
a filter size of 7 × 7. Enhanced features L” = Ms(L)⊗ Mc(L)⊗ L are obtained through
CSAM. Subsequently, multi-layer features are concatenated to produce global feature maps
using the feature pyramid fusion module. Finally, pixel clustering is performed via the
eight-connected neighborhood clustering module.

Due to the absence of fixed constraints such as an area or perimeter for the targets we
need to detect, and the lack of publicly available datasets, we utilize experimental test data
and on-site data from other embankments as our training and testing datasets, comprising
a total of 739 thermal infrared images. The training and testing sets are 70% and 30% of
the images, respectively. During the manual annotation phase, we opt for a methodol-
ogy involving morphological gradient edge detection, contour filling, manual inspection,
modification, and refinement to create labels. This process includes selecting regions
with significant gradient changes in the thermal infrared images, specifically identifying
low-temperature areas.

After completing the training and testing of the network, we fed the preprocessed
thermal infrared images, enhanced through image augmentation, into the DNA-Net to
identify the mask for low-temperature areas. The resulting collection of images is desig-
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nated as MaskTIR = (mask1, · · · , maski), marking the completion of the initial screening
for suspected hazards. While we compensate for registration errors caused by triggering
time delays, the influence of factors such as wind speed, topographic relief, and direction
during the UAV’s flight can result in varying velocities, making it challenging to maintain
a constant speed.

As a consequence, even with registration compensation for RGB images, deviations
may still occur in the images. To further mitigate the impact of image alignment errors
on the results of multi-level detection, we apply a conditional dilation operation to set
MaskTIR. The pixel size representing the actual ground size determines the size used for
dilation. For example, at a flight altitude of 30 m, based on Formula (1)’s calculations, the
selected thermal infrared camera has a GSD of 2.68 × 2.68 cm2. We initially extract the
bounding rectangle of the mask shape, with its width denoted as Wi and height as Hi. If
either Wi or Hi was less than 10 pixels, we chose to perform a dilation operation of 5 pixels
on the mask shape, resulting in Maskdilate = (mask1, · · · , maskh). This tolerance ensures
that potential hazard areas within 20 cm will not be missed due to image alignment errors.

Next, we perform an element-wise multiplication of set Maskdilate with the point cloud
image, resulting in the image collection imgPC. We iterate through the pixels of imgPC
within the mask region of the point cloud image, calculate the echo intensity values of
the point cloud and arrange these values in ascending order based on the average echo
intensity Avgmaski

. Since the echo intensity of pure water points is close to zero, we can use
echo intensity to differentiate water bodies from other terrains. Additionally, suspended
particles, dissolved substances, aquatic plants, or underwater structures in the water may
affect the propagation and reflection of laser beams, resulting in some echo signals in the
point cloud with non-zero intensity values. However, we believe that using Avgmaski

to
determine the water content of the region, where lower values of Avgmaski

indicate higher
water content, signifies a higher potential risk level for suspected hazards, necessitating
urgent manual investigation.

Given that the imaging quality of the RGB camera heavily depends on lighting condi-
tions, it can only serve as an auxiliary criterion for daytime inspection work. However, it
provides relatively good interpretability for non-professionals. We still multiply Maskdilate
with the RGB images, obtaining the corresponding region, and inspection personnel can
visually interpret the results, excluding areas identified by our algorithm that are unlikely
to pose hazards. It further narrows down the inspection scope.

4. System Implementation and Performance Analysis
4.1. Infrared Image Enhancement

We utilize SuperPoint to extract feature points from the RGB and thermal infrared
images, as depicted in Figure 5a,b. Despite the relatively large number of extracted feature
points, the lower resolution of the thermal infrared image and the presence of occlusions
caused by vehicles, buildings, and trees can result in variations in the temperature distri-
bution, impacting the imaging of the thermal infrared camera and leading to matching
errors. Therefore, we applied the constraint of slope consistency, meaning that as closer
neighboring feature points achieve correct matches, their slopes should be more intimate.
Due to the scarcity of accurate matches in individual image pairs, we used four image
pairs to ensure a uniform distribution of extracted features. The final matching results are
depicted in Figure 5c. After obtaining the coordinates of the matched feature points, we
employ the least squares method to calculate the extrinsic matrix between the RGB and
thermal infrared cameras, achieving spatial reference unification.
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Figure 5. Feature extraction using SuperPoint and feature matching based on slope consistency.
(a) Result of feature extraction from the RGB image; (b) result of feature extraction from the thermal
infrared image; (c) result of feature matching based on slope consistency.

4.2. Thermal Infrared Camera Temperature Resolution Test Results

To assess the temperature resolution of the thermal infrared camera, we designed two
sets of experiments. In the first experiment, we prepared three different water temperature
levels in advance: hot water, ice water, and average water temperature. Some water was
placed in disposable paper bowls (diameter 13.5 cm), and the rest was sprinkled on the soil
road surface. Using paper bowls to hold water allowed us to examine whether small target
objects could be observed during the UAV’s flight. The water-filled paper bowls were clearly
observable in the 30 m altitude flight mission set up for this experiment. Additionally, we
used a thermometer to measure the water temperature in the three bowls at the time of
drone takeoff and landing. The aim was to assess the FLIR VUE PRO R camera’s ability to
distinguish between different temperatures at varying observation distances.

The weather was hot at that time, and during the drone flight, the temperature of the
water at points 1 and 2 was lower than the atmospheric temperature, causing an increase in
water temperature and a corresponding rise in grayscale values. On the other hand, the
water temperature at point 3 was higher than the atmospheric temperature, resulting in a
decrease in water temperature and a corresponding reduction in grayscale values. Among
the water sprayed onto the ground, point 4 involved manual spraying on the ground
during the drone’s flight. Due to different cooling conditions, six different temperatures of
artificially arranged water should appear on the ground, and these temperature variations
can be reflected in the thermal infrared images we captured through changes in grayscale
values. The results of Experiment 1 are shown in Figure 6. Additionally, based on the
thermal infrared images from points 1 to 6, it is evident that, regardless of the takeoff or
landing process and with varying altitudes, the thermal infrared images can still accurately
distinguish between objects of different temperatures.
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Figure 6. The first set of experiments on the temperature resolution of the thermal infrared camera.
(a) Temperature measurement of the water in the three paper bowls during takeoff; (b) thermal
infrared images captured during takeoff; (c) RGB image captured during landing; (d) thermal
infrared images captured during landing; (e) temperature measurement of the water in the three
paper bowls during landing.

The second set of experiments on the temperature resolution of the thermal infrared
camera was conducted at a flight altitude of 30 m. We manually arranged objects such
as water of average temperature, a water bucket, a water pipe, and a water pump to
simulate a small flowing water scenario. Simultaneously, we placed other objects around
the simulated scene, including plastic boxes, paper bowls (yellow rectangles in Figure 7)
filled with water, and an insulated container (blue rectangle in Figure 7). We powered
on the system, and the water pump drew water from the bucket through the water pipe,
which had a width of approximately 3 cm. The flowing water observed at the outlet of the
bucket and pipe appeared to be cooler than the surrounding stagnant water. The grayscale
variations in Figure 7 indicate that our thermal infrared camera’s temperature resolution
not only distinguishes stagnant water (yellow rectangle in Figure 7) from flowing water
(red ellipse in Figure 7) but also allows for the elongated water pipe to be observed (purple
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ellipse in Figure 7). Therefore, the FLIR VUE PRO R thermal infrared camera chosen for
our project meets the inspection requirements.
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Figure 7. The second set of experiments on the temperature resolution of the thermal infrared camera.
(a) Manually arranged experimental scene; (b) RGB image captured at 30 m altitude; (c) thermal
infrared image captured at 30 m altitude.

4.3. Data Preprocessing
4.3.1. Infrared Image Enhancement

Due to the environment surrounding levee projects often being covered with extensive
vegetation, bare soil, and other terrain, and considering the relatively small field of view of
the thermal infrared camera, the scene typically contains many repetitive landscapes. This
leads to a more blurred thermal infrared image, with unclear terrain contours and reduced
contrast. To address this, we employed contrast stretching for image enhancement, as
shown in Figure 8. As depicted in Figure 8b, the enhanced thermal infrared image exhibits
more apparent terrain contours, and the contrast between terrains with different radiation
temperatures increases. This enhancement is beneficial for improving the accuracy of target
detection algorithms.
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Figure 8. Thermal infrared image enhancement results. (a) Original thermal infrared image; (b) ther-
mal infrared image after contrast stretching.

4.3.2. Alignment of Thermal Infrared, RGB and Point Cloud Images

Due to the non-fixed time delay in triggering the thermal infrared camera, using the
extrinsics directly obtained through spatial reference unification for projection results in
significant discrepancies. We calculated the time delay and compensated for the corre-
sponding RGB pixels by utilizing the baseline ∆tstd and triggering time differences ∆ti,
as Formula (4). Subsequently, we re-captured the RGB image to obtain an aligned RGB
image with the thermal infrared image. The point cloud images only need to be cropped
according to the final RGB image. To visually demonstrate the alignment effects of thermal
infrared, RGB, and point cloud images, we employed false-color representation for the
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thermal infrared image in this section and fuse the RGB and thermal infrared images. The
results are shown in Figure 9. From the fusion result in Figure 9a, it is evident that the RGB
image aligns more accurately with the thermal infrared image after compensating for the
triggering time difference. Alignment enhancement is crucial for the effective application
of the multi-level screening method.
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Figure 9. Alignment results of thermal infrared, RGB, and point cloud images. (a) Fusion result of
RGB and thermal infrared images; (b) thermal infrared image; (c) RGB image; (d) point cloud image.

4.4. Multi-Level Suspected Hazard Detection

In August 2023, several areas in Heilongjiang province experienced heavy rainfall,
causing severe damage to farmland crops, houses, roads, and other infrastructure. During
this period, we annotated a dataset of 739 thermal infrared images contained on-site. The
training and testing sets’ proportions were 70% and 30%, respectively. Due to the absence
of strict rules regarding the size and shape of the areas we needed to detect, making
the detection task challenging, we opted to use ResNet-34 as the backbone architecture,
with a down-sampling factor of four during network training. We trained the network
utilizing the Soft-IoU loss function and optimized it using the Adagrad method [43] along
with the CosineAnnealingLR scheduler. The learning rate was set to 0.01, the epoch
size was 3000, and the batch size was 16. We employed Intersection over Union (IoU),
Probability of Detection Pt, and False-Alarm Rate Pf (as Formula (7)) as evaluation metrics
for the network.

IoU =
Ainter
Aunion

, Pt =
Dtrue

Dall
, Pf =

D f alse

Dall
(7)

where Ainter, Aunion, Dtrue, Dall , and D f alse represent the interaction areas, union areas,
correctly predicted pixels, all target numbers, and falsely predicted pixels, respectively.
The final trained network achieved an IoU of 85.17%, Pt of 96.83%, and Pf of 3.92%. For
inspection tasks, we consider Pt to be more crucial than Pf .

To facilitate quick field inspections, we developed an intuitive and user-friendly
software with visualization capabilities. Due to the updating speed of the map base layer,
there may be discrepancies between the base map and actual geographic coordinates. On
7 August 2023, we conducted an inspection on the outer side of a levee project, with a
flying speed of 3 m/s and a survey area measuring 500 m in length and 140 m in width.
Although the water level had receded during the inspection, the previous day, the water
level exceeded the top of the dam, causing the outer lane and green areas on the dam’s
side to remain submerged. The on-site situation is depicted in Figure 10a–d, and the
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approximate positions of the planned flight segment and data collection points are shown
in Figure 10e. Figure 10e displays a screenshot of the software’s visualization interface.
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Figure 10. The on-site situation and inspection planning flight segment. (a–d) Inspection site;
(e) approximate positions of the planned flight segment and data collection points.

We first employed the trained DNA-Net to perform an initial detection within all
infrared images within the flight route planning area. This step effectively filtered out all
low-temperature regions within the flying area (where lower temperatures correspond to
higher grayscale values after preprocessing). This inspection collected 256 thermal infrared
images (retaining only the data within the flight strip). After the DNA-Net screening for
low-temperature regions, we obtained an image set MaskTIR with an initial selection of
45 data sets. Some of the results are shown in Figure 11.
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From Figure 11, it can be observed that our improved DNA-Net network is capable
of detecting regions with significant grayscale gradient changes in both large and small
thermal infrared images. Figure 11b shows that some of the detected mask regions are
very small. Suppose there is no strict alignment between the thermal infrared and point
cloud images. In that case, there may be a misalignment when projecting the mask region
onto the point cloud image, affecting the calculation of point cloud intensity within the
mask region. Therefore, we also assess the width Wi or height Hi of the bounding rectangle
of the mask region, and if either Wi or Hi is less than 10, we expand the mask region by
five pixels. This ensures that even if the drone experiences turbulence during the flight,
causing a significant alignment error, the point cloud images mask region projected from
the DNA-Net-detected low-temperature region is still covered.

In our application scenario, a lower point cloud return intensity usually indicates
higher water content in the detected area and lower temperatures. Therefore, we sort the
grayscale average values Avgmaski

of the mask region in the point cloud image in ascending
order and append the values to the saved filename. The lower the Avgmaski

, the more urgent
we consider the need for manual inspection. During this process, RGB images can assist
in the human judgment of objects, reducing the workload of manual on-site inspectors.
The projection results of the dilated mask region in the point cloud image and RGB image
are shown in Figure 12. Figure 12 simultaneously represents the partial inspection results
filtered out using the condition that Avgmaski

is less than 10.
Our methodology was applied to inspect the levee, resulting in the identification

of 45 potentially risky areas, as denoted by the red points in Figure 10e. Considering
the drone’s speed of 3 m/s and an image capture frequency of one every 2 s, inevitable
redundancies existed in the data. Subsequently, only 21 areas warranted investigation after
projecting the images’ geographical locations. These areas were compiled into a KML file
for subsequent manual on-site inspection. Following the field survey, 14 anomalous regions
were detected according to our inspection plan. Figure 13 illustrates some abnormal results
displayed on partial DOM, with red pentagrams signifying anomalous findings.

Following on-site manual inspection (as shown in Figure 14), we identified fourteen
anomalous areas in the dam, including nine instances of backflow in drainage wells on
the exterior dam road, three instances of pipe surges, and two cases of leakage, with seven
false alarms excluded. Due to consecutive days of heavy rain, the water level on the inner
side of the dam had risen sharply, creating a pressure differential that caused the water on
the inner side to backflow, leak, and surge through weak points in the drainage system
and dam structure, flowing to the outer side of the dam. Whether it was the drainage
backflow, leakage, or pipe surges, all contributed to the exacerbation of external water
overflow, posing a threat to the safety and stability of the dam. Moreover, it may also lead
to soil erosion in the surrounding areas, thereby increasing the risk of flooding.
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Figure 12. Multi-level inspection results. (a) Contrast-stretched thermal infrared image; (b) condition-
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Figure 14. Manual on-site inspection and confirmation. (a) Manual inspection and confirmation of
the on-site thermal infrared image; (b) manual inspection and confirmation of the on-site RGB image;
(c–e) inspection site.

5. Discussion

Due to the impact of heavy rain, backflow from storm sewers, and overflowing
river water over the dam, the inspection site was nearly covered by water. Inspection
personnel found it challenging to access the area, and water seepage is not easily observable
with the naked eye. While other contact-based dam detection methods typically require
pre-deployment and often only allow for single-point measurements, they are unable to
comprehensively provide disaster information, with limited monitoring range. In contrast,
UAVs exhibit exceptional maneuverability, swiftly navigating disaster areas. Equipped
with high-resolution sensors, UAVs can capture minute changes on the surface, such as
seepage and cracks, providing visual and real-time data for disaster analysis. The capability
assists decision-makers in responding more promptly and accurately to the situation.

Our integrated equipment, comprising an RGB camera, LiDAR, and a thermal infrared
camera mounted on a drone, was deployed for on-site inspection. A multi-level correlated
detection algorithm was employed to quickly identify potential risks within the levee
and assist in determining the situation’s urgency. It is important to note that, during the
execution of the task, the relationship between flight altitude and sensor resolution needs
to be considered. To balance monitoring efficiency and the imaging effectiveness of terrain
features, and to avoid overlooking small target risks, we recommend maintaining a flight
altitude not exceeding 50 m.

In this levee inspection mission, data collection commenced at 16:10 with the drone
carrying the multi-sensor equipment, covering an area of 70,000 m2. The inspection
concluded at 16:49, and the subsequent data processing and multi-level detection workflow
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took 66 min. In this process, twenty-one suspected risky areas were detected, and fourteen
were confirmed by manual inspection, including nine instances of backflow in drainage
wells, three instances of pipe surges, and two cases of leakage, with seven false alarms
excluded. Therefore, our equipment and approach enable all-day and time operation,
eliminating the need for labor-intensive manual inspections of dam projects during flood
seasons. It significantly reduces the workload and minimizes safety risks associated with
manual hazard inspections.

6. Conclusions

We integrated multi-sensor equipment, including a thermal infrared camera, an RGB
camera, and LiDAR, and achieved spatiotemporal alignment. The equipment can be
mounted on a lightweight UAV for multi-source data collection in dam inspection tasks
during the flood season. We developed a multi-source data processing workflow, which
includes data preprocessing and a multi-level detection algorithm. The data preprocessing
primarily enhances the quality of thermal infrared images, ensuring further alignment of
thermal infrared, RGB, and point cloud images during UAV flight. The multi-level detection
algorithm expands the capabilities of DNA-net to detect targets with drastic pixel grayscale
changes, such as irregularly shaped low-temperature anomaly areas. The detection results
for the targets are projected onto aligned point cloud images and RGB images. Point cloud
images calculate the echo intensity within the masked region, thereby determining the
water content. A lower echo intensity indicates a higher water content. The amount of
water assists in assessing the urgency of manual on-site inspection tasks. RGB images can
directly be used for visual interpretation by inspection personnel, further confirming the
environmental conditions and achieving the purpose of manual-assisted screening.

We conducted practical inspections on a dam project. The data collection and pro-
cessing for a 70,000 m2 inspection area took only 66 min. The system detected twenty-one
suspected risky areas, and manual on-site inspections confirmed fourteen areas, including
nine instances of backflow in drainage wells, three instances of pipe surges, and two cases
of leakage. This demonstrated the effectiveness of our developed multi-sensor equipment,
data processing workflow, and algorithms. The system not only saves time and effort
but also reduces personal safety risks associated with manual dam inspections during the
flood season. In future work, we will continue to optimize this inspection equipment and
approach, including improving data transmission methods and enhancing the accuracy of
the multi-level detection algorithm. We will also consider rapid image stitching techniques
to achieve real-time data collection, transmission, and modeling. Deep exploration of the
application value of multi-source data will be undertaken to provide data support and
technical services for emergency flood response scenarios.
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