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Abstract: With the increasing demand for application development of task publishers (e.g., automo-
bile enterprises) in the Internet of Vehicles (IoV), federated learning (FL) can be used to enable vehicle
users (VUs) to conduct local application training without disclosing data. However, the challenges
of VUs’ intermittent connectivity, low proactivity, and limited resources are inevitable issues in the
process of FL. In this paper, we propose a UAV-assisted FL framework in the context of the IoV. An
incentive stage and a training stage are involved in this framework. UAVs serve as central servers,
which assist to incentivize VUs, manage VUs’ contributed resources, and provide model aggregation,
making sure communication efficiency and mobility enhancement in FL. The numerical results show
that, compared with the baseline algorithms, the proposed algorithm reduces energy consumption
by 50.3% and improves model convergence speed by 30.6%.

Keywords: federated learning; UAV-assisted Internet of Vehicles; incentive mechanism; resource
allocation

1. Introduction

With the deployment of the Internet of Things (IoT) in more fields, there is an increasing
number of connected devices working together to jointly serve various applications. These
devices have sensing and computing capabilities, which support them in collecting raw
data in the environment for further processing [1]. As an important extension of the IoT,
the Internet of Vehicles (IoV) has established a wide range of vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) connections [2,3]. Vehicle users (VUs) are equipped with
more powerful integrated sensors to capture information in the road environment.

The extensive data collected by VUs have become a new driving force for emerging
applications [4], such as autopilot, location management, traffic prediction, etc. How-
ever, traditional cloud computing requires VUs to transfer raw data to the cloud, which
brings the challenges of a high communication overhead, a high transmission delay, and
privacy disclosure [5]. Federated learning (FL) [6] has been proposed as a distributed ma-
chine learning architecture to push the computing process to the devices to protect users’
data privacy.

However, communication inefficiency remains a key bottleneck in FL. Vehicles are
constantly moving, leading to a dynamic and changing network topology. This mobil-
ity can result in frequent changes in the availability of communication links between
vehicles and roadside units (RSUs), affecting the reliability and stability of FL. In ad-
dition, due to the mobility of vehicles, connections between them may be intermittent.
This can lead to challenges in maintaining continuous communication for model updates
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and coordination between vehicles. Inspired by the recent advancements in unmanned
aerial vehicles’ (UAVs’) assisted cellular communications, we propose an UAV-assisted FL
framework in the Internet of Vehicles (IoV) network, which can bring several advantages
and motivations:

1. Edge computing capabilities: UAVs can serve as edge services for federated learning,
performing computation and learning tasks locally. This reduces the need for exten-
sive data transfers and minimizes latency. Edge computing on UAVs enhances the
scalability and efficiency of federated learning in distributed environments.

2. Communication efficiency and mobility enhancement: By processing model aggre-
gation locally on UAVs, there is a significant reduction in the need to transmit large
amounts of raw data to a central server. What is more, UAVs can cover a wide geo-
graphic area efficiently, which addresses the training challenges associated with the
high dynamicity of vehicles in IoV.

3. Privacy-preserving surveillance: Federated learning allows for model training on de-
centralized data, addressing privacy concerns. UAVs can collect data or models locally
without transmitting sensitive information to a central server. Privacy-preserving
techniques, such as differential privacy, can be integrated into federated learning to
further protect individual privacy.

4. Network resilience: UAVs can operate in areas with limited network infrastructure or
during network failures. Federated learning’s decentralized nature makes it resilient
to intermittent connectivity, aligning well with the mobility and varying connectivity
conditions in the IoV.

The proposed framework involves two stages: the incentive stage and the training
stage. In the incentive stage, a contract-based incentive mechanism is designed to encour-
age VUs to proactively contribute their data. In the training stage, an energy-efficient
resource allocation algorithm is designed between the UAVs and the VUs to manage
the process of federated training, which allocates VUs’ computing and communication
resources according to the result of the contract. The contributions of this article are
as follows:

• We propose a UAV-assisted FL framework in the IoV. Each UAV acts as a central
server to provide the model aggregation or model parameter relay in the sky, which
increases the reliability of FL under the uncertain and high-mobility conditions in the
IoV network.

• We design a contract-based incentive mechanism between UAVs and UVs. UAVs
make contracts to assist VUs in responding to task publishers’ service requests and
participating in federated training. Moreover, the contract mechanism determines VUs’
contributed local data based on their specific types in the presence of information asym-
metry. VUs can receive corresponding revenues according to their data contributions.

• We design an energy-efficient resource allocation algorithm to minimize total energy
consumption in the training stage. According to the contract’s specific willingness
and types, UAV manages VUs’ computing and communication resources to achieve
energy-efficient federated training.

The rest of this paper is organized as follows. We review the relevant literature in Sec-
tion 2. Then, we present the UAV-assisted FL framework in Section 3. We present the design
of the contract incentive mechanism in Section 4 and the energy-efficient resource allocation
algorithm in Section 5. Section 6 provides the performance of the proposed system. Finally,
we give the discussion and conclusions of the paper in Sections 7 and 8.

2. Literature Review

In this section, we review the most relevant achievements and milestones of incentive
mechanism and resource allocation in FL.
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2.1. Incentive Mechanism in FL

Incentive is a concept in the field of economics that is often used in crowdsensing [7,8],
edge computing [9], and other fields to encourage members to participate in certain tasks.
Classified according to the design method of incentive mechanisms, most of the existing
research adopts the Stackelberg game [10–14], contract theory [15–20], and auction [21–25].

In the Stackelberg game, both sides choose their own strategies according to the
possible strategies of the other side to ensure the maximization of their own interests.
Y. Sarikaya et al. [10] established a Stackelberg game between the terminal devices and
the central server. The central server allocates revenue according to the CPU power
consumption of the devices, and both parties optimize their utility functions individually.

Contract theory maximizes utility functions by designing contract optimization prob-
lems between the two parties. A contract optimization problem is designed between
mobile users and mobile application providers in [17], and an iterative contract algorithm
is designed to maximize the utility function of all agents.

Like contract theory, auction can solve the problem of information asymmetry. Auc-
tion is divided into unilateral auction and double auction. Double auction can pro-
tect the interests of both buyers and sellers through incentive mechanisms and max-
imize the total welfare of the whole market. Work [21] used multi-dimensional pro-
curement auction to select multiple edge nodes to participate in FL, and adopted the
Nash equilibrium strategy for edge nodes. Matched double auction is used to model
between edge computing servers and terminal devices in [22]. The device requests
computing services from the server with a bid, and the server also asks for a price to
sell services.

2.2. Resources Allocation in FL

At present, there are a large number of resource allocation studies on the energy-
saving optimization of FL in wireless communication scenarios [26–30]. Here, we focus on
resource allocation in the IoV scenario.

In the IoV, the research on resource allocation mostly aims at high performance or en-
ergy efficiency. Among them, the research on resource allocation with high performance as
the optimization goal focuses more on performance indicators, delay, and transmission rate.
L. Feng et al. jointly carried out calculation and URLLC resource allocation in [31] to ensure
the stability of the C-V2X network. Work [32,33] used the deep reinforcement learning
method to allocate resources. S. Bhadauria et al. allocated communication resources in [32]
to ensure the low transmission delay of users, and H. Ye et al. allocated V2V resources
in [33] to seek the optimal transmission bandwidth and power according to the interaction
between V2V communication link agents and the environment.

The research on resource allocation with high energy efficiency as the optimization
goal focuses more on energy consumption. Work [34] proposed a cellular network uplink
energy-saving transmission scheme based on V2X relay communication. Work [35] studied
the resource management problem of maximizing vehicle energy efficiency and proposed a
new resource allocation scheme based on Lyapunov theory.

In the research on resource allocation, the above papers have either considered high
performance or high energy efficiency, but there exist few studies that have combined the
two goals to optimize them. Moreover, few studies simultaneously consider optimizing
both the data quantity and resources for VUs.

3. Proposed FL Framework in UAV-Assisted IoV

We consider an application scenario that consists of task publishers, a fleet of UAVs,
and VUs, as illustrated in Figure 1.

Task publishers are automobile enterprises that want to train intelligent road appli-
cations, such as automatic driving applications, road landmark recognition applications,
traffic management applications, etc. They employ VUs to utilize local data to train intelli-
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gent applications. The set of task publishers is denoted as A = {a1, a2, ..., aK} and K is the
number of publishers.

Due to the limited coverage of UAVs, a UAV often serves as the wireless relay for a
specific area of the road, and it is carrying a specific task from the task publishers. The UAV
incentivizes VUs to participate and organizes VUs to train models within its coverage area.
It is responsible for aggregating the models of VUs and distributing new models. Assuming
that there are M UAVs, their set is defined as S = {s1, s2, ..., sM}. The UAV si at position
(xs,i, ys,i) has a coverage radius Rs,i.

VUs use their collected data for local training, and only need to upload the trained
model parameters to UAVs. Assume that N VUs are selected to participate in training in
one area. The set of VUs is denoted as C = {c1, c2, ..., cN}, and the location of cj as (xc,j, yc,j).
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Figure 1. Application scenario.

Our proposed UAV-assisted FL framework in the IoV involves an incentive stage and
a training stage, as shown in Figure 2.

During the incentive stage, the UAV is responsible for signing contracts with VUs
participating in FL within the coverage area. The VUs are stimulated to select contracts that
align with their respective types and determine the data quantity needed for local training.
In the training stage, UAVs organize the VUs for FL in their areas. Each VU conducts local
training using the needed data quantity and allocated computing resources. Subsequently,
the VUs upload the local model parameters to the UAV. The UAV aggregates local models
of all participating VUs and updates the global model. The global model is then distributed
to the VUs again, and the training process is iterated until the global model converges. It
should be noted that if a VU exceeds the coverage range of the UAV in the current area
during the training process, the UAV can obtain the model parameters of the VU through
mobile vehicle tracking or model feedback. Each UAV submits the final global model to
the corresponding task publisher.



Drones 2024, 8, 82 5 of 23

Training Stage

Make contracts

Incentive StageIncentive Stage
Step 1: Find and sign optimal contracts

Training Stage

Make contracts

Incentive Stage
Step 1: Find and sign optimal contracts Step 2: Resource allocation and 

local model training 

Collected 

data

Local

model

Area 1 Area 2

Training Stage

Make contracts

Incentive Stage
Step 1: Find and sign optimal contracts Step 2: Resource allocation and 

local model training 

Collected 

data

Local

model

Area 1 Area 2

Training StageTraining StageTraining Stage
Step 4: UAV performs mobile vehicle tracking or 

model feedback if needed

Training StageTraining Stage
Step 4: UAV performs mobile vehicle tracking or 

model feedback if needed
Step 3: Model aggregation

Area 1 Area 2

Training StageTraining Stage
Step 4: UAV performs mobile vehicle tracking or 

model feedback if needed
Step 3: Model aggregation

Area 1 Area 2

Area 1
… … 

Area 1

Global

model

Upload

model

… 

θ

 

h

r

d

Computing

resource

Iteration

①
 

①
 

Train 

model

②
 

③
 

④
 

②
 
③
 

Aggregate

model

④
 

Return 

parameters

①
 

②
 ③

 
④
 

Model feedback

Figure 2. UAV-assisted FL framework.

Notations used in this paper are listed in Table 1.

Table 1. Notations.

Description Symbol

Path loss between cj and UAV at timeslot t gj(t)
Transmission model size of cj ωj
Transmission power of VU cj pj
CPU cycle frequency of cj f j
Communication delay Tcom

j
Communication energy consumption Ecom

j
Computation delay Ttrain

j
Computation energy consumption Etrain

j
Total delay of cj Tj
Total energy consumption of cj Ej
Local model accuracy of cj ηloc

j
Local training iterations of cj Iloc

j
Global training iterations of I0
Sojourn time of cj under UAV si Ti,j

sojourn
The data quantity cj contributed to task publisher qj
The reward of cj Rj
The willingness of cj to participate in training ε j
The proportion of type-j VU ρj
VU’s unit cost required for training c
The utility of task publisher UTP
The utility of cj Uj
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4. Incentive Mechanism for Contracts of Vehicles

As mentioned earlier, we have introduced an incentive stage to boost the enthusiasm
of VUs to respond to task publishers and finalize the amount of data that different types of
VUs need to contribute during training. Due to the information asymmetry between the
task publishers and VUs, the UAVs should design specific contracts for different types of
VUs with different data orders of magnitude to improve their profits. The UAVs provide
different reward packages from publishers to VUs based on the VU type to reward them
for providing local data.

For VUs with a different amount of data, the UAV provides a contract (Rj, qj) to VU
cj, where qj refers to the amount of data contributed by j-VU, qj ≤ Dj, and Rj refers to the
corresponding reward for that VU. Assume that ρj denotes the proportion of type-j VU,

which satisfies ∑J
j=1 ρj = 1, and x denotes the number of participating VUs. Focusing on a

task publisher, the utility function (i.e., publisher’s revenue from achieving models) can be
modeled as follows:

UTP = ρjx∑J
j=1ω log (1 + bqj)− R (1)

where ω is the transformation parameter from model performance to revenue, and b is the
dynamical parameter. The log function captures the relationship between the data quantity
and the performance of the model.

Correspondingly, the utility function Uj for the VU of type-j is as follows:

Uj = ε jRj − cqj (2)

where ε j is the willingness of type-j VU to participate in training, ε1 < · · · < ε j < · · · < ε J ,
and c is VU’s unit cost required for the training of data.

As such, the optimization problem can be expressed as follows:

max
(Rj ,qj)

UTP = ρjx∑J
j=1ω log (1 + bqj)− R

s.t

ε1R1 − cq1 ≥ 0

ε jRj − cqj ≥ ε jRj−1 − cqj−1

∑J
j=1ρjxqj ≤ qmax (3)

where qmax is the total amount of the data contributed by VUs.

4.1. Contract Feasibility

For feasibility, each contract must satisfy the following conditions:

Definition 1. Individual rationality (IR): Each VU only participates in the federated learning task
when the utility of the VU is not less than zero, i.e.,

ε jRj − cqj ≥ 0 (4)

Definition 2. Incentive compatibility (IC): Each VU of type-j only chooses the contract designed
for its type, i.e.,

(
Rj, qj

)
instead of any other contracts (Rz, qz) to maximize utility, i.e.,

ε jRj − cqj ≥ ε jRz − cqz (5)

Lemma 1. Monotonicity: For contract (Rj, qj) and (Rz, qz), we can see that Rj ≥ Rz, if and only
if ε j ≥ εz and j ̸= z, j, z ∈ {1, . . . , J}.
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Proof. Based on the IC constraints of type-m VU and type-z VU, we can see that

ε jRj − cqj ≥ ε jRz − cqz (6)

εzRz − cqz ≥ εzRj − cqj (7)

This paper first proves adequacy: adding Equations (6) and (7) by transformation, we
can obtain

ε jRj + εzRz ≥ ε jRz + εzRj (8)

ε jRj − εzRj ≥ ε jRz − εzRz (9)

Combining Equations (8) and (9), we can obtain Rj
(
ε j − εz

)
≥ Rz

(
ε j − εz

)
. Note that

ε j − εz ≥ 0, thus it can be proven that Rj ≥ Rz. Similarly, this demonstrates necessity:
we can obtain ε j

(
Rj − Rz

)
≥ εz

(
Rj − Rz

)
. If Rj − Rz ≥ 0, it follows that ε j ≥ εz. As such,

Lemma 1 is proven.

Lemma 2. If the IR constraint of type-1 is satisfied, then other IR constraints will also hold.
According to the IC constraint, ∀j ∈ {2, ..., J}, we can obtain

ε jRj − cqj ≥ ε jR1 − cq1 (10)

and, because ε1 < · · · < ε j < · · · < ε J , we can obtain

ε jR1 − cq1 ≥ ε1R1 − cq1 (11)

Therefore, by combining Equations (10) and (11), we can obtain

ε jRj − cqj ≥ ε1R1 − cq1 (12)

Equation (12) indicates that when the IR constraint of type-1 VUs is satisfied, other IR
constraints will automatically remain unchanged. Therefore, other IR constraints can be limited to
the IR conditions of type-1 VUs.

Lemma 3. According to the monotonicity in Lemma 1, the IC constraints can be simplified to local
downward incentive constraints (LDICs), expressed as follows:

ε jRj − cqj ≥ ε jRj−1 − cqj−1 (13)

Proof. The IC constraint between type-j and type-z, ∀z ∈ {1, . . . , j − 1}, is defined as a
downward IC (DIC), expressed as ε jRj − cqj ≥ ε jRz − cqz.

First, it is proven that the DIC can be reduced to two adjacent types of DIC, which are
called LDICs. Given that ε j−1 < ε j < ε j+1, j ∈ {2, ...J − 1}, we can obtain

ε j+1Rj+1 − cqj+1 ≥ ε j+1Rj − cqj (14)

ε jRj − cqj ≥ ε jRj−1 − cqj−1 (15)

By utilizing the monotonicity, i.e., Rj ≤ Rz, if and only if ε j ≤ εz, j ̸= z, and j, z ∈
{1, . . . , J}, we can obtain

ε j+1
(

Rj − Rj−1
)
≥ ε j

(
Rj − Rj−1

)
(16)

Equation (15) can be transformed to obtain the following equation:

ε j
(

Rj − Rj−1
)
≥
(
qj − qj−1

)
(17)
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Combining Equations (16) and (17), we can obtain

ε j+1Rj − cqj ≥ ε j+1Rj−1 − cqj−1 (18)

Combining Equations (14) and (18), we can obtain

ε j+1Rj+1 − cqj+1 ≥ ε j+1Rj−1 − cqj−1 (19)

The above formula can be generalized to prove that all DICs can be preserved to
type-1, and thus can be obtained:

ε j+1Rj+1 − cqj+1 ≥ ε j+1Rj−1 − cqj−1

≥ · · ·
≥ ε j+1R1 − cq1,

∀j ∈ {1, . . . , j − 1}

(20)

Similarly, we can prove that all the UICs can be held until type-J, expressed as follows:

ε j−1Rj−1 − cqj−1 ≥ ε j−1Rj+1 − cqj+1

≥ · · ·
≥ ε j−1RJ − cqJ ,

∀j ∈ {j + 1, . . . , J}

(21)

Proof. The IC constraint between type-m and type-z, ∀z ∈ {j + 1, . . . , J}, is defined as an
upward IC (UIC), expressed as ε jRj − cqj ≥ ε jRz − cqZ.

First, it is proven that an UIC can be reduced to two adjacent types of UIC, which are
called LUICs. Given that ε j−1 < ε j < ε j+1, j ∈ {2, ...J − 1}, we can obtain

ε j−1Rj−1 − cqj−1 ≥ ε j−1Rj − cqj (22)

ε jRj − cqj ≥ ε jRj+1 − cqj+1 (23)

By utilizing the monotonicity, i.e., Rj ≤ Rz if and only if ε j ≤ εz, j ̸= z, and j, z ∈
{1, . . . , J}, we can obtain:

ε j
(

Rj+1 − Rj
)
≥ ε j−1

(
Rj+1 − Rj

)
(24)

Equation (23) can be transformed to obtain the following equation:

ε j
(

Rj+1 − Rj
)
≥ c
(
qj+1 − qj

)
(25)

Combining Equations (24) and (25), we can obtain

ε j−1Rj − cqj ≥ ε j−1Rj+1 − cqj+1 (26)

Combining Equations (22) and (26), we can obtain

ε j−1Rj−1 − cqj−1 ≥ ε j−1Rj+1 − cqj+1 (27)

Hence, with the LUIC, all the UICs hold and can be reduced, i.e., Equation (27) can be
extended to Equation (21).

4.2. Optimal Contract

In order to derive the optimal contract in Equation (3), we first solve the relaxation
problem of Equation (3) without the monotonic constraint, and then test whether the
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obtained solution satisfies the monotonic condition. By using the iterative method on IC
conditions and IR conditions, we can obtain the optimal reward, expressed as

R∗
j =

{ cq1
ε1

, j = 1
Rj−1 +

c
ε j

(
qj − qj−1

)
, j = 2, · · · , J (28)

According to [7], the optimal rewards can be expressed as

R∗
T =

cq1

ε1
+ ∑T

t=1△t (29)

where △t =
c
ε j

(
qj − qj−1

)
and △1 = 0. By plugging Rj into ∑J

j=1ρjxRj, we can obtain

∑J
j=1ρjxRj = ∑J

j=1

(
ρjx

cqj

ε j
+ ρtx∑J

t=j+1Λt

)
(30)

where Λt =
cqt
εt

− cqt
εt+1

and ΛJ = 0.
By plugging Equation (30) into the problem in Equation (3) and getting rid of all Rj,

we can rewrite Equation (3) as

max
(Rj ,qj)

UTP =ρjx∑J
j=1ω log (1 + bqj)− ∑J

j=1

(
ρjx

cqj

ε j
+ ρtx∑J

t=j+1Λt

)

=ρjx∑J
j=1ω log (1 + bqj)− ∑J

j=1

(
ρjx

cqj

ε j
+ ρtx∑J

t=j+1

(
cqt

εt
− cqt

εt+1

))
s.t

∑J
j=1ρjxqj ≤ qmax (31)

By dividing UTP by qj, we can obtain ∂2UTP/∂q2
j < 0, so we can find that UTP is

a concave function. The maximized concave function is actually a convex optimization
problem. Therefore, we can use convex optimization toolkits such as CVX to solve for the
optimal data quantity qj and the corresponding reward Rj.

5. Contract-Based Energy-Efficient Resource Allocation for UAV-Assisted FL

In the incentive stage, the UAVs have already incentivized VUs to sign the corre-
sponding optimal contract based on their willingness, and the contract determines the
VUs’ contributed data quantity qj for local training. During the training stage, the VUs
utilize the results of the contract for local training. In this section, we design a resource
allocation problem based on the contract’s willingness to minimize the VUs’ total energy
consumption in training.

UAVs broadcast the applications to VUs in their coverage, and the responding VUs
are further scheduled by the UAVs to form federations. VUs use local data for training
and upload the trained model to the current UAV. UAVs aggregate when receiving all
models and then distribute new model parameters. The whole process repeats a number of
rounds to reach convergence.

Assuming that the initial model is defined as ω(0), cj trains local models according to
its assigned dataset Dj(t) in each iteration t. If the local model of cj at t timeslot is denoted
as ωj(t), the local training process can be expressed as

ωj(t + 1) = ωj(t)−
ϵ

|b|∇ f (ωj(t), Dj(t)) (32)

where ϵ is the learning rate, ϵ ∈ [0, 1], |b| is one batch size, and f (ωj(t), Dj(t)) is the loss
function of cj.
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In each iteration t, VUs upload local models to the current UAV. The UAV uses the
federated averaging algorithm (FedAvg) to aggregate all models. Assume the number of
VUs involved is J, where J ≤ N, then the aggregation process can be expressed as

ω(t) =
1
J

J

∑
j=1

ωj(t) (33)

5.1. System Models

During the FL process, the real-time communication model, computation model, and
mobility model are formulated as follows.

5.1.1. Communication Model

The channel states of VUs vary at different periods. Different from terrestrial channel
models, the channel between the UAV and VU is affected by line-of-sight (LoS) and none-
line-of-sight (NLoS) propagation modes. We can define the probability of having a LoS link
between the UAV and VU as P(LoS,t), which can be represented as Equation (34):

P(LoS,t) =
1

1 + a exp
(
−b
(

180
π θ(t)− a

)) (34)

where a and b are determined by the environment and θ(t) is the elevation angle, which is
equal to arctan(h(t)

r(t) ), where h(t) is the height of the UAV and r(t) is the horizontal distance
between the UAV and VU, as depicted in Figure 2. The probability increases with the
enlargement of angle θ(t).

Assume that the path loss between the VU and the UAV is defined as gj(t), and we
can express it in Equation (35):

gj(t) = 20 log
(

4π fcd(t)
c

)
+ P(LoS,t)ηLoS + P(NLoS,t)ηNLoS (35)

where fc is the carrier frequency, d(t) is the distance between the UAV and the VU, and c
is the speed of light. P(NLoS,t) is the probability of having a NLoS link and is equal to
1 − P(LoS,t). ηLoS and ηNLoS are the path loss coefficients. The values of a, b, fc, ηLoS, and
ηNLoS are referenced in [36].

Assume that the UAV allocates the subchannels equally to all VUs and that the
bandwidth of each VU is B. The achievable data rate of cj in iteration t is

rj(t) = B log2(1 +
pj(t)gj(t)

N0
) (36)

where pj(t) is the transmission power and N0 is the noise power.
When cj broadcasts local model ωj(t), the real-time communication delay through the

process is computed by

Tcom
j (t) =

ωj(t)
rj(t)

(37)

The corresponding communication energy consumption is computed by

Ecom
j (t) = pj(t)Tcom

j (t) (38)

5.1.2. Computation Model

f j is the CPU cycle frequency of cj and ξ j is the number of CPU cycles required to train
one data sample. The computation energy consumption through the local training of cj can
be computed as

Etrain
j (t) = τξ jDj(t) f 2

j (39)
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where τ is the capacitance coefficient of computing chipset. The computation delay through
the local training of cj can be computed as

Ttrain
j (t) =

ξ jDj(t)
f j

(40)

In this paper, the landmark recognition application is taken as an example. The amount
of VUs’ training data will affect the accuracy and the local iterations of the local model.
Define the local iterations and the global iterations as Iloc

j and I0, respectively, where Iloc
j

is calculated in Section 4. Therefore, the total time consumed by the communication and
computation processes of cj can be computed as Tj in Equation (41):

Tj(t) = I0(Iloc
j Ttrain

j (t) + Tcom
j (t)) (41)

Similarly, the total energy consumption is

Ej(t) = I0(Iloc
j Etrain

j (t) + Ecom
j (t)) (42)

5.1.3. Mobility Model

In this work, we consider the VU’s sojourn time under the current UAV to ensure that
its current training process can be completed within that time. When the VU enters the
next UAV’s coverage, it may participate in other services. According to [37], the remaining
distance of cj under the coverage of si can be computed as di,j:

di,j =
√

R2
s,i − (ys,i − yc,j)2 ± (xs,i − xc,j) (43)

Assuming the average speed of cj under the UAV as v̄j, the sojourn time of it in the

coverage of si is defined by Ti,j
sojourn in Equation (44):

Ti,j
sojourn =

di,j

v̄j
(44)

5.2. Problem Formulation

Due to the use of landmark recognition as the VUs’ local task, the classic MNIST
dataset is used to fit the local training accuracy. According to the fitting of a large number
of experimental results using the MNIST dataset, we can obtain the relationship between
the accuracy of the VU’s local model and the data size, as shown in Figure 3.
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Figure 3. Fitting of local data size and local model accuracy.
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In Figure 3, the x axis represents the data size of a VU, and the y axis represents the
model accuracy of its local training. We define the local model accuracy as ηloc

j , ηloc
j =

0.32 ln(qj)− 1.91. According to [26], we represent Iloc
j = α log( 1

ηloc
j
), where α is the diffi-

culty coefficient.
According to the results of the contract during the incentive stage, the optimal data

quantity for each VU is qj. By substituting qj into the fitted formula, the local iterations for
each VU can be obtained. Our optimization problem is the minimization of the total energy
consumption of VUs, which is the sum of local training and model transmission energy
consumption. The variables to be optimized are the CPU frequency f j and transmission
power pj. Based on the energy consumption defined in Equation (42), an optimization
problem can be formulated as P1:

P1 : min
f j, pj

J

∑
j=1

Ej (45)

s.t.

I0(
s
rj
+ Iloc

j
ξ jqj

f j
) ≤ ε

′
jT

i,j
sojourn, ∀j ∈ J (45a)

f min
j < f j ≤ f max

j , ∀j ∈ J (45b)

pmin
j < pj ≤ pmax

j , ∀j ∈ J (45c)

Constraint (45a) restricts the training time of a VU within its sojourn time under the
current UAV, where s means the model size needed to be transmitted. ε

′
j corresponds to the

degree of willingness in the contract. The higher the willingness of the VU to participate
in training, the larger the value of ε

′
j. Here, we design a VU with a greater willingness to

have a longer sojourn time for training. Constraints (45b) and (45c) set the ranges of the
computation frequency and transmission power of each VU.

In the contract, the greater the willingness to participate, the higher the data quantity
allocated to the vehicle. Due to the constraint of sojourn time in constraint (45a), VUs with
higher data quantities are more likely to use more computing and transmission resources to
ensure that training can be completed within the time limit. Therefore, in the contract-based
resource allocation problem designed, each optimization variable is mutually restrictive.

Since several products in the objective function and constraint (45a) are not convex, P1
is non-convex and thus can be difficult to solve. Consequently, we decompose this problem
to make it solvable.

We characterize P1’s solution by decomposing it into simpler sub-problems about
variables f j and pj, called P2 and P3, respectively. If we fix a set of p first, the sub-problem
P2 is only about variable f j.

P2 : min
f j

I0

J

∑
j=1

(Iloc
j ξ jqj f 2

j ) (46)

s.t.I0(
s
rj
+ Iloc

j
ξ jqj

f j
) ≤ ε

′
jT

i,j
sojourn, ∀j ∈ J (46a)

f min
j < f j ≤ f max

j , ∀j ∈ J (46b)

When f j is solved and substituted into P1, the sub-problem P3 becomes an optimiza-
tion problem only related to variable pj.
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P3 : min
pj

I0

J

∑
j=1

pj
s

B log2(1 +
pjgj
N0

)
(47)

s.t. I0[
s

B log2(1 +
pjgj
N0

)
+ Ttrain

j ] ≤ ε
′
jT

i,j
sojourn, ∀j ∈ J (47a)

pmin
j < pj ≤ pmax

j , ∀j ∈ J (47b)

5.3. Solution of the Optimization Problem
5.3.1. Solution to P2

It is obvious that Equation (46) is about the quadratic function of f j, and the quadratic
coefficient is positive, so P2 is a convex quadratic optimization problem. Among the
constraints, Equation (46a) is a linear constraint that does not affect the convexity property.
Although Equation (46b) is a non-linear constraint, its denominator only exists with the
variable f j, so it is also a convex function.

Therefore, classical Karush–Kuhn–Tucker (KKT) conditions can be used to solve
P2. A set of initial solutions sol(0) = (p(0), f (0)) should be defined. We then have the
Lagrangian of P2 by transferring the constraints to the objective.

L ( f j, λ) = I0

J

∑
j=1

(Iloc
j ξ jqj f 2

j ) + λ
[
I0(

s
rj
+ Iloc

j
ξ jqj

f j
)− ε

′
jT

i,j
sojourn

]
(48)

where λ is the multiplier corresponding to the constraint (46a). By applying KKT conditions,
we obtain

∂L
∂ f j

= 2I0 Iloc
j ξ jqj f j − λI0 Iloc

j
ξ jqj

f 2
j

= 0 (49)

λ[I0(
s
rj
+ Iloc

j
ξ jqj

f j
)− ε

′
jT

i,j
sojourn] = 0 (50)

From condition (49) we can obtain

f ∗j =
3

√
λ∗

2
(51)

From condition (50), since λ cannot be 0, we have

f ∗j =
I0 Iloc

j ξ jqjrj

rjε
′
jT

i,j
sojourn − sI0

(52)

Therefore, the optimal solution of P2 is f ∗ in Equation (52).

5.3.2. Solution to P3

Theorem 1. P3 is quasiconvex on pj.

Proof. The theorem is proven in Appendix A.
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Since the quasiconvex problem is also a unimodal problem, we use the bisection
method to solve it. To translate constraint (47a) into Equation (53), the lower limit of the
bisection method can be obtained.

rj ≥
s

ε
′
jT

i,j
sojourn
I0

− Iloc
j

ξ jqj
f j

(53)

where rj is defined in Equation (36), and from Equation (53), we can derive the lower limit
of pj:

pj ≥
2

sI0 f j

B( f jε
′
j Ti,j

sojourn−I0 Iloc
j ξ jqj) − 1

gj
(54)

Let the right-hand side of Equation (54) be equal to Gj, which represents the lower
limit of pj. It should be noted that Pmin

j is very close to 0, so Gj must be greater than pmin
j . If

Gj is greater than pmax
j , it means that the VU has a short sojourn time or a long local training

time, resulting in higher requirements for transmission power. In this case, the local optimal
solution of this VU is set as pmax

j , and the optimal solution will be obtained by iterating the
solutions of P2 and P3.

The bisection process of solving the optimal p∗ is given in Algorithm 1.

Algorithm 1 Bisection Method for Transmission Power Allocation Algorithm

Input: Initial section [a0, b0] = [Gj, pmax
j ], maximum tolerance ϵ > 0,

Set f (pj) = Iglob
i ∑J

j=1 pj
s

B log2(1+
pj gj
N0

)
, t = 1, conv = 0

Output: Gj ≤ p∗j ≤ pmax
j

1: while conv = 0 do
2: pt

j =
at−1+bt−1

2
3: Compute f ′(pt

j)

4: if f ′(pt
j) = 0 then

5: p∗j = pt
j, set conv = 1

6: end if
7: if f ′(pt

j) < 0 then

8: Update the section to [at, bt] = [pt
j, bt−1]

9: if |bt−1 − pt
j | ≤ ϵ then

10: p∗j = pt
j, set conv = 1

11: set t = t + 1
12: end if
13: end if
14: if f ′(pt

j) > 0 then

15: Update the section to [at, bt] = [at−1, pt
j ]

16: if |pt
j − at−1| ≤ ϵ then

17: p∗j = pt
j, set conv = 1

18: set t = t + 1
19: end if
20: end if
21: end while

We achieve the optimal f ∗ and p∗ by solving the sub-problems iteratively. The whole
solution of P1 is shown in Algorithm 2.
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Algorithm 2 Iterative Algorithm for the Whole Optimization Problem

Input: Initial sol(0) = ( f (0), p(0)), t = 1, conv = 0, maximum tolerance ϵ0 > 0
Output: Optimal sol∗ = ( f ∗, p∗)

1: while conv = 0 do
2: Solve P2 to obtain f t

j according to Equation (52)
3: Solve P3 to obtain pt

j according to Algorithm 1

4: sol(t) = ( f (t), p(t)), and set t = t + 1
5: Check the convergence of |sol(t) − sol(t−1)|
6: if |sol(t) − sol(t−1)| ≤ ϵ0 then
7: sol(∗) = sol(t), and set conv = 1
8: end if
9: end while

6. Experimental Evaluation

In this section, we analyze the performance of the contract incentive mechanism and
resource allocation algorithm for UAV-assisted FL.

6.1. Simulation Settings

In the contract incentive algorithm, we use the CVX tool to solve the optimization
problem. In the resource allocation algorithm, we deploy 20 to 50 VUs under the coverage
of one UAV. The coverage radius of the UAV is set to 3 km, the coordinates of the VUs are
randomly generated with the UAV located directly above the road, and the height of the
UAV is set to 100 m. The values of a, b, ηLoS, and ηNLoS are set to 12.08, 0.11, 1.6, and 23, as
employed in [36].

Taking the landmark recognition task as an example, we conduct the VUs’ FL experi-
ments on the MNIST dataset, which is a grayscale handwritten image dataset that includes
60,000 training pictures and 10,000 test pictures. The CNN model is used as the backbone
model of FL, which is composed of two convolutional layers, two activation functions, two
pooling layers, and two fully connected layers. Among them, the two convolutional layers
have 10 and 20 (5 × 5) convolution kernels. The two fully connected layers have 50 and
10 neurons, respectively. We exported the CNN parameter file (including all weights and
biases) with a size of approximately 0.05 Mbit.

Due to the small size of the transmission parameters, only one RB is needed to complete
the transmission. An RB is typically set to 180 kHz in the 4G protocol and also in the 5G
protocol. The other simulation parameters are set as in Table 2. Among them, the maximum
transmission power refers to the definition of 3GPP [38,39].

Table 2. Simulation parameters.

Parameters Values

Average speed of VU (v̄j) [20–30] m/s
Noise power (N0) −174 dBm/Hz
Total data size 47 MB
Bandwidth of each VU (B) 180 kHz
Transmitted model size (ωj) 0.05 Mbits
Maximum transmission power (pmax

j ) 20 dBm
Maximum CPU frequency ( f max

j ) 2 GHz
Learning rate 0.001
Batch size 128

6.2. Contract Optimality

Firstly, a total of 20 VUs and 5 VU types are set up to determine the optimal data
quantity and optimal reward based on the contract. We obtained solutions for the optimal
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data quantity for 5 VU types, which are 550, 600, 700, 750, and 800. The distribution of the
20 VUs in the 5 types is 5, 4, 6, 3, and 2.

We can see from Figures 4 and 5 that, as the VU type increases, both the data quantity
and the reward for the VU type increase. This means that the contract we designed satisfies
the monotonicity constraint, which is proved in Lemma 1.

Figure 4. Different data quantities versus VU types.

Figure 5. Different optimal rewards versus VU types.

The utility of VUs is shown in Figure 6. We can observe that all types of VUs achieve
their maximum utility only when they choose the contract item designed entirely for their
type, which explains the IC constraints. In addition, each VU can obtain a non-negative
utility when selecting the contract item corresponding to their type, thus validating the
IR constraints.
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Figure 6. VUs’ utility versus contract items.

6.3. Performance of the Resource Allocation

In this part, we evaluate the performance of the proposed energy-efficient resource
allocation. By substituting the solution of the optimal data quantity obtained from the
contract into the optimization problem, the optimal computing resource, transmission
power, and total energy consumption corresponding to resource allocation can be obtained.
To demonstrate the energy-efficient performance of the proposed algorithm, we set up
three baseline algorithms as follows.

• DCM: DCM [40] is a resource allocation algorithm in mobile edge computing that
aims at capturing the trade-off between learning efficiency and energy consumption.
It optimizes CPU frequency, data volume, and total FL delay.

• Benchmark1: Compared with the proposed algorithm, the CPU frequency f j of the
vehicle is directly set to f max

j .

• Benchmark2: Compared with the proposed algorithm, the power pj of the vehicle is
directly set to pmax

j .

• Benchmark3: Compared with the proposed algorithm, the data volume of vehicles is
randomly allocated.

Figure 7 illustrates the relationship between different transmission parameter sizes
and energy consumption. It can be observed that, as the parameter size increases, the total
energy consumption also increases. This is because larger parameters require more energy
for transmission.

The proposed algorithm achieves the lowest energy consumption. This is attributed
to our algorithm considering the sojourn time based on the degree of contract willing-
ness. The higher the willingness of the VU, the longer its sojourn time, and even if the
transmission delay increases, there is still enough time for training. However, in the case
of increased transmission delay, the DCM algorithm will reduce training time due to the
limitation of total sojourn time, thereby allocating more CPU frequency and resulting in
greater energy consumption.
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Figure 7. Total energy consumption versus parameter size.

Figure 8 illustrates the relationship between VU’s sojourn time and energy consump-
tion. It can be observed that, as the sojourn time increases, the energy consumption
decreases. This is because VUs have a longer training time, leading to a lower allocated
CPU frequency and transmission power, resulting in reduced computational and trans-
mission energy consumption. The curve’s trend gradually flattens out as the computation
or communication resources reach their minimum values. Among the compared algo-
rithms, Benchmark1 exhibits the least significant decrease in energy consumption. This
is because its CPU frequency is set to the maximum value and cannot be reduced. In the
DCM algorithm, latency is optimized, which may lead to a trade-off between latency and
energy consumption, resulting in higher energy consumption compared to the proposed
algorithm in this paper. The proposed algorithm comprehensively considers contract-based
sojourn time, computational capacity, and transmission capacity, aiming to minimize the
total energy consumption within a given sojourn time requirement.

Figure 8. Total energy consumption versus average sojourn time.
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Figure 9 illustrates the relationship between the number of VUs (J) and the total energy
consumption in FL. As the number of VUs increases, the energy consumption inevitably
increases. For Benchmark1 and Benchmark2, the allocation of maximum CPU frequency
and transmission power, respectively, results in high energy consumption. For Benchmark3,
the data allocation to VUs is not optimized, resulting in many VUs being assigned the
minimum amount of data, which may lead to poor model performance. As the number
of VUs increases, the performance gap between the DCM algorithm and the proposed
algorithm significantly increases. This is because the DCM algorithm optimizes the total
latency and model accuracy and may allocate as much data and as many resources as
possible to improve accuracy and reduce latency, but it ignores the consideration of the
willingness of VUs. The proposed algorithm outperforms all benchmarks when the number
of VUs increases, demonstrating that the designed algorithm achieves good stability.

Figure 9. Total energy consumption versus number of VUs.

6.4. Performance of Federated Learning

We validated the performance of FL on the MNIST dataset. Taking 20 VUs as an
example, we substituted the data quantity obtained from the contract algorithm into the
fitting formula mentioned earlier to determine the number of local training iterations
for each VU. By incorporating these values into FL, we obtain the corresponding model
accuracy and loss in Figure 10.

(a) (b)

Figure 10. The performance of federated learning. (a) Accuracy on a representative VU and (b) Loss
on a representative VU.

Figure 10 shows the comparison of the proposed algorithm’s accuracy with local
training and the classical federated averaging (FedAVG) algorithm with an equal dataset
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allocation. The results show that the accuracy of the proposed scheme is higher and the
convergence speed is faster than other algorithms on the MNIST dataset. This is because the
proposed algorithm assigns a training dataset size for VUs, and for the group of datasets,
a large number of experimental fitting results are used to calculate the training rounds of
each VU. Our algorithm makes up for the insufficient training caused by the small amount
of data compared with local training. Compared with classical FedAVG, it also employs
FedAvg, but performs data allocation and iteration rounds more accurately, which makes
the model’s performance improve faster. The results of the training loss further confirm the
better performance of the proposed algorithm.

7. Discussion

With the emergence of a large number of intelligent road applications and the in-
creasing competition in the intelligent transportation industry, more and more intelligent
transportation application enterprises (task publishers) tend to dispatch intelligent VUs to
assist in completing the training of application models. Currently, a large number of studies
have proposed applying the FL framework to IoV scenarios, utilizing VUs’ resources for
local training, thereby greatly reducing communication latency and improving training
efficiency. However, the dynamicity, low participation, and limited resources of VUs are all
challenges faced by FL in the IoV.

The proposed UAV-assisted FL framework utilizes UAVs to enhance connectivity.
The contract incentive mechanism proposed in the system aims to stimulate VUs to partici-
pate and determine VUs’ data quantity used for training. The experiments show that VUs
of different types should contribute different amounts of data and achieve corresponding
optimal rewards. In addition, VUs can obtain their maximum utility and ensure non-
negative utility only when they choose appropriate contract items, which verifies the IC
and IR principles of the contract mechanism.

The energy-efficient resource allocation algorithm is designed to manage VUs’ comput-
ing and communication resources during the training process. This algorithm determines
the local training iterations and training willingness of different VUs based on the results of
the contract mechanism, and then constructs and solves the energy consumption minimiza-
tion problem. Experiments show that the energy consumption of the proposed algorithm is
lower than that of the baseline algorithms under the conditions of different transmission
parameters, different sojourn times, and different numbers of participating VUs.

Utilizing the data quantity determined by the contract for FL, it is observed that the
accuracy and convergence speed of the proposed system surpass those of the comparative
algorithms. This further validates the efficacy of the proposed system, demonstrating its
ability to effectively incentivize VUs to participate in federated training using appropri-
ate resources.

The UAV-assisted FL framework leverages the role of UAVs as edge servers, enhanc-
ing connectivity in dynamic vehicular networks and assisting in the training process of
federated models. Future research needs to focus more on the augmenting role of UAVs
in system communication, addressing issues such as reliability and stability. More atten-
tion should be given to the UAVs’ contribution to reducing the risk of communication
interruptions and minimizing data transmission latency.

8. Conclusions

In this study, we have proposed a UAV-assisted FL framework in the context of the IoV
to overcome the challenges of VUs’ intermittent connectivity, low proactivity, and limited
resources. An incentive stage and a training stage are involved in this framework, where a
contract-based incentive mechanism and an energy-efficient resource allocation algorithm
are designed separately. With the assistance of UAVs, VUs can benefit from enhanced
communication efficiency and mobility, thus ensuring better training performance. The
experimental results show that the proposed framework achieves effectiveness in terms of
incentives and outperforms the baseline methods in terms of FL performance.
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Due to the energy consumption during FL and the limited computing resources, VUs
with a higher data quantity and quality might be reluctant to participate in federated
training because their standalone local training could yield better-performing models.
To address this challenge of low proactivity, we have designed a contract-based incentive
mechanism that categorizes VUs into different types, each signing distinct contracts. Due to
the information asymmetry between task publishers and VUs, UAVs serve as intermediaries
to assist in contract signing. These contracts specify the amount of data required for training
for each vehicle type and the corresponding rewards. This contract mechanism enhances
the proactive involvement of VUs in training and effectively manages data resources.
The corresponding experiments verify the effectiveness of the contract mechanism.

During the federated training process, it is necessary to consider both model perfor-
mance and the total energy consumption induced by training to comprehensively manage
training resources. Given the variation in data collected by VUs and their limited com-
puting and communication resources, the complexity of resource management increases.
Existing resource management studies mostly focus on single metrics of federated training
and rarely optimize both performance and energy consumption simultaneously. The pro-
posed contract-based efficient resource allocation algorithm in this paper addresses both
performance and energy consumption in FL. It formulates the energy minimization prob-
lem based on contract results. As the contract mechanism manages data based on VU
types and determines the training iterations, it enhances the performance of FL. More-
over, by introducing VUs’ participation willingness in the energy optimization problem,
the algorithm effectively manages computing and communication resources for training,
thereby reducing the total energy consumption. The experiments have demonstrated that
the proposed algorithm reduces energy consumption and improves performance in FL.

In summary, this study addresses the challenges of VUs’ intermittent connectivity,
low proactivity, and limited resources in the context of FL. In potential future work, we
would primarily focus on two aspects. Firstly, while we have already considered the role of
UAVs as edge servers to assist FL, future attention could be directed towards evaluating
the contribution of UAVs to system communication metrics. This includes assessing the
extent to which UAVs contribute to reducing the risk of communication interruptions
and minimizing data transmission latency, among other factors. Secondly, we have not
yet considered issues of cooperation and competition among UAVs. Future research
could explore the formation of alliances among UAVs to enhance the overall efficiency of
the system.
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Appendix A

For P3, since all variables are fixed except pj, the limiting condition (45a) can be

changed to rj = B log2(1 +
pj |hj |2gj

N0
) ≥ rreq

j . The region of constraints (45a) and (45b) are
convex sets.

In addition, since rj = B log2(1 +
pj |hj |2gj

N0
) is concave, 1

B log2

(
1+

pj |hj |2gj
N0

) is convex.

The sublevel sets of convex functions are convex sets. Therefore, all the sublevel sets and
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constraints of P3 are convex sets, which satisfy the necessary and sufficient conditions for
quasiconvex functions [41].
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