
Citation: Asignacion, A., Jr.; Suzuki, S.

Historical and Current Landscapes of

Autonomous Quadrotor Control:

Early-Career Researchers’ Guide.

Drones 2023, 8, 72. https://

doi.org/10.3390/drones8030072

Academic Editor: Abdessattar

Abdelkefi

Received: 16 January 2024

Revised: 26 January 2024

Accepted: 17 February 2024

Published: 20 February 2024

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Review

Historical and Current Landscapes of Autonomous Quadrotor
Control: An Early-Career Researchers’ Guide
Abner Asignacion, Jr. and Suzuki Satoshi *

Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan; abner_asignacion@chiba-u.jp
* Correspondence: suzuki-s@chiba-u.jp

Abstract: The rising demand for autonomous quadrotor flights across diverse applications has led
to the introduction of novel control strategies, resulting in several comparative analyses and com-
prehensive reviews. However, existing reviews lack a comparative analysis of experimental results
from published papers, resulting in verbosity. Additionally, publications featuring comparative
studies often demonstrate biased comparisons by either selecting suboptimal methodologies or fine-
tuning their own methods to gain an advantageous position. This review analyzes the experimental
results of leading publications to identify current trends and gaps in quadrotor tracking control
research. Furthermore, the analysis, accomplished through historical insights, data-driven analyses,
and performance-based comparisons of published studies, distinguishes itself by objectively identi-
fying leading controllers that have achieved outstanding performance and actual deployment across
diverse applications. Crafted with the aim of assisting early-career researchers and students in gaining
a comprehensive understanding, the review’s ultimate goal is to empower them to make meaningful
contributions toward advancing quadrotor control technology. Lastly, this study identifies three gaps
in result presentation, impeding effective comparison and decelerating progress. Currently, advanced
control methodologies empower quadrotors to achieve a remarkable flight precision of 1 cm and
attain flight speeds of up to 30 m/s.

Keywords: quadrotors; autonomous flights; UAV control strategies; comparative survey; quadrotor
tracking control review; quadrotor research trends; performance-based comparison; quadrotor
history; early-career researchers

1. Introduction

Quadrotors or quadcopters are unmanned aerial vehicles (UAVs) that possess four
rotors. Their exceptional features have allowed for applications across diverse industries,
indicating their potential as crucial assets in modern society. The distinctive characteristics
include adaptability, mobility, and cost-effectiveness. The growing interest in quadrotors,
as shown in Figure 1a, clearly demonstrates their appeal to both the public and researchers.
Initially, these devices were mostly utilized by hobbyists and researchers. However, driven
by the ease of availability of commercial products such as the Parrot AR.Drone and DJI
drones, these devices have gained a wider attention. Furthermore, the proliferation of
quadrotor applications such as aerial photography, search and rescue operations, industrial
monitoring and maintenance, agriculture, entertainment, and potential future domains
such as logistics and weather forecasting has contributed to their rising popularity.

Extensive research has been dedicated to quadrotor control [1,2], safe navigation [3],
and their application across diverse fields [4]. As demonstrated in Figure 1b, the number of
research papers focusing on quadrotor control has exhibited exponential growth, highlight-
ing the significant attention directed toward advancing control methodologies for these
aerial systems.

Drones 2023, 8, 72. https://doi.org/10.3390/drones8030072 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8030072
https://doi.org/10.3390/drones8030072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-1256-8480
https://orcid.org/0000-0001-5343-4660
https://doi.org/10.3390/drones8030072
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8030072?type=check_update&version=2


Drones 2023, 8, 72 2 of 35

Figure 1. (a) A compelling evidence of the increasing interest among the general public in quadrotors
or UAVs, as observed through Google Trends. The hype around quadcopter and UAV keywords can
be attributed to the rising popularity of these two famous commercial drones: DJI drone and Parrot
AR. Drone. (b) Proof of growing interest of researchers in quadrotor control, as evidenced by Google
Scholar search results for two specific search prompts (S1 and S2) utilizing the allintext and allintitle
criteria. S1: “(quadrotor OR quadcopter OR quad-rotor) AND (control)”, and S2: S1 “AND (trajectory
OR tracking OR waypoint OR position)”. The emphasis is solely on the upward trend rather than the
specific numerical values for each year, as the data may vary depending on Google’s algorithm.

1.1. Motivation

The primary objective for several research enthusiasts in the field of UAV applications
is to realize quadrotor controllers aimed at applications such as autonomous flight, aerial
manipulation, swarms, and multi-agent systems. Top controllers must exhibit exceptional
performance in the face of disturbances, uncertainties, and faults. To suffice these necessities,
researchers often turn to online libraries such as Google Scholar (GS) and IEEE Xplore
(IX), where they anticipate finding high-quality controllers. Utilizing the search parameter
“allintitle: S2” in GS may yield an impressive 67,500 results, while conducting an abstract-
based search in IX Advanced Search produces 1205 results. By narrowing the scope to
the past decade, the GS presented 22,000 relevant findings compared to the IX’s 1082.
Further limiting the search to the last five years, it was observed that GS resulted in
18,700 matches while IX yielded 629 matches. The first notable papers in the list of GS
include [5–9], whereas those in IX are [10–14]. These papers propose an array of control
strategies encompassing learning (Lrn) [5,10,11], sliding mode control (SMC) [14], optimal
techniques (Opt) [8], disturbance estimation [9], backstepping (Bk) [10,12], and hybrid
controllers [6,7,13]. Although the number of search results may vary depending on the time
of the search, the amount of published information to digest remains overwhelming for
researchers within a limited time. For instance, when early-career researchers in this field
are confronted with challenging choices, they are often unsure of the best path to follow.
A few of the key questions that emerge include:

• Are these controllers truly cutting-edge?
• Where should their focus be directed?
• How can they fine-tune the control parameters?

Despite these doubts, every paper appears to be promising. This dilemma is unique
to early-career researchers, especially those who are encouraged to independently learn
quadrotor control and those who do not learn around experts. Motivated by the afore-
mentioned dilemma, the researchers sought reviews to guide their decisions. In addition,
gathering insights from other researchers regarding their selected methods may provide
valuable clarity.

Several review papers have extensively covered various aspects of UAVs, including
the classification, modeling/identification, control, planning, sensing/estimation, and
applications. These comprehensive reviews serve as valuable learning platforms to students
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and practitioners. Figure 2 shows a collection of 16 review papers [2,15–29] on UAV control
published a decade ago, featuring components, citation counts, and reference quantities.

Figure 2. Existing review articles on quadrotor control, highlighting number of references and
citations as indications of article comprehensiveness and impact. While these alone do not determine
the quality of review, they reflect the breadth of research considered in the article, along with
potential helpfulness to the readers. Review numbers are as follows: [15] (R1), [16] (R2), [17] (R3), [18]
(R4), [19] (R5), [20] (R6), [21] (R7), [22] (R8), [23] (R9), [24] (R10), [25] (R11), [26] (R12), [27] (R13), [28]
(R14), [2] (R15), [29] (R16).

The survey in [22] focused on the position and attitude control of UAVs, highlighting
the prevalence of cascade control and demonstrating the feasibility of robust tracking
control in quadrotors. However, it fails to provide systematic or in-depth analysis and does
not synthesize current studies to identify existing gaps. Ref. [15] compared several attitude
control methods in hierarchical structure, where the tracking control is only a PID control.
Ref. [20] compared four path-following controls.

To establish a comprehensive review, ref. [25] discussed modeling, system identifica-
tion, control algorithms, and obstacle avoidance. Detailed comparisons of the controllers
(PID, feedback linearization (FL), SMC, and integral Bk) through numerical simulations
reveal SMC’s superior tracking precision and robustness, whereas PID excels in energy
efficiency. In contrast, ref. [2] compared five controllers (PID, FL, SMC, Bk, and fuzzy con-
trol) using nine performance metrics. The authors performed a two-step parameter-tuning
strategy wherein the attitude control must first obtain a satisfactory response, and the
position control parameters are then tuned. The findings of this study designate SMC and
Bk as highly accurate yet computationally demanding control strategies. Conversely, while
exhibiting less demanding computational requirements, the FL controller yielded relatively
inferior results. The PID controller is the simplest model, and it exhibits the smallest track-
ing error under nominal conditions. However, it is susceptible to disturbances. The authors
posited that SMC strikes a good balance between the control performance and inherent
simplicity, thereby advocating its efficacy in practical applications.

In [25], a tutorial-like exposition-covered SMC, model reference adaptive control
(MRAC), and adaptive SMC were proposed for quadrotor autopilots. Detailed experiments
assessed the implementability, tracking performance, and computational load, ultimately
favoring adaptive SMC. However, the review does not provide sufficient evidence to
support the initial choice of SMC based on popularity and plans to expand its scope in
future work.

Considering [15], SMC takes the spotlight as the most robust and most balanced
controller after using several statistical analysis methods. However, different trends were
observed when practitioners and young researchers were asked about their preferences.
They learned to use PD and optimal control methods instead of SMC. This discrepancy
raises questions regarding the true state-of-the-art controllers in the UAV field. Furthermore,
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complex aspects such as coupling, control structure, and verification methods contribute to
the complexity. Therefore, a more thorough approach is required to bridge these gaps.

1.2. Contribution

The main challenge in existing review papers is the limitation of covering broad topics,
which makes it difficult to conduct in-depth analyses. In this study, we address this issue by
primarily focusing on quadrotor trajectory-tracking control (QTTC) and its coupling with
attitude control, as illustrated in Figure 3. This area is highly significant within the high-
level control framework of autonomous quadrotor flight, which involves precise trajectory
execution and tracking in demanding environments. Autonomous quadrotor flight involves
self-directed navigation and maneuvers, excluding human intervention. Relying solely
on attitude control proves inadequate; a well-designed QTTC is imperative. Furthermore,
QTTC offers solutions to handle disturbances and uncertainties, which are critical aspects of
quadrotor applications such as aerial photography, search and rescue missions, inspections,
and goods delivery. Recent advancements in sensors, processors, and algorithms have
resulted in the ease of implementation of autonomous flights. This has further enabled
drones to navigate complex environments autonomously and reduced human intervention
and associated risks. Swarms and fleets of autonomous drones can work together to provide
greater scalability and coordination. Moreover, Pixhawk, a popular open-source autopilot
system utilized in UAVs, incorporates built-in stabilizing attitude control capabilities.
Therefore, the design of the tracking control is significantly for integration in autonomous
flight. Despite its importance, to the best of the authors’ knowledge, there have been no
comprehensive review papers on this topic to date. We considered more than 300 published
works, although not all were included in the references due to the length limit of the paper.

Figure 3. Autonomous quadrotor control system structure spotlighting our research focus.

The main contributions of this study are as follows:

1. In Section 2, we present a brief historical overview that has significantly influenced
the current control technologies applied to quadrotors.

2. In Section 3, we provide a comprehensive data-based review of peer-reviewed litera-
ture on QTTC over the past decade. This review covers various aspects, including
modeling, verification, control structures, control input terms, and techniques used to
address under-actuation.

3. In Section 4, we identify five major trends from the past decade to facilitate an im-
proved analysis and grouping of papers based on their control objectives. Furthermore,
we incorporate several tables to clearly illustrate the disparities in the performances
among high-impact publications. This process highlights bottlenecks that impede
progress in this field through data-based analysis and proposes solutions to address
these challenges.

4. In Section 5, we unveil the state-of-the-art control methods based on our compre-
hensive analysis. Additionally, we offer insights into the challenges associated with
selecting an appropriate controller for a specific application and provide suggestions
to overcome these hurdles.
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These contributions aim to foster a comprehensive understanding of QTTC and offer
guidance to early-career researchers and practitioners in the field. Table 1 presents the
nomenclature employed to facilitate discussions.

Table 1. Nomenclature: system variables and inputs.

Variable Meaning Variable Meaning
ξ position f input force
v velocity τ input torque
a acceleration d disturbance force
η attitude angles eξ position error
Ω angular rate ⋄d desired value of ⋄
ω motor angular speed ⋄̂ estimated ⋄
m mass Kp P gain
K f aerodynamic param Kd D gain
I moment of inertia k design parameters
Ir motor’s I χ observer/Bk variables
g gravitational acc β method-dependent variables

2. A Brief Historical Overview of QTTC (Beginning to 2013)

The history of quadrotor technology includes a combination of advancements in
various fields, including aerodynamics, control theory, computer science, and robotics.
Figure 4 illustrates the evolution of quadrotor technology as a tree growing from its first
seed to the catalysts that have driven its development, culminating in the impressive
capabilities of modern quadrotors.

Figure 4. Quadrotor technology evolution: a tree of progression with roots in first-generation
quadrotors, catalyst-driven branches of advancement, and fruits of inspirational achievements from
leading laboratories. Quadrotor research reference numbers are as follows: [30] Q1, [31] Q2, [32]
Q3, [33] Q4, [34] Q5, [35] Q6, [36] Q7, [37] Q8, [38] Q9, [39] Q10, [40] Q11, [41] Q12, [42] Q13, [43]
Q14, [44] Q15, [45] Q16, [46] Q17, [47] Q18, [48] Q19, [49] Q20, [50] Q21, [51] Q22, [52] Q23, [53]
Q24, [54] Q25, [55] Q26, [56] Q27, [57] Q28, [58] Q29.

The quadrotor concept traces its roots back to 1907 with the development of Gyroplane
No.1, a large-scale aircraft that spans 8 m and weighs 578 kg. However, small-scale quadro-
tors only emerged nearly a century ago. A notable breakthrough occurred in 1989 with
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the introduction of Keyence Gyrosaucer II E-570 (Japan), marking a significant milestone
in quadrotor development. Subsequently, successful models, such as the Draganflyer
and Roswell flyer (HMX-4), emerged in 1999, heralding the era of hobbyist kits. These
advancements have been made possible by the progress in microprocessor capabilities and
the availability of microelectromechanical (MEMS) inertial sensors [30].

At the ROMAN 2001 workshop, a feedback controller based on a linearized dynamic
model was presented. Simulation studies have been conducted to evaluate its perfor-
mance [31]. In 2002, a collaboration between the GRASP Lab of UPenn and R. Mahony
of the Australian National University involved the testing of a camera-equipped HMX-4
quadrotor [32]. However, the performance was affected by the tethering system. Conse-
quently, a dynamic-model-based Bk control (τi → (ξ, ψd)) was developed to stabilize the
quadrotor during quasi-stationary flight conditions [33]. The dynamic model is described
by Newton’s equations.

ξ̇ = v

v̇ = ge3 −
1
m

f Re3

Ṙ = Rsk(Ω)

IΩ̇ = −Ω × IΩ + Ga + τ

Irω̇i = τi − Qi

R =

cθcψ sϕsθcψ − sϕcψ cϕcθcψ + sϕsψ

cθsψ sϕsθsψ + cϕsψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ


(1)

where R is the rotation matrix, Ir is the moment of inertia of each motor, τi is the torque
exerted of each motor, e3 is

[
0 0 1

]⊤, and sk(Ω)v = Ω × v is the skew-symmetric matrix.
The motor dynamics account for aerodynamic drag as Qi = κω2

i , where κ is a constant.
The desired force vector from Bk is obtained as

T = mge3 + mξ̈d − mk1(k1 + k2)β1

β1 =
1
k1
(v − ξ̇d) + (ξ − ξd)

(2)

where ξ̈d denotes desired acceleration. The reference for attitude control is the desired
rotation matrix, as shown below:

Rde3 =
T

∥T∥ (3)

where ∥T∥ denotes the 2-norm of T. A stabilization experiment for take-off, hovering,
and landing was conducted by Castilio et al. using Lagrange dynamic modeling and a
controller based on nested saturation.

mξ̈ = mge3 − f Re3

Iη̈ = −C(η, η̇)η̈ + τ
(4)

where −C(η, η̇)η̈ is the Coriolis term that contains the gyroscopic and centrifugal terms.
In 2004, Autonomous Systems Lab (ASL), led by R. Siegwart, launched the OS4 Project

with the aim of enabling the fully autonomous navigation of micro vertical take-off and
landing (VTOL) vehicles, including quadrotors, within indoor environments [34]. In the
same year, attitude controllers (τ → η) were developed using the PID and LQR control
strategies, and their attributes were compared in detail [35]. In 2005, two nonlinear QTTC
methods were designed and evaluated using the OS4 test bench. These methods aimed
to obtain T and τ to accurately track the desired trajectories (ξ, ψd) using the Bk and SMC
techniques [36]. By 2007, the OS4 quadrotor, weighing 520 g and equipped with BLDC
(brushless DC) motors, a 40 g on-board computer module, a camera, and a 230 g lithium
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polymer battery, was constructed [37]. It achieved untethered flight, and a hierarchical
integral Bk QTTC ((T, τ) → (ξ, ψd)) structure was employed for testing and evaluation.

f =
mg − β1

cos ϕ cos θ
(5)

where β1 = (1 − k2
1 + k2)ez + (k1 + k3)β2 − k1k2

∫ t
0 ez dτt, and β2 = k1ez + ėz + k2

∫ t
0 ez dτt.

ez is the error variable of the z position. It should be noted that the force control input is
solely dependent on the altitude. Under the small-angle assumption, the desired roll and
pitch angles were obtained, as shown below:[

ϕd
θd

]
=

[
−uy
ux

]
(6)

where ux and uy are the horizontal axis inputs obtained using the chosen position controller.
The attitude and position loops were operated at frequencies of 76 and 25 Hz, respectively,
to prevent spectral conflicts caused by time-scale separation. It successfully tracked a 2 m
square trajectory with a 20 cm overshoot in 20 s. This work was complemented by [38] by
not making a small-angle assumption to be achieved.

[
ϕd
θd

]
=

arcsin
m
(

uxsψd)
−uycψd

)
f

arcsin
m(uxcψd+uysψd)

f cϕd

 (7)

In the same year, Stanford University introduced STARMAC II, weighing less than
2.5 kg and equipped with an attitude PID control system that accounts for three quantifiable
aerodynamic effects that can be compensated for by attitude control [30]. In 2008, a PID
QTTC was designed for STARMAC II, which enabled a 0.8 m square trajectory with errors
of 10 cm indoors and 50 cm outdoors, surpassing the commercial global navigation satellite
system (GNSS) drone MD4-200 by achieving a 2 m accuracy outdoors with a velocity of
0.5 m/s [39]. In the following year, the STARMAC team attempted to overcome the aerody-
namic effects on aggressive flights (approximately 8 m/s) [40] and wind disturbances [41],
resulting in a more agile and robust controller.

The full-Bk QTTC (ωi → (ξ, ψd)) was proposed by Madani et al. in [42] and divided
the quadrotor system into three subsystems: (S1) x, y, ϕ, and θ; (S2) altitude and yaw angle;
and (3) motor speed [43]. The aerodynamic effects are considered to be the additive force
and torque rather than motor dynamics.

Faero = K f v (8)

Their fixed experimental setup could only verify the altitude and yaw angle tracking
performance, which were affected by poor sensor measurements. They also presented a
Bk-SMC that integrated the SMC in [42] into a three-subsystem full-Bk control technique.
Theoretically, a robust Bk QTTC was developed in accordance with parametric uncertainties
with a global uniform ultimately bounded (GUUB) tracking error guarantee via Lyapunov
stability analysis; however, no simulation or experiment was performed. In 2010 [44],
command-filtered compensation was proposed to address the problem of the Bk control of
analytical derivative expressions. This result is similar to the nonlinear coupling proposed
by [45] in 2009. The force control input and the desired attitude are obtained as follows:

f = m
(
uxR13 + uyR23 + uzR33

)
(9)[

ϕd
θd

]
=

 arcsin
(

m
(

uxsψd)
− uycψd

)
/uT

)
arctan

((
uxcψd)

uysψd

)
/(uz + g)

) (10)
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where R13 = cϕcθcψ + sϕsψ, R23 = cϕsθsψ − sϕcψ, R33 = cϕcθ , and

uT = m
√

u2
x + u2

y + (uz + g)2 (11)

where ux, uy, and uz are designed using PID control for each position state, and s⋄ and c⋄ are
the sine and cosine of the ⋄ angle, respectively. This effectively separates the translational
and rotational dynamics and solves the timescale separation problem.

In [46], a revolutionary idea proposed a geometric approach and introduced geometric
tracking control wherein the force control input was used to obtain the desired rotation
matrix, as shown below:

Rde3 = Rd3 =
T

∥T∥

Rd2 = Rd3 ×
[
cψd sψd 0

]⊤
Rd1 = Rd2 × Rd3

(12)

Obtaining Rd3 is similar to obtaining (3) from 2004 onward. The assumption ∥T∥ ̸= 0 is
reasonable from both theoretical and practical standpoints. When ∥T∥ ̸= 0, the quadrotor is
in free-fall motion or the propellers stop, and this should be avoided at all costs in practical
applications. Then, the force control input and desired attitude can be expressed as

T = mge3 + mξ̈d − Kpeξ − Kd ėξ (13)

f = (Rd3)
⊤T (14)

Rd =
[
Rd1 Rd2 Rd3

]
(15)

where eξ = ξ − ξd and ėξ = v − ξ̇d. This is similar to the simplified (2). At low accelerations,
the feedforward terms can be ignored; however, at higher accelerations, the controller
performance can be significantly improved. A robust approach to bounded uncertainties
was proposed by these authors [47].

At ICRA 2011, the most cited paper on quadrotor control was written by Kumar. Their
paper demonstrates the combination of the controller design and trajectory generation
for quadrotor maneuvering in constrained indoor environments [48]. The proposed tech-
nique utilizes the differential properties of quadrotors and expresses the control input as
an algebraic function of four carefully selected flat outputs and their derivatives. This
ensures the generation of smooth trajectories (minimum snaps) that the quadrotor can
follow. This approach adopts a geometric method aimed at obtaining the desired atti-
tude from Equation (15) and the force control input from Equation (14). Experimental
results obtained using the Vicon motion capture system demonstrated a position error
of less than 8 cm for an Ascending Technologies Hummingbird quadrotor (500 g) flying
through thrown circular hoops. The quadrotor followed a highly aggressive trajectory with
a velocity of up to 3.6 m/s. He also presented in TEDtalks, showing the capabilities and
applications of UAVs as early as 2012 (https://www.youtube.com/watch?v=4ErEBkj_3PY)
(last accessed on 16 February 2024). The C code utilized for Bitcraze’s Crazyflie is accessible
online (https://github.com/bitcraze/crazyflie-firmware/blob/master/src/modules/src/
controller/controller_mellinger.c) (last accessed on 16 February 2024).

R. Mahony, V. Kumar, and P. Corke collaboratively wrote a tutorial paper [49] that
addressed the modeling, estimation, and control of quadrotors. This study highlights three
main challenges in QTTC: underactuation, aerodynamic effects, and force/torque-to-motor-
speed conversion.

In 2012, ref. [50] implemented a model predictive control (MPC) for QTTC in accor-
dance with system constraints and atmospheric disturbances. The dynamic model was
transformed into piecewise affine models around the nominal operating points. The MPC
was designed based on three subsystems—attitude, horizontal, and altitude—considering
the state, input, and rate of change in the control input. The underactuation was addressed
according to the approach in [44]. This pioneering work demonstrated the implementation

https://www.youtube.com/watch?v=4ErEBkj_3PY
https://github.com/bitcraze/crazyflie-firmware/blob/master/src/modules/src/controller/controller_mellinger.c
https://github.com/bitcraze/crazyflie-firmware/blob/master/src/modules/src/controller/controller_mellinger.c
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of MPC in a real trajectory-tracking flight with an attitude control loop running at 120 Hz
and a position control loop running at 33 Hz. The results show a deviation of 2.64 cm on
the y-axis and 0.5 cm on the z-axis when following a line trajectory, even in the presence
of wind gusts. The prediction horizon was set to five, and the control horizon was set
to two for all subsystems. The experiment utilized a 1.1 kg UPATcopter equipped with a
KontronTM pITX single-board computer, and position data were obtained by fusing IMU,
sonar, and optical flow sensor data using an extended Kalman filter (EKF).

Several researchers have proposed SMC-based quadrotor control. Ref. [59] divides the
system into two, similar to [42] but without the S3, and designs an SMC control for each
subsystem. The adaptive SMC is designed using a feedback-linearized model [60]. In [61],
a simple trajectory-tracking experiment was performed on an AR drone to compare high-
order terminal SMC, SMC, and PID controls. High-order SMC (HOSMC) is a technique
that avoids the chattering phenomenon by using a continuous signal, whereas terminal
SMC (TSMC) promotes fast tracking. The results demonstrated values of 8.96, 15.62,
and 13.14 cm, respectively, demonstrating the superiority of TSMC over PID control.

A control system utilizing neural networks was developed for quadrotors; however,
significant challenges were encountered in its implementation. In this decade, intelligent
controllers have not been implemented in untethered trajectory-tracking flights.

Quadrotor control has gained significant attention from the general public, hobby-
ists, and researchers during this period, as shown in Figure 1. Open-source projects have
emerged to support the educational and research advancements in quadrotors [62]. The use
of quadrotors can be extended beyond traditional applications, with autonomous flights
explored for artistic purposes [51], urban search and rescue missions [63], and industrial
applications [52]. In addition, quadrotors have been employed in multi-agent systems [53],
payload transportation [54], aerial manipulation [64], and high-speed flights [55], posing
challenges in developing reliable trajectory generation and tracking control strategies. How-
ever, certain issues remain unresolved, including aerodynamics and proximity effects [56],
precise modeling [65], actuator faults [66], and disturbances [67].

Similar to this section, a compilation of trendsetters across the world who authored the
most popular papers was formed to establish a trend from early 2000s to 2013. However,
determining the trends over the past decade (2014–2023) poses a challenge. Citation
details for recently published papers, especially those published in the last five years, may
not be reliable. The next section addresses this challenge by focusing on the identified
trendsetters and searching for papers that present promising results and novel ideas for
solving problems related to QTTC.

3. Data-Based Review of QTTC (2014—Present)

The objective of the trajectory-tracking controllers in this study is to design a controller
that suffices two conditions: (1) bounding all closed-loop signals, including position,
velocity, attitude, angular rates, and disturbance, and (2) ensuring the convergence of all
tracking or estimation errors to a neighborhood of the origin, which can be made arbitrarily
small. However, the design of such controllers encounters various negative factors that
directly affect the quadrotor performance. For clarity, during the review process, this study
excluded attitude-only controls (Figure 3).

This section provides a comprehensive review of the peer-reviewed tracking con-
trol literature from the past decade, encompassing an analysis of their modeling, control
structures, and verification (Figure 5). Initially, 240 quadrotor trajectory-tracking con-
troller proposals were collected. To facilitate the analysis, we selected 125 papers that
were frequently cited, authored by trendsetters, presented interesting ideas, and included
experimental verification. Furthermore, we analyzed the differences between high-impact
and less-popular journals.

A majority of the published studies on quadrotor trajectory-tracking controllers have
employed model-based approaches. We identified the four models used in these studies:
Model A, which utilizes a simple Newton equation with FN = T + mge3; Model B, which
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considers aerodynamic forces FN + Faero; Model C, which incorporates disturbances FN + d;
and Model D, which combines all three components FN + Faero + d. In addition, some
studies employed model-free approaches. Of the 240 papers reviewed, 67 utilized Model
C and 77 employed Model D. These 144 papers proposed robust controllers, which is a
popular topic in quadrotor control. However, after narrowing the database, we found that
only 59 studies used Model C or D, and Model A emerged as the most commonly utilized
model. Model-free controllers are gaining significant momentum due to the increasing
popularity of controls based on reinforcement learning (RL).

Figure 5. Comprehensive data-driven analysis: categorizing published studies into high-impact
and lesser-known proposals, with statistical insights on modeling, control methods (CMs), coupling
strategies, and verification methods.

We identified seven predominant solutions to quadrotor trajectory-tracking controller
problems: simple feedback control (SF), disturbance estimation and compensation (DE&C),
switching control (Sw), Bk, model parameter adaptation (MPA), Lrn, and Opt. The baseline
controllers include SF, Sw, Bk, and Opt, which can be enhanced through the integration of
the DE&C, MPA, and Lrn methodologies. Furthermore, Lrn can also serve as a baseline
controller, as discussed in the latter part of this paper.

The SF encompasses PID control, state feedback, and other simple linear controllers
that have been utilized in 84 of the 240 studies. Owing to their practicality and ease of
tuning, they have gained high popularity in recent research and are the most preferred
baseline controller in high-impact publications, with 40% utilization. It was observed that
DE&C performed the best in both databases, at 38% and 35%, respectively. This is because
it is moderately simple and can supplement any other baseline controller that is more
robust against uncertainties and disturbances.

The Sw controllers, including SMC and RISE, are not preferred in high-impact journals
but are popular in less popular ones. This is further explained in the next section. However,
the prevalence of Opt controllers was higher in high-impact journals than in other journals.

In our investigation, we examined how published papers addressed the underactua-
tion problem of quadrotors, as shown in Figure 5. We categorized them as follows: those
using (7) and (10) were labeled as virtual inputs (VI), (6) as SAA, and (15) as the geometric
approach (Geo). Despite the low preference in the 240-paper database, 65% (19 out of 29)
of the Geo papers land on the high-impact list. Table 2 shows that agile flight solutions
favor the geometric approach proposed by [46]. In addition, only 29% of the 90 papers
that employed VI were included in the high-impact list. In both databases, most studies
prefer a hierarchical structure (HS), either a position-attitude (PA), or a fully underactuated
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cascaded control structure. Notably, some Bk proposed controllers that incorporated the VI
to achieve the desired attitude angles.

Table 2. Experimental results comparison of published works on agile flight and MPC-based
controllers.

Ref. Yr Ctt Model CM Information Ver PS m kg max v,
a Exp Con Results Github

[48] 11 2k+ PA, Geo MC 0.5 3.6 HST MTE 8 Maintained

[50] 11 390+ MPC, N = 5 MC 1.1 - Line,
wind

MTE
2.64 N/A

[57] 14 20+ MPC, N = 8 MC 0.65 1 Hel, fan
P - [C1], Last 2016

[68] 15 100+ PA, Geo MC 0.76 1 Lissajous - [C2], Last 2022
[69] 16 120+ MPC, N = 200, 2.2s MC - - Outdoors SD 13 [C3], Last 2018

[70] 16 280+ PA, Geo Cam 0.25 5, 1.5
g HST - N/A

[58] 17 190+ MPC, N = 20, 2-s MC 3.42 - HST,
wind

RMSE
7.1 [C4], Last 2018

[71] 17 50+ PA, Geo - - 4 HST RMSE
6.5 N/A

[72] 17 260+ PA, Geo MC 0.61 5, 1.8
g Lem MTE

2.23 [C5], Last 2021

[73] 18 170+ PA, Geo Cam 0.61 7 HST - [C6], Last 2023
[74] 18 40+ PA, Geo Cam - 15 HST MTE 100 [C6], Last 2023

[75] 20 130+ PA, VI Cam - 12.9,
2.1 g HST RMSE

6.6 N/A

[76] 21 90+ MPC, N = 20, 0.05-s MC 1 18, 4 g HST - [C7], Last 2021

[77] 21 120+ MPC, N = 20, 0.05-s MC 1 12, 4 g Lem RMSE
2.4 [C8], Last 2021

[78] 21 40+ MPC, N = 20, 0.05-s MC 0.75 20, 4 g HST MTE 50 N/A
[79] 22 <10 PA, Geo MC - 4 Cir, wind RMSE 9 N/A
[80] 23 <10 MPC, N = 8 MC 1.1 5, 2 g HST MTE 8 N/A
[81] 23 <10 MPC, shortest possible N MC 0.71 - Cir MTE 5 N/A
[82] 23 <10 MPC, comp. of N LiDAR 1.5 5.86 HST - [C9], Last 2023

[83] 23 10+ - RL, Gate Progress Objective MC 0.52 30, 12
g HST - N/A

[C1] ntnu-arl/rmpc_mav, [C2] fdcl-gwu/uav_geometric, [C3] klaxalk/multirotor-control-board,
[C4] ethz-asl/mav_control_rw, [C5] uzh-rpg/rpg_quadrotor_control/tree/master, [C6] Kumar-
Robotics/kr_autonomous_flight, [C7] uzh-rpg/rpg_time_optimal, [C8] uzh-rpg/data_driven_mpc, [C9]
hku-mars/IPC.

We analyzed the verification methods employed in these studies, which encompassed
simulation-only, indoor, and outdoor experiments. Specifically, 121 of the reviewed studies
conducted untethered experiments, whereas 119 relied solely on simulations, which indi-
cates an identical distribution between the two methods. Notably, a significant proportion
of the papers that underwent experimental validation were included in the high-impact list.
Further, 24 of the 27 papers with outdoor experiments were included. However, we decided
to exclude 29 papers with indoor experiments and 3 papers with outdoor experiments,
owing to low citations or unsatisfactory results. We considered only recent papers without
significant citation points to ensure a comprehensive evaluation.

In the next section, a detailed analysis of high-impact papers is presented with the
objective of impartially identifying the most effective ones. To facilitate a fair comparison,
we have organized the data in tables. The high-impact database was divided into several
tables, allowing for a thorough and objective comparison based on the respective control
objectives. In these tables, the publication year (Yr) and citation count (Ctt) are included to
provide a clear timeline and help readers to determine the impact of each controller. Mod-
eling is depicted as colored triangles, with FN ( ), Faero ( ), and d ( ). Control methods
(CMs) are also indicated using colored circles, with SF ( ), Sw ( ), Bk ( ), Lrn ( ), and Opt
( ). Verification methods are indicated by colored diamonds: simulation ( ), hardware-in-
the-loop simulation (HILS) ( ), indoor experiments ( ), and outdoor experiments ( ). The PS
includes motion capture (MC) systems, cameras (Cams), and GNSS. The experimental con-
ditions included the trajectory followed and disturbance added for verification. Trajectories
are shorthanded as high-speed trajectory (HST), circular (Cir), lemniscate (Lem), helical
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(Hel), sinusoidal (Sine), square (Squ), or rectangular (Rec). The results are summarized
as the tracking error in centimeters and type of tracking metric. The different tracking
metrics used were the root-mean-square error (RMSE), maximum tracking error (MTE),
mean absolute error (MAE), and standard deviation (SD). Braces denote the x, y, and z
tracking error while brackets represent different experimental conditions.

4. Five Major Trends in the Last Decade

After collecting highly cited papers and those authored by the identified trend-
setters, five major trends were observed. These trends are discussed in detail in the
following subsections.

4.1. Toward Agile Flight

Agile flight refers to a quadrotor’s ability to execute rapid and precise maneuvers,
encompassing quick changes in direction, high-speed maneuvers, and acrobatic flight. This
capability offers numerous benefits and expands the potential applications of quadrotors
in various domains such as drone racing, emergency response, and aerial acrobatics. One
of the primary objectives of this research is to achieve precision control to execute agile
maneuvers, where performance metrics such as tracking error, speed, and acceleration play
a crucial role. Due to the high velocity of quadrotors during agile flights, obtaining accurate
trajectory tracking becomes increasingly challenging. Furthermore, these performance
metrics are affected by the quadrotor’s characteristics, modeling, experimental conditions,
and the type of position sensor (PS) used, as shown in Table 2. The agile flight work is
highlighted in orange.

As a benchmark for agile flights, ref. [48] achieved a maximum position error of 8 cm
using a 0.5 kg quadrotor that executes a high-velocity trajectory at 3.6 m/s. They identified
the key constraints for agile flight, such as aerodynamic effects, power, and weight. Table 2
was created to facilitate a comprehensive comparison between proposals for agile flight,
organizing important details that affect performance, including quadrotor mass, maximum
speed, acceleration, experimental conditions, and results.

Lee et al. employed a combination of PD control and disturbance compensation to
address aerodynamic effects and successfully achieved agile maneuvers using a 0.76 kg
quadrotor [68].

T1 = T + β(eξ , ėξ)Wp (16)

where T is from (14), and β(eξ , ėξ)Wp accounts for the uncertainties. They demonstrated
satisfactory results in tracking a Lissajous curve trajectory at speeds of up to 1 m/s.

In a separate study, Kumar’s group designed a 0.25 kg quadrotor that is capable of
aggressive flight, achieving velocities of up to 5 m/s, accelerations of up to 15 m/s2, and an-
gular rotations of up to 800/s while navigating through narrow windows [70]. In this study,
we set a new benchmark for control- and vision-based high-speed quadrotors using the
position feedback obtained from an onboard single camera and an IMU. By incorporating
simple lumped parameter models for induced drag and thrust into quadrotor dynamics,
the trajectory-tracking error was significantly reduced to a maximum of 6.5 cm (a 75%
decrease) from the original 26 cm [71].

T2 = T − ωsRK f R⊤v (17)

where ωs = ∑4
i=1 ωi. The aerodynamic force is modeled as Faero = ωsRK f R⊤v; therefore, it

is directly compensated. Hence, the identification of K f is necessary. It should be noted that
aerodynamic modeling and compensation have evolved from (1) to (8) to that used by [71].

A collaboration between the University of Zurich and Universite de Toulouse followed
a similar approach. However, they utilized feedforward terms for body rates and angular
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accelerations, resulting in improved trajectory tracking and the elimination of rotor speed
(ωs) dependency [72].

a f b = −Kpeξ − Kd ėξ (18)

ard = −RdK f R⊤
d ξ̇d (19)

ã = a f b + ad − ard + ge3 (20)

f3 = ãRde3 + khvh (21)

where kh is a constant, vh = (v(xb + yb))
2 is a quadratic velocity-dependent input distur-

bance, and [xb, yb, χb] are orthogonal-direction vectors. It should be noted that aerodynamic
effects are compensated for in two ways: one accounts for the effect of the quadrotor’s
movement, and the other compensates for the drag disturbance. The researchers achieved a
maximum position error of 2.23 cm for a 0.61 kg quadrotor executing a lemniscate trajectory
at speeds of up to 5 m/s. However, it is important to conduct an advanced identification of
aerodynamic parameters through experiments for specific trajectories. It was observed that
K f = diag(k f x, k f y, 0) varies for each tested trajectory, where the circular trajectory yields
diag(0.544, 0.386, 0) and the lemniscate trajectory results in diag(0.491, 0.0236, 0) at a speed
of 2.8 m/s.

Kumar et al. surpassed previous velocity records, attaining a velocity of 7 m/s along a
straight path in a GPS-denied environment [73]. In order to be eligible for the DARPA Fast
Lightweight program, they developed a quadrotor from a DJI F450 frame that could fly at
18 m/s using only (21). However, during the testing, they operated below their maximum
capability of 15 m/s. Even at this reduced speed, the quadrotor achieved an accuracy of
less than a meter with drag compensation [74].

In [75], a group from MIT eliminated the modeling of aerodynamic drag used in
previous studies [73,74]. Instead, they employed incremental nonlinear dynamic inver-
sion (INDI) to track linear and angular accelerations robustly, even in the presence of
aerodynamic drag.

T4 = Tf − Kpeξ − Kd ėξ − (k1 + 1)(a f − ξ̈d) (22)

where Tf and a f are filtered signals from the INDI process. They achieved a velocity
of 12.9 m/s and acceleration of 2.1 g, with a tracking error down to 6.6 cm RMSE dur-
ing fast and successive turns. However, motor speed measurements are required for
optical encoders.

Previously, agile flight primarily employed a PD control [46,48], as indicated in Table 2
and Equations (16) to (22). However, a group from the University of Zürich proposed an
MPC in [76] that demonstrated superior performance compared to human expert drone
pilots in a drone-racing task. To enhance their method, they introduced a data-driven
MPC that is augmented with learned residual dynamics using a Gaussian process, thereby
avoiding the need for tedious aerodynamic drag modeling [77]. Compared to [73], this
new control scheme achieved a 16% increase in accuracy for velocities up to 12 m/s and
accelerations beyond 4 g. The RMSE for tracking a circular trajectory was 31 cm for [76],
16.8 cm for [73], and 14.1 cm for [77]. Furthermore, the University of Zürich’s group
further improved their approach by adopting an L1 adaptive technique to learn model
uncertainties, including aerodynamic drag and unknown payloads [78]. During testing on
a 20 m/s high-speed trajectory, it achieved a maximum position error of approximately
50 cm, whereas the non-adaptive case in [76] only achieved an accuracy of 1 m. In addition,
in the simulations, the adaptive MPC outperformed [77].

Last year, [79,84] addressed the challenge of agile flying under wind disturbances
by employing a wind velocity observer (WVO) for compensation. They separated the



Drones 2023, 8, 72 14 of 35

aerodynamic drag term into two forces: one accounting for the effect of the quadrotor’s
movement and the other compensating for the wind velocity.

Faero = RK f R⊤v + Fw2

T5 = T − RK f R⊤v − F̂w2
(23)

where Fw2 = RK f R⊤vw and vw are the estimated wind velocities obtained from WVO. They
compared their method with that of [72], which indicated an error of 13 cm, while their
approach achieved an error of 9 cm. The quadrotor flew at speeds of up to 4 m/s and was
affected by a wind speed of 6 m/s.

In our observations, the geometric approach was utilized much more than the VI
approach in agile flight, which was made popular by [48]. However, when the VI approach
was used in [75], it yielded good performance.

The research group at the University of Zurich has created an open-source and open-
hardware quadrotor platform designed for agile flight. The primary objective is to stream-
line research processes and empower practitioners to focus on fundamental challenges [85]
(https://github.com/uzh-rpg/agilicious) (last accessed on 16 February 2024).

4.2. Optimal Control

The model predictive control (MPC) is considered to be one of the best controllers
for quadrotors, owing to its unique advantages and capabilities, especially in handling
nonlinear and complex systems. By optimizing the control inputs over a prediction horizon
N, MPC looks ahead, enabling the anticipation and accommodation of the quadrotor’s
future behavior. This facilitates agile flight. At each iteration, the following continuous
nonlinear optimal control problem is solved.

min J =
N−1

∑
k=0

L(ek, uk) + M(eN)

s.t. xk+1 = f (xk, uk) system model

x0 = x(0) initial condition

xk ∈ X state constraints

uk ∈ U input constraints

(24)

where L(ek, uk) is the stage cost function with error ek and input uk variables, and M(eN) is
the terminal cost function. A noteworthy feature of MPC is the ability to incorporate various
constraints, including physical limits on actuator commands, state constraints (e.g., position
and velocity bounds), and obstacle avoidance constraints. This ensures that the quadrotor
operates safely within its operational limits and avoids potential collisions. In addition,
MPC allows for the simultaneous incorporation of multiple control objectives, such as
optimizing energy consumption, minimizing tracking errors, and ensuring smooth motion.

Despite the advantages for quadrotor control, MPC has its own set of challenges,
including being computationally demanding, moderately robust, and requiring advanced
control algorithms to solve the optimization problem.

Although MPC inherently considers uncertainties and disturbances in the system
during the optimization process, an MPC-controlled quadrotor is still susceptible to external
disturbances, such as wind gusts or air turbulence. As a solution, an extension of [50]
proposed a robust MPC designed to predict disturbance states and enhance robustness
by considering eight constraints for the optimization problem [57]. A more advanced
approach was presented in [58], wherein both linear and nonlinear MPC were designed in
conjunction with an EKF-based external disturbance estimation. This led to the successful
tracking of an aggressive trajectory, achieving a remarkable RMSE error of 10.8 cm and
7.1 cm for LMPC and NMPC, respectively. The disturbance estimation was fed back into
the system dynamics, and the input constraints were imposed. This work was further

https://github.com/uzh-rpg/agilicious
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extended by [86], who added an additional soft constraint to the tracking error, as shown
in (42), incurring only an additional 2.5 ms of computational cost.

The embedded MPC achieved a 200-step prediction horizon of over 2 s using 20 deci-
sion variables [69]. This extended prediction horizon is achieved by exponentially distribut-
ing the 20 decision variables throughout the prediction horizon, with the first 10 variables
corresponding to the initial 10 control actions, followed by evenly spreading variables
up to the 100th control action, which determines the control action for the last 100 steps.
They demonstrated that a shorter prediction horizon could result in a higher chance of
destabilization.

A group from the University of Zürich published major papers on MPC:

1. A time-optimal MPC aims to push the boundaries in agile flight, accomplishing a
flight speed of 40 m/s. This model outperformed a human operator in a competitive
drone-racing task [76]. The optimization problem is subject not only to the system dy-
namics, initial condition constraints, and input constraints but also to four additional
constraints: progress evolution, boundary, sequence, and complimentary progress
constraints. Despite using only 20 steps over 0.05 s, they consider the single-rotor
thrust constraints rather than the four-dimensional continuous input space.

2. A data-driven MPC utilized a Gaussian process (GP) to model the aerodynamic effects
in agile flight [77]. They used a multiple shooting scheme, divided the prediction
horizon into a sequence of shorter intervals, and formulated the optimization prob-
lem over these intervals. However, the algorithm was not executed onboard, and
commands were only sent from the ground station.

3. An adaptive MPC employs an L1 adaptive augmentation to compensate for matched
and unmatched uncertainties [78]. It surpassed the performance of [77] and was
implemented on an onboard computer, specifically a Jetson TX2.

4. A policy-search-for-model-predictive-control framework consists of a parameterized
MPC where the hard-to-optimize decision variables are represented as high-level poli-
cies. The quadrotor was shown to be agile enough to pass through swinging gates [87]
(https://github.com/uzh-rpg/high_mpc) (last accessed on 16 February 2024).

An efficient NMPC, which solved the optimization problem using an improved
C/GMRES algorithm, was proposed in [8]. This algorithm promises to reduce the
computational complexity, specifically addressing the inequality constraint by imposing
a penalty term on the cost function. However, the experimental results and analysis
were underwhelming, as the quadrotor tracked a straight path at 0.1 m/s with
difficult-to-evaluate accuracy.

More recently, a unified on-manifold MPC was proposed to overcome the issues
of overparameterization or singularity by linearizing the system at each point along a
trajectory under tracking [80]. First, the linearized system leads to an equivalent error
system that maps the system state to local coordinates at each point along the reference
trajectory. This results in a minimally parameterized, singularity-free MPC controller
that is capable of tracking trajectories in the entire workspace. In their experiments with
a DJI Manifold-2 controlled by an MPC with N = 8 on the onboard computer, they
compared their method with the NMPC of [58] and PD + drag compensation of [72]
for quadrotors tracking a circular trajectory at 5 m/s. Based on the tracking error, they
outperformed [72] by achieving an error of less than 10 cm compared to the latter’s error
of more than 10 cm. In addition, they claimed that [58] required a computation time of
10 ms, whereas it was 2 ms in the worst-case scenario. However, they did not compare
their work with less computationally demanding [76] or more accurate and robust [78].
The same group proposed [82], where a linear MPC generates control actions within the
safety constraints in 2 to 3.5 s. They have shown that MPC computation at 100 Hz improves
the quadrotor’s response speed to dynamic obstacles and disturbance rejection ability to
external disturbances.

In [81], a computationally efficient NMPC was proposed to derive a growth-bound
sequence, enabling the shortest possible prediction horizon for stability. A comparison

https://github.com/uzh-rpg/high_mpc
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with [58] demonstrates that when [58] used N = 4, they failed, whereas their approach did
not. They demonstrated a similar performance when N = 20, which was the value used
by [58] in their verification. However, their work was not tested for aggressive trajectories
under wind disturbances despite the promise made at the beginning of this paper.

4.3. Learning-Based Control

Various Lrn techniques have been employed in quadrotor tracking control to address
challenges such as disturbance estimation and identification of complex dynamics (see
Section 4.5). In addition, some studies have explored the use of Lrn as a primary controller.

For instance, a type-2 fuzzy neural network (T2FNN) was used to improve PD control
under high wind disturbances, achieving a 50% improvement from a 95.4 cm RMSE to a
52.0 cm RMSE.

The most cited paper in 2017 presented an RL-based method, particularly the deter-
ministic policy gradient (DPG), which was introduced by a group at ETH, Zurich [88]. They
used a linear MPC [58] as the baseline controller, with each time step taking approximately
1 ms in the simulations. Their indoor experiment with a hummingbird quadrotor following
a square trajectory showed a relatively insignificant tracking error considering that it was a
model-free control.

In [89], the authors demonstrated that a single neural network policy trained com-
pletely in a simulation for the task of recovery from harsh initial conditions can be general-
ized to multiple quadrotor platforms with unknown dynamic parameters. Their indoor
setup achieved RMSE values of 19 and 47 cm for 33 g and 124 g quadrotors, respectively.

Another RL method was integrated with a disturbance compensator to achieve sat-
isfactory tracking accuracy in outdoor environments, obtaining an RMSE of 45 cm while
following a square trajectory [90].

The application of proximal policy optimization (PPO), a well-established continuous-
space RL method, resulted in the quadrotor tracking of a circular pattern with an accuracy
of 14.56 cm after 100,000 training episodes [91].

In [90], three approaches for implementing Deep DPG (DDPG) were presented: (1) us-
ing only instantaneous information, (2) allowing the agent to anticipate the curves, and (3)
computing the optimal velocity according to the shape of the path. Following a lemniscate
trajectory outdoors, Agent 1 achieved a 17.4 cm MAE, Agent 2 obtained an 11.4 cm MAE
while maintaining a 0.91 m/s average velocity, and Agent 3 accomplished the task at a
1.63 m/s average velocity, resulting in a 16.8 cm MAE.

The research team from the University of Zurich conducted a comparative analysis
between time-optimal MPC [76] and RL in the context of drone racing [83]. In this study,
RL showcased the ability to fly up to 30 m/s by directly optimizing a task-level objective,
enabling the discovery of a broader range of control responses that MPC cannot achieve.
The limitation of MPC lies in its decomposition of the problem into planning and control,
necessitating an intermediate representation such as a trajectory or path. This restriction
imposes constraints on the expressiveness of control policies achievable by the system.
In contrast, RL operates without the need for this decomposition or intermediate repre-
sentation, eliminating constraints on the range of control policies. Additionally, RL can
leverage domain randomization to enhance robustness, excelling at optimizing nonlinear,
nonconvex, and even non-differentiable objectives. Unlike MPC, RL can optimize an objec-
tive such as the gate progress objective, directly maximizing progress toward the center of
the next gate. The group also developed a vision-based RL algorithm for drone racing [92]
and an imitation learning policy for high-speed flight in diverse natural environments,
such as forests and steep snowy mountain terrains [93].

MPC, as the premier model-based controller, addresses safety and stability concerns
inherent in RL-based methods. In [94], MPC manages control and obstacle avoidance, while
RL guides the quadrotor through complex environments. In [95], a robust MPC method
enhances safety margins compared to traditional RL methods. It employs a modified MPC
algorithm that optimally balances cost minimization with aligning the neural network
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policy, generating effective training data for improved policy training through standard
supervised learning. On the other hand, RL can be used to solve the challenges of MPC,
similar to [87,96], where the design of hard-to-engineer decision variables in MPC is
efficiently addressed using a policy search algorithm.

Furthermore, another team has developed an open-source simulator that facilitates
the comparison of different learning-based control methods with pre-existing PPO and soft
actor–critic (SAC) codes [97] (https://github.com/utiasDSL/safe-control-gym/tree/main/
examples/rl/models/sac) (last accessed on 16 February 2024).

4.4. SMC and Bk Control Techniques

The most popular nonlinear strategies for quadrotor control are the Bk and SMC. These
are both effective strategies for quadrotor control owing to their ability to handle highly
nonlinear systems. Table 3 shows a comparison of Bk and SMC (with an Lrn controller,
which is discussed later in this paper), with the most significant result being the tracking
error. In experimental verification, most cases involve the introduction of some type of
disturbance, such as wind disturbance, additional payload, or flying in an uncontrolled
environment.

The Bk allows for the design of control laws for individual subsystems. This decou-
pling helps to address the underactuation problem in quadrotors. The asymptotic stability
of the closed-loop system can be ensured during this process. For example, a three-step
backstepping solution [98] is given by

Step 1:


eξ = ξ − ξd, ėξ = ξ̇ − ξ̇d (error 1)
V1 = 0.5eT

ξ eξ , V̇1 = eT
ξ (ξ̇ − ξ̇d)

ξ̇c = ėξ − k1eξ , (virtual control 1)

Step 2:


χ1 = ξ̇ − ξ̇c − δ, χ̇1 = ξ̈ − ξ̈d + k1 ėξ , (error 2)
V2 = V1 + 0.5χT

1 χ1, V̇2 = V̇1 + χT
1 (T/m − ξ̈d + k1 ėξ)

Π =
[

f Ωd

]T
= B+(Λ − k1χ1), (virtual control 2)

Step 3:


eΩ = Ω − Ωd, ėΩ = Ω̇ − Ω̇d (error 3)
V3 = V2 + 0.5eT

ΩeΩ, V̇3 = V̇2 + eT
Ω(I−1τt − Ω̈d)

τ = −Ω × Ω − Ω̇d − K3eΩ + β, (final control 2)

(25)

where B+ and Λ can be found in [99,100]. δ is a small arbitrary constant that is used to avoid
certain singularities in the control input f based on Brockett’s necessary condition [101].
In [102], additional Lyapunov functions were incorporated to introduce adaptive laws in
order to estimate the mass, inertial tensor, and disturbance in the second and third steps
of (25). Their results demonstrated a decreasing error of approximately 62 cm MTE and a
70% PI, which was the most promising in the MPA category, based on the collected data
shown in Table 4. Furthermore, in [99], Xie et al. enhanced the three-step Bk control by
complementing it with a Kalman–Bucy filter (DE&C and MPA). They achieved a significant
improvement over their previous work, with a standard deviation (SD) of 5 cm, compared
to 11 cm in [102].

https://github.com/utiasDSL/safe-control-gym/tree/main/examples/rl/models/sac
https://github.com/utiasDSL/safe-control-gym/tree/main/examples/rl/models/sac
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Table 3. Experimental results comparison of published works on baseline controllers including
backstepping-based, SMC-based, and learning-based controllers.

Ref. Yr Ctt Model CM, Gains Ver PS m kg Experiment Condition Results, Code
[37] 07 1100+ Integral Bk Cam 0.52 2-meter Sq MTE, 20
[39] 07 420+ PID GNSS 2.5 0.8-meter Sq MTE, 50
[61] 07 <10 - HOTSMC Cam - moving target MAE, [8, 15, 13]
[103] 15 290+ LPC GNSS 1.336 Point Tracking, unknown wind -
[104] 15 170+ RISE, 9 Cam 0.0045 Rec(2.73 m, 0.2 m/s) MTE [25, 50, 5]
[105] 16 160+ T2FNN MC 0.68 Lem (3.2 m, 2 m/s) RMSE 52.6
[88] 17 480+ MF DPG MC 0.665 Squ (1 m) [C10]
[89] 19 70+ MF single policy RL MC {0.033 0.124} Lem (1 m) MSE {19 47}, [C11]
[106] 20 90+ Bk-SMC, 12 GNSS 2.5 predetermined -
[91] 20 60+ MF PPO MC 0.665 Cir (2 m) RMSE 14.56, [C12]
[107] 20 20+ STSMC, 20 GNSS 2.5 Lem, Wind(3 m/s) RMSE [21, 19, 16]
[98] 20 20+ Sat Bk MC 0.2 Aggressive -
[108] 21 20+ MF DDPG GNSS 0.2 Hel, unknown wind 11.4
[109] 21 <10 AFTSMC, 14 GNSS 2.5 Cir (12 m) RMSE [25, 22, 18]

[110] 22 20+ NNMPC, 14 MC - Sinusoidal RMSE [16, 20, 8],
[C13]

[111] 23 <10 RISE + RL, 15 MC 1.6 Smooth, unknown wind MTE [10, 11, 5]

[C10] https://bitbucket.org/leggedrobotics/rai/src/master/ (last accessed on 16 February 2024), [C11] https:
//github.com/amolchanov86/quad_sim2multireal (last accessed on 16 February 2024), [C12] https://github.
com/anubhavparas/quadrotor_control_ppo (last accessed on 16 February 2024), [C13] https://github.com/
HKPolyU-UAV/airo_control_interface (last accessed on 16 February 2024).

Despite the popularity and usefulness of Bk control in quadrotor control, the inherent
complexity of quadrotor dynamics leads to a challenging design process known as the
“explosion of complexity”. Various solutions have been proposed to overcome this problem,
including splitting the entire system into separate subsystems and using filters to obtain
higher derivatives. For instance, altitude and yaw angle controllers were separated into con-
trol pairs x-pitch and y-roll, and an ultimate control was developed accordingly [112,113].
Alternatively, a hybrid hierarchical backstepping (HHB) control structure uses two separate
backstepping approaches for both the translation and rotational dynamics, and coupling is
performed using a virtual input in [12,114] and a geometric approach in [115].

On the other hand, dynamic surface control (DSC) is an extension of Bk control that
replaces virtual control laws with a dynamic surface using filters, thus eliminating the
need for differentiation of virtual control signals [10,12,114]. However, according to [116],
the filtering error in the DSC may hamper the control quality. To address this issue,
command-filter-based (CFB) [116] techniques, which filter the desired trajectories, have
been proposed. Both the DSC and CFB methods use filtering techniques, which may
sometimes be confusing. To clarify this, consider (25): DSC filters the virtual control ξ̇c,
whereas CFD filters ξ̇d.

Two DSC proposals were authored by Zhang et al. and supplemented with fuzzy- and
NN-based approximators in order to handle the unknown nonlinear part of the dynamic
model [10,114]. They used digital filters for DSC and claimed that the control performance
would be degraded or even become unstable when continuous-time control algorithms
are used in the discrete-time controller. The digital 1-LPFs were utilized in every step to
simplify the stability analysis.

χi,2d(k) = kiχ̃i,2(k + 1) + (1 − ki)χ̃i,2(k)

(s.t.) χi,2d(0) = χ̃i,2(0), i = 1, 2, 3
(26)

where χi,2d(k) is the derivative of χi,1(k) (i.e., ṗ of p), and χ̃i,2 are the predicted signals.
Both [10,114] demonstrated good performance in controlled environments, as shown in
Table 4. Ref. [12] proposed a five-step approach from motor to position states and a similar
filter as (26) in continuous form.

Usually, an accurate model is necessary for Bk control; however, a model-free integral
Bk control was proposed in [117]. They presented a [4.34, 3.68, 223] cm RMSE, a 40%

 https://bitbucket.org/leggedrobotics/rai/src/master/
https://github.com/amolchanov86/quad_sim2multireal
https://github.com/amolchanov86/quad_sim2multireal
https://github.com/anubhavparas/quadrotor_control_ppo
https://github.com/anubhavparas/quadrotor_control_ppo
https://github.com/HKPolyU-UAV/airo_control_interface
https://github.com/HKPolyU-UAV/airo_control_interface
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improvement from a non-model-free one in the tracking performance for a 1.4 kg quadrotor.
They estimated the unknown part of a dynamic model using an ultralocal model.

It is worth noting that the SMC dominates the 240-paper database, with 90 proposals.
The SMC ensures stability even in the presence of disturbances through Lyapunov stability,
although its performance depends on accurate modeling and gain tuning. Additional
insights into SMC with adaptive options are available in the review paper [24]. Tuning
the SMC gains involves two aspects: the gains of the sliding surface resembling PID gains
and the gain of the switching control term. The latter can introduce chattering, which
can be mitigated by various methods. High-order SMC [118,119] and super-twisting SMC
(STSMC) [107,120] have been used to achieve faster convergence and reduced chattering
compared with first-order SMC. Nonsingular types and smoothing functions, such as
hyperbolic tangent functions, allow for smooth transitions between control modes and
mitigate chattering [121]. In [109], the power-rate proportional reaching law ensured
finite-time convergence with reduced chattering. In addition to addressing disturbances
and uncertainties, modifications to the SMC have enabled global stability by ensuring the
convergence of the system state to the sliding surface from any initial condition through
the integral SMC [122] or global SMC [123]. TSMC [109,121,124] is a popular addition to
achieve fast or fixed-time convergence. In a recent study, different types of continuous
sliding surfaces were used [125].

A Bk-SMC hybrid approach presented in [106] proved to be superior to PID in outdoor
experiments. However, there have been no qualitative analyses comparing this method
with other methods. Other outdoor experiments were also conducted using STSMCM and
adaptive fast TSMC (AFTSMC), which exhibited an RMSE tracking performance of less
than 30 cm.

The RISE method combines Sw with DE by designing a switching control term to
directly estimate and compensate for lumped disturbances [104,111,126]. Recently, RL was
proposed in [111] to address the chattering issue in RISE, and it achieved a [10, 11, 5] cm
MTE tracking performance.

4.5. Supplementary Robust Techniques

Due to the inherent complexity and sensitivity of quadrotors to environmental factors,
it is not surprising that researchers have proposed various supplementary robust techniques.
Here, three sub-trends were summarized.

4.5.1. Disturbance Estimation and Compensation

These methods serve as robust controllers that help to overcome external disturbances
and modeling uncertainties. It was inferred that many studies consider these two factors
as one entity, where their proposed approach can compensate for lumped disturbances.
Therefore, disturbance estimation and compensation (DE&C) not only covers disturbance
observers (DOBs) but also adaptive methods that estimate uncertainties only; however,
the effects of the external disturbance can be included in that estimation and hence can be
compensated as well.

Unlike agile flights, where researchers are aware of and can compare their results with
those of previous studies, DE&C methods are much less organized and cannot be easily
compared. One of the reasons might be that DE&C is only a supplementary controller (SpC),
and the baseline controller (BsC), such as the PD control or SMC, has a more significant
impact on the performance than DE&C. Therefore, a fairer comparison is not between
different baseline controllers with DE&C, but between its baseline controller only and with
DE&C using tracking error and additional control gains (ACGs) to verify the performance
improvement by the specific DE&C. Furthermore, several factors can significantly affect
the results, including the volume of disturbance given, quadrotor mass, and trajectory,
as shown in Table 4. In addition, the number of ACGs is indicated to provide credit to
proposals with fewer parameters to be tuned. A few studies that proposed the DE&C
method are indicated in in the SpC column.
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Table 4. Experimental results comparison of published works with supplementary techniques using
DE&C, MPA, and PPC.

Ref Yr Ctt BsC SpC ACG Ver PS m kg Experiment Condition Results max PI
[126] 14 470+ +6 - 1 Sinusoidal MTE 10 -
[127] 14 200+ - MC 0.08 Lem (0.75 m) MTE 7 -
[128] 14 110+ +3 MC 0.65 Cir (0.9 m), Unknown m - -
[129] 15 230+ - MC <1 Varying m, wind (5 m/s) - -
[130] 16 80+ +1 MC 1.4 Squ (1 m) RMSE [4.34, 3.68, 2.23] 40%
[131] 16 150+ +3 GNSS 0.67 Squ (2 m), fan MTE 20 -
[132] 16 100+ +1 GNSS 0.67 Hov, wind (3.8 m/s), +52% m MTE 15 -
[133] 17 140+ +6 MC 1.4 Cir (1 m), fan MTE [1.1, 1.6, 1.7] 75%
[134] 17 130+ +6 GNSS 3 Rec (2 m), unknown wind MTE [50, 50, 3] -
[135] 17 60+ +6 GNSS 2 cubic spline, unknown wind - -
[136] 17 30+ - GNSS 1.09 Hel (6 m), unknown wind - -
[137] 19 90+ - MC 1.75 Cir (1), Touch MTE 3 77%
[86] 19 20+ +3 MC 0.7 Line, wind (12 m/s) MTE 10 74%

[138] 20 90+ +6 MC 0.5 Cir, [(2 m, 1.26 m/s)] MAE 3.5 77%
[10] 20 60+ +3 MC 1.4 Hel RMSE [2.28, 2.72, 0.97] -

[139] 20 40+ +4 MC 2.1 Sine, wind (10 m/s) RMSE 7 53%
[9] 20 40+ +3 Cam 0.063 Lissajous, fan RMSE [5.8, 3.8, 2] -

[140] 20 20+ +6 MC 1.75 Sine, wind (1.5 m/s) MTE [9.7, 16, 4.12] -
[141] 20 10+ - GNSS - Lem (5 m), unknown wind - -
[124] 21 40+ - GNSS 0.38 Squ (4 m), no wind RMSE [43, 42, 4] -
[90] 21 20+ - GNSS 0.665 Squ (10 m), wind (4.2 m/s) RMSE 45 44%

[142] 21 <10 +6 GNSS - Circ, unknown wind MTE 200 -
[143] 21 <10 - GNSS 1.346 Hel, unknown wind MTE 56 41%
[114] 21 <10 - MC 1.4 Hel (0.6 m) MTE [2.26, 2.04, 1.58] -
[144] 22 10+ - GNSS 1.5 Cir (20 m), unknown wind RMSE [25, 17, 16] -
[145] 22 <10 +15 MC - Sine, [+500g payload, wind (5 m/s)] RMSE {7.5, 12.07, 9} 48%
[79] 22 <10 +3 MC - Cir (5 m), wind (4 m/s) RMSE 9.2 30%

[146] 22 <10 +4 GNSS 2 Sine (2 m), unknown wind [20, 20, 8] 67%
[147] 22 <10 +6 MC - Lem, wind (2 m/s) MAE [2.17, 1.11, 2.82] -
[148] 22 <10 - GNSS 2.4 Cir, wind (3 m/s) MAE [23, 26, 32] -
[149] 22 <10 +4 MC 1.79 Lem RMSE [4.75, 3.3, 1.32] -
[150] 23 <10 +30 MC 0.25 Lem, [0.5 m, +60-g payload, wind]) MAE {6.8, 3.97, 3.93} -
[99] 23 <10 - MC 0.72 Lem, +0.045 kg payload steady state error 5 55%

By using the data in Table 4, a number of papers have chosen to supplement PD
control [46] using different approaches. The DE&C in [79,84] and the WVO in (23) are
defined as

χ̇1 = 1
m k1αχ1 +

1
m (k1Λv + T5 − Λv + mge3)

v̂w = χ1 + k1v
(27)

where α = RK f R⊤. This decreased the MTE from 13 to 9 cm.
DE&C was applied to an agile flight as proposed by Lee et al. [68] and was designed as

β̇ = k1(I3 − ββ⊤

β⊤β
)Wp(ėξ + k2eξ) (28)

Ref. [131] proposed an ESO-based robust compensator that can keep the position error
less than 20 cm under 4.2 m/s wind for a hovering 0.67 kg quadrotor.

χ̇1 = k1χ1 − k2
1χd + f /m − g

χ̇2 = k1χ2 − 2k1χd + χ1

d̂ = mk2
1(χ2 − χd)

(29)

where χd is the desired altitude and d̂ is the estimated disturbance or robust compensating
input that can be added to the baseline control input f to compensate for disturbances.
However, no comparisons were made.
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Ref. [133] proposed a DOB for attenuating disturbance force that can decrease the
MTE from [5.44, 44, 6.69] cm to [1.1, 1.64, 1.77] cm for a QBall-X4 UAV following a circular
trajectory and affected by a powerful electronic fan.

χ̇1 = χ1 − ge3 +
1
m f Re3

χ̇2 = k1k2χ2 + ξ̈ − χ̇1 + k2(v − χ1)

d̂ = mk3χ2 + ξ̈ − χ̇1

(30)

where 4k1k2 > 1 must be satisfied for asymptotic convergence of the disturbance estimation.
It should be noted that [133] used a 3D approach for the PA structure, and [131] used a
scalar approach for the FU structure.

Ref. [9] has proposed a UDE-based approach that can achieve [5.8, 3.8, 2] cm for a 63 g
quadrotor following a Lissajous curve and being affected by 1.6 m/s wind.

d̂ = L−1
1 ((I3 − G(s)−1)G(s)s) ∗

[
eξ

ėξ

]
+

[
ėξ

ξ̇d

]
(31)

where G(s) is a transfer function with three designable cut-off frequencies. A comparison
was performed with another study but not with the baseline controller.

Ref. [140] has proposed a nonlinear DOB that is designed as

χ̇1 = −k1( f Re3 − mge3 − mξ̈d + Kpeξ

+ d̂) + ėξ

d̂ = χ1 + mk1 ėξ

(32)

The performance results are presented in Table 4.
Ref. [138] proposed a multi-DOB (ESO + NDOB) that can surpass single-DOB im-

plementation, where the baseline controller yielded a mean error of 15 cm, Base+ESO
obtained 20.54 cm, Base+DO obtained 7.25 cm, and their proposed approach yielded 3.5 cm
when a 0.5 kg quadrotor is following a circular trajectory at 1.26 m/s speed and being
affected by hybrid disturbance (varying payload and wind disturbance). They concluded
that ESO is not robust against varying payloads and worsens the performance. Thus, it
has a higher error than the baseline controller, which will make other researchers disap-
prove. Their method combined the DOB by including the estimated disturbance in the
estimation process.

DE&C can also supplement the SMC, where the estimated disturbance becomes the
gain of the switching term to avoid tuning it [129].

d̂ = Proj(d,−k1signT(βa)βa)

uSW = d̂sign(βa)
(33)

where βa is a function of eξ and Proj denotes a projection mechanism to ensure that d̂ is
bounded over the compact set. The outdoor experiments showed very large tracking errors.
In the most-cited paper in 2019 [151], online tuning of the upper bounds was proposed,
but no experimental verification was provided.

Ref. [144] adopted a different approach and designed a nonlinear ESO to estimate
the disturbances and then added it to the total control input. An outdoor experiment
was conducted to obtain RMSE values of [24.5, 17.4, 16.3] cm. Their method was only
compared with PID control, which resulted in a tracking error of 1.42 m and not with the
baseline controller.

An adaptive Bk control that can estimate and compensate for lumped disturbances
was proposed in [135]. However, no comparison was made with the baseline controller. In
contrast, ref. [143] achieved a 56 cm MTE when the quadrotor was flying outdoors. They
also reduced the tracking error by 41% for a spiral trajectory using a learning-based observer
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to estimate the wind disturbance force. However, the hovering stability deteriorated due to
the learning-based approach. In [146], a Bk controller was supplemented by GPIO, which
improved the MTE from [60, 40, 15] cm to [20, 20, 8] cm for a 2 kg quadrotor following a
sinusoidal trajectory with no disturbance. The readers are encouraged to check Table 4
to obtain summarized results of the other Bk proposals [127,128]. There have also been
several proposals for Bk with other types of DOB, such as ESO [152] and NDOB [112,153],
but there has been no experimental verification.

A PPO algorithm is combined with a nonlinear DOB, as shown below.

d̂ = mRa − f Re3 + mge3 (34)

where a denotes the acceleration information obtained from the IMU. Their method im-
proved the tracking error from [80, 46, 17] cm to [45, 41, 7] cm for a 0.665 kg quadrotor
following a square trajectory outdoors with 4.2 m/s wind. Another approach uses neu-
ral networks (NNs) to estimate unknown lumped nonlinear functions [114,149,154,155].
In contrast, a learning-based observer has been used to estimate the wind disturbance
force [139,141,143]. The NN method in [139] reduced the tracking error from 15 cm to 7 cm
for a 2.1 kg quadrotor following a fast trajectory and being affected by wind (max of 10 m/s).
In [141], a comparison was made between the baseline controller (LQR) and the neuro-
fuzzy-based estimator, where it can be seen that the addition of their neuro-fuzzy-based
estimator was better; however, no qualitative analysis was provided.

From Sec., the University of Zurich’s group further improved their approach by
adopting an L1 adaptive MPC technique to compensate for both matched and unmatched
disturbances.

χ̇1 = TMPC + γm(um + dm) + gumdum

χ̇2 = TMPC + γm(um + d̂m) + gumd̂um + k1χ̃

χ̃ = (χ2 − χ1)[
d̂m

d̂um

]
= I3

[
γm

γum

]
k1(ek1Ts − I3)ek1Ts χ̃

(35)

The integration of the DE&C technique improved the tracking error by 85% for the
2.5 m/s trajectory and 77% for the 10 m/s trajectory.

In this section, we present various DE&C techniques applied to quadrotors. Based on
the evaluation of the most promising DE&C techniques using the collected data, it was
observed that [137,138] provided the highest percentage improvement (PI) of 77%, followed
by [133] at 75%, and [86] at 74%. However, these techniques often exhibit similarities and
have the potential for robust performance when appropriately calibrated and integrated
into an accurate dynamic model. The best DE&C approach to employ hinges on the
designer’s proficiency and complexity of the tuning parameters, where [117] or [79,131]
might emerge as superior choices. It is also admirable that the studies in [138,145,150]
performed several tests to verify their method, which makes their method more convincing.
For brevity, Table 4 contained the following shortcuts: *Con1 = Cir, [(2 m, 1.26 m/s), swing
payload, wind (5 m/s)] *Con2 = Sine, [+500 g payload, wind (5 m/s)] *Con3 = Lem, [0.5 m,
+60 g payload, strong wind]).

4.5.2. Adaptation, a Delicate Solution for Uncertainty

Obtaining an accurate mathematical model of a quadrotor is inherently challenging
due to the uncertainties arising from the nonlinearity and complexity of the quadrotor
system. In practical applications, such as aerial transportation or flight under wind con-
ditions, the quadrotor control system must effectively cope with varying payloads and
disturbances. The adaptive techniques offer a promising approach for enhancing quadro-
tor performance and robustness by continuously updating the control strategy or system
parameters based on real-time feedback from sensors. These adaptive techniques can be
classified into two categories: model parameter adaptation (MPA) for estimating unknown
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parameters, such as K f and m, and control parameter adaptation (CPA) for auto-tuning the
control parameters to adapt to the real-time condition of the quadrotor.

The adaptation of lumped uncertainties can help to simplify the control problem.
However, it may limit the flexibility of modeling owing to chunky compensation. The MPA
and CPA, on the other hand, are more intricate because they address the robustness problem
by surgically addressing the root causes of uncertainty [145]. As mentioned previously,
aerodynamic parameters may vary depending on the trajectory and environment.

Similar to the previous topic, a fair comparison involves evaluating the baseline
controller alone and comparing it with the inclusion of MPA using metrics such as the
tracking error and other relevant parameters to quantify the performance improvement
achieved by the specific MPA. Table 4 lists the works that proposed MPA methods, which
are indicated as in the SpC column.

The most-cited paper in 2014, ref. [126], focused on the immersion and invariance (I&I)
parameter adaptation of the aerodynamic drag coefficient K f . It demonstrates substantial
improvements in a standard PD controller, reducing the maximum position error ∥eξ∥∞
from ±0.5 m to ±0.1 m, when a 1 kg quadrotor follows a circular trajectory in a hardware-
in-the-loop setup.

˙̂K f = k1β1(T + β1(K̂ f − 1
m vβ2) + β3) (36)

where β1 = 1
m I3v, β2 = ėxi + Kpeξ , and β3 = Kp ėxi − ξ̈d.

A mass-adaptive technique with wind disturbance estimation and compensation
(DE&C) is proposed for hovering Qball-X4, which carries an additional 350 g payload and
is affected by a 3.8 m/s wind. The proposed method achieved maximum vertical and
horizontal errors of 15 and 9 cm, respectively. It is worth noting that there was a significant
difference in the performance between the simulation and experimental results. However,
the most cited paper in 2018 [156] proposed an adaptive SMC that considers all parameters,
including m and K f (3). However, this study did not provide experimental validation.

In addition, ref. [102] proposed an adaptive Bk control technique that effectively
handled both mass uncertainty and disturbances.

˙̂m = k1χ⊤
b T

˙̂d = k2χb

f = Proj( 1
m̂ )e⊤3 (Ω̂β + T − Proj(d̂))

(37)

where χb is the second error variable in the backstepping process and T is the PD control
in (13). Based on a comprehensive theoretical framework, they achieved global uniformly
ultimate boundedness (GUUB), even under uncertainties and disturbances. Although
the parameters to be estimated are different, they compared their method with [126] and
observed a decrease in the position error from 10 cm to 5 cm.

In [145], a three-tier robustness solution is proposed, which involves recursive least
squares (RLS) adaptation for accurate parameter estimation β1, gradient-type adapta-
tion to improve transient performance β2, and robust feedback to attenuate unmodeled
uncertainties β3. The control input is as follows:

T = −Kpeξ − Kd ėξ − β1 − β2 − β3 (38)

A comparative experiment was conducted to compare three control methods: (i) no
utilization of β1 = diag(m̂, K̂ f , d̂) (baseline controller), (ii) [140], and (iii) their full method
under three different conditions: (i) no disturbance, (ii) with 500 g payload, and (iii) with
5 m/s wind disturbances. By using this notation, the proposed control achieved ∥eξ∥ of
7.5, 12.07, 9 cm under the respective conditions. In comparison, the baseline controller
achieved 10, 23, 13 cm and [140] achieved 9, 20, 12.5 cm. These results demonstrate that a
delicate MPA can complement DE&C in order to achieve a better tracking performance.
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Another adaptation technique is CPA, wherein the auto-tuning of control parameters
is achieved during flight. In [136], a parameter-scheduled backstepping method was
proposed, and experiments were conducted accordingly. Two parameter values, one for
a milder controller and one for a more aggressive controller, are set and can be switched
based on the current roll and pitch. The method was compared with PID, SMC, and a
baseline controller in the experiments. However, no qualitative analysis was performed,
and it was difficult to visually compare the results using the figures provided. Similarly,
in [148], an auto-tuning SMC was proposed using a gradient-descent update law, and an
outdoor experiment was conducted using a DJI M100. However, no qualitative analyses
or comparative experiments have been conducted to demonstrate the effectiveness of the
proposed approach.

4.5.3. Prescribed Performance Control: Bounded Tracking Error

In our evaluation of various controls in agile flight, DE&C, and MPA, we employed
tracking errors as the primary metric for performance comparison. However, some studies
observed bounded tracking errors by imposing hard constraints. These methods are called
prescribed performance controls (PPCs) and are listed in Table 4, where they are indicated
by in the SpC column.

A barrier Lyapunov function (BLF) can be used to constrain the tracking error.

uLBF =
eξ

k2
1 − e2

ξ

(39)

where k1 is a set of tracking error bounds. This value approaches infinity when the tracking
error eξ approaches k1. Similarly, [140] used an LBF with another tuning parameter k2 to
regulate the magnitude of the additional control term further.

uLBF = k2
eξ

k2
1 − e2

ξ

(40)

Due to the sudden increase in the control input to constrain the position error, input
saturation may occur. Hence, the authors emphasized the significance of appropriately
choosing k1 and k2 to prevent saturation. Comparative experiments were conducted with
PID and SMC but not with the baseline controller.

In [150], a barrier function that also approached infinity if the tracking error eξ ap-
proached the prescribed boundary was utilized. Unlike previous studies with constant
constraints, this method employs a time-varying boundary constraint that gradually de-
creases until it reaches a preset value k∞, resulting in an increase in the tuning parameter.

ēξ = I3(k̄n − k̄∞)e−k2t + k̄∞

eξ = I3(kn − k∞)e−k2t + k∞
(41)

where kn < exi(0) < k̄n. Although there was no comparison with the baseline con-
troller, three tests were conducted: (i) mass uncertainty, (ii) added payload, and (iii)
wind disturbances. The results demonstrate that the tracking error eξ achieved values
of 6.8, 3.97, 3.93 cm, all of which were within the prescribed boundary of ±15 cm.

The aforementioned studies enforce a hard constraint that may counter the risk of in-
feasibility or saturation when a disturbance forces a tracking error to violate the constraints.
An alternative approach is to implement a soft constraint within the MPC framework,
wherein the slack variable k2 is added to the MPC output [86].

ēξ ≤ k1 + k2

uMPC =
[
T ϕd θd k2

] (42)
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5. Comparative Discussion

Quadrotor control development typically involves four main steps to ensure the effec-
tiveness and robustness of the controller: numerical simulation, controlled environment,
uncontrolled environment, and actual deployment. In order to ascertain the current leading
controller, it is informative to examine the developmental stage at which each controller is
currently progressing.

Figure 6 shows the current situation of each controller based on the data presented in
the previous section. A simple PD control can be complemented by DE&C, MPA, and/or PP
techniques and can achieve small tracking errors even under uncertainties and disturbances,
as shown in Table 4. The PD control provides a simple and solid foundation for integrating
supplementary methods to address challenges in agile flight, robust flight, or robust agile
flight scenarios. On the other hand, MPC is specifically accomplished in agile flights,
where it is more difficult to obtain accurate trajectories. Furthermore, a group from the
Czech Technical University deployed quadrotors with PD control [157] and MPC [158].
However, MPC faces the challenge of a heavy computational load, but there have been
published ideas to tackle this issue [80,81]. The current focus is on transitioning these
ideas from theoretical proposals to practical implementation in real flight scenarios while
also addressing any potential challenges that may arise during this process. Upon the
culmination of this comprehensive review, readers will be poised to deduce that both PD
control and MPC possess the capacity to attain all control objectives. Consequently, these
control methodologies are deemed more favorable within the realm of high-impact studies.

Figure 6. Illustration of the four development stages for quadrotor control leading to actual de-
ployment. Reference numbers are as follows: [145] (X1), [75] (X2), [79] (X3), [15] (RP167), [74]
(X5), [157] (X6), [80] (X7), [81] (X8), [110] (X9), [158] (X10), [83] (X11), [108] (X12), [149] (X13), [109]
(X14), [144] (X15), [150] (X16), [148] (X17).

The Bk and SMC are both powerful control techniques with respective theoretical
advantages, and they have already demonstrated good performance when tested outdoors.
However, as shown in Figure 7, the Bk and SMC proposals have a low implementation
rate compared to the PD and MPC techniques, which have been mostly implemented
in experiments. None of the papers proposing Bk and SMC have made their implemen-
tation code available online. Additionally, they have not been applied to agile flights.
Furthermore, it seems that the complexity outweighs the performance benefits. To reit-
erate their performance benefits, based on the collected data, in an indoor setup under
strong winds, Bk+DE&C [150] achieved a tracking error of 3.93 cm MAE, outperforming
PD+DE&C+MPA [145] with a tracking error of 9 cm RMSE. Similarly, in an outdoor setup,
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Bk+DE&C [148] with [23, 26, 32] cm MAE and SMC+DE&C [144] with [25, 17, 16] cm
RMSE outperformed PD+DE&C [134] with [50, 50, and 3] cm MTE. These arguments may
not sound convincing because they are based on different qualitative metrics. Both the
controllers face challenges in terms of actual deployment. A possible reason for this is that
they require the design of multiple control laws and careful tuning of controller param-
eters. Practical engineers in the quadrotor industry may not possess sufficient expertise
or understanding of these concepts, which makes it difficult to implement and tune these
controllers. Moreover, troubleshooting them during the design process, which involves
complex mathematical foundations, can be non-intuitive. The theoretical advantages of
these controllers may transform into disadvantages when they must be understood and
applied by industry professionals.

Figure 7. (Left) Year-by-year usage comparison of different controllers. (Right) Percentage of
experimental papers per total usage for each controller, using the 240-paper database.

The Lrn has been increasingly adopted in quadrotor control because it offers potential
advantages over traditional model-based control techniques. The DDPG method in [108]
showed promising results, achieving an MAE of less than 15 cm in an outdoor setup, which
has not been accomplished by model-based controllers according to the data that were
gathered. However, safety concerns have arisen due to the unknown nature of this method.
In addition, several bottlenecks, such as training complexity, data quality, and robustness,
have inhibited its rise. In a workshop on “The Role of Robotics Simulators for Unmanned
Aerial Vehicles” held at ICRA 2023 (https://www.youtube.com/watch?v=MjqBZOVEL4
c) (last accessed on 16 February 2024), it was discussed that the problem of RL can be
addressed by developing a good simulator for the RL to train as if in the real world or by
recursively training until it becomes sufficiently better.

We have delved into the model selection process for each proposed method and
observed that designers often choose their models based on personal discretion, with no
discernible correlation to performance outcomes. Additionally, a notable trend indicates
that high-impact publications are more inclined to include experimental verification.

6. Future Directions and Suggestions

The survey affirms that the field of QTTC has undergone extensive research. Within the
QTTC scope, this survey specifically focuses on methodologies aimed at enhancing trajec-
tory accuracy, improving robustness against system uncertainties and external disturbances,
and achieving agile flights. These areas are identified as major trends with significant impli-
cations for overall performance. Additionally, the survey acknowledges research efforts in
addressing challenges, including input saturation [153], actuator faults [155], sensor noise,
time delays, global stability, safety concerns, and discretization issues [114].

Reflecting on historical insights, the first decade marked the challenge of developing
untethered UAVs like OS4 quadrotors and STARMAC II. Despite more advanced controllers
proposed in subsequent papers, the initial untethered quadrotors were controlled by
simpler controllers like integral Bk control [37] with SAA and PID control [30]. Furthermore,
two breakthroughs were the proposal of the geometric approach [46] and MPC [50], paving
the way for new quadrotor capabilities like agile flight. In Section 4, we summarize the

https://www.youtube.com/watch?v=MjqBZOVEL4c
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next decade, highlighting five major trends. Agile flights were initially led by MPC and
PD control with aerodynamic compensation. Recently, ref. [83] set a record, flying up to
30 m/s using RL-based control. Supplementary robust techniques, coupled with advanced
controllers, enable a tracking accuracy of 1 cm in a controlled environment [133] and
approximately 20 cm in an uncontrolled environment [146]. However, in [108], an RL-
based approach achieved an MAE of less than 15 cm in an uncontrolled environment.
We acknowledge that the tracking accuracy and flight speed are not only determined by
QTTC but are also affected by other factors, such as motion planning, quadrotor vehicle
parameters, sensor types, trajectory specifications, and environmental conditions.

Despite these achievements, studies reporting inferior or less remarkable results
expose a discernible gap in the research field. Bridging this gap could redirect researchers’
focus toward advancing the field. The following issues and suggestions are listed based on
the information gathered.

(a) Lack of standard for qualitative analysis: Some papers show promising results, but
the majority of the published papers with experimental validation do not provide
qualitative analysis, relying solely on performance figures for evaluation, as shown in
Figure 8. This becomes challenging as accuracy is often evaluated in the order of a
few centimeters.

Figure 8. Variation in performance qualitative metrics across published works with experimental
validation.

Complete qualitative analysis should include both RMSE and MTE to assess the
performance and robustness of the control system. The RMSE represents the overall
accuracy, while MTE captures the worst-case scenario of the trajectory-tracking task.
According to those collected, only 10 papers [10,75,111,114,133,140,143,145,159,160]
have presented both RMSE and MTE in their results, as shown in Figure 8.

(b) Lack of standard for robustness evaluation: Despite gathering data to evaluate each
proposal, it is difficult to determine which methods have good robustness charac-
teristics. The main reason is that each paper verifies their method using different
quadrotors and experiment conditions.
To address this issue, a standard for introducing disturbances and uncertainties
based on quadrotor characteristics should be established. For instance, horizontal
disturbance should be quantified in Newtons, relative to the drag-to-weight ratio,
ρ1 = d

mg , whereas payload mp should be expressed as the ratio between total weight

with the payload and the maximum thrust Tmax, ρ2 =
mp

Tmax
.

(c) Difficulty in reproducibility: Some papers do not disclose certain parameters, such as
quadrotor mass, controller gains, wind disturbance speed, trajectory speed, controller
frequency, position sensors, etc. This lack of transparency hinders the reproducibility
of the paper, and this may prevent other researchers from building upon and improv-
ing the work. Another challenge in reproducibility is that one cannot guarantee that
the results in Tables 2 and 3 can be obtained due to the inherent variability introduced
by factors such as quadrotor vehicle parameters, sensor types, trajectory specifications,



Drones 2023, 8, 72 28 of 35

and environmental conditions. While some researchers have proposed gain-tuning
strategies for their method to enhance result reproducibility, it is noteworthy that the
successful replication of outcomes is contingent upon the practitioner’s proficiency in
parameter tuning, introducing a significant dependency on individual tuning skills
for achieving the promised performance.
One solution to these problems is providing an open-source implementation of their
proposed controllers. This not only assists interested readers in replicating results
for validation but also contributes to addressing potential issues. Utilizing platforms
such as GitHub is highly advantageous, allowing interested individuals to engage
in discussions, pose questions, and stay informed about the ongoing developments.
This could also facilitate the transition of promising control technologies to actual
deployment by addressing challenges.

In an ideal scenario, newly proposed controllers should undergo thorough qualitative
and comparative analyses, employing metrics such as RMSE, MTE, and standardized ro-
bustness tests. The corresponding code should be made available online for both simulation
and experimental setups, enabling reviewers and readers to replicate and verify the results.

Lastly, we present the following questions as statements for the future directions
of QTTC.

1. Can MPC and PD control defend their status as the preferred controllers due to their
promise of optimal performance and simplicity?

2. Will novel supplementary robust techniques aid existing or new control techniques
in surpassing 15 cm accuracy and serve as platforms for applications requiring
high accuracy?

3. Can SMC and Bk control demonstrate their worthiness and be deployed in actual
deployment?

4. Will model-based control become obsolete as Lrn control introduces new capabilities
in the future?

7. Conclusions

In this comprehensive review, we examined over 300 studies spanning two decades in
the domain of quadrotor control with the aim of providing invaluable insights to aspiring
early-career researchers. We revisited high-impact studies on quadrotor control conducted
during the inaugural decade, offering a historical context for the current use of cutting-
edge controllers. Subsequently, we dissected a 240-paper database from the subsequent
decade, discerning the most promising and lagging controllers. A data-driven analysis that
shed light on the decision-making processes of researchers, encompassing model selection,
choice of control strategies, and verification methods, was conducted.

In order to unveil the five major trends in studies with substantial citations and/or
authored by prominent groups, we conducted a qualitative analysis aimed at identifying the
foremost candidates for implementation. PD control and MPC have emerged as prominent
controllers and have already been successfully deployed. Supplementary robust techniques,
including DE&C, MPA, and PPC, have enabled a tracking accuracy of 1 cm in a controlled
environment and approximately 20 cm in an uncontrolled environment. On the other hand,
RL-based techniques have proven to be game-changers, enabling a 30 m/s agile flight
and less than 15 cm tracking accuracy for non-agile flight in an uncontrolled environment.
Furthermore, conducting a comparative analysis proved challenging due to the absence
of universally accepted performance standards and metrics. To address this gap, we
present concrete recommendations for fostering collaborations to advance the future of
quadrotor flights.
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