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Abstract: This paper investigates the problem of cooperative payload delivery by two quadrotors
with a novel “Y”-shaped cable that improves payload carrying and dropping efficiency. Compared
with the existing “V”-shaped suspension, the proposed suspension method adds another payload
swing degree of freedom to the quadrotor–payload system, making the modeling and control of
such a system more challenging. In the modeling, the payload swing motion is decomposed into
a forward–backward process and a lateral process, and the swing motion is then transmitted to
the dynamics of the two quadrotors by converting it into disturbance cable pulling forces. A novel
guidance and control framework is proposed, where a guidance law is designed to not only achieve
formation transformation but also generate a local reference for the quadrotor, which does not have
access to the global reference, based on which a cooperative controller is developed by incorporating
an uncertainty and disturbance estimator to actively compensate for payload swing disturbance to
achieve the desired formation trajectory tracking performance. A singular perturbation theory-based
analysis shows that the proposed parameter mapping method, which unifies the parameter tuning of
different control channels, allows us to tune a single parameter, ε, to quantitatively enhance both the
formation control performance and system robustness. Simulation results verify the effectiveness of
the proposed approach in different scenarios.

Keywords: cooperative aerial transportation; suspended payload swing modeling; guidance law;
cooperative formation control; disturbance rejection

1. Introduction

Utilizing quadrotors for cable-suspended cargo transportation is an important research
direction in practical applications. Existing research mostly focuses on the transportation
of payloads by a single quadrotor [1–3], aiming to stabilize the quadrotor and reduce
payload oscillation. However, single-quadrotor transportation systems inherently suffer
from drawbacks such as low payload capacity, weak robustness, and inability to orientate
the payload, drawing increasing attention in recent years to the cooperative transportation
of payloads using multiple quadrotors to overcome these limitations.

To be specific, the cooperative transportation system that we focus on in this paper
is composed of two quadrotors carrying one payload by cables. The applications of such
systems face several challenges. One challenge is the method of dropping the payload when
it arrives at the destination. As shown in Figure 1, the suspension methods investigated in
the existing literature fall into two categories: “V”-shaped [4–6] and trapezoid-shaped [7–9]
suspensions. To drop the payload, both suspension methods require two independent
release mechanisms equipped to either the quadrotors or the payload, whereas in this
paper, we propose a novel “Y”-shaped suspension method that allows for the payload
to be attached and released using one single automatic release mechanism on the cable.
Compared with the other two suspension methods that require two release mechanisms,
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not only does the proposed method stand out because of its cost-efficient merit, but, more
importantly, also because it reduces the time and workload by half when attaching the
payload to the cable. Additionally, using one release mechanism avoids the problem of
payload tilt caused by the asynchronism of the two independent release mechanisms during
payload release, which is practically attractive in applications such as package delivery.
Compared with “V”-shaped suspensions, the proposed method brings another payload
swing degree of freedom to the system, making formation control a more difficult task.

"V" shape Proposed "Y" shapeTrapezoid shape 

Quadrotor 1 Quadrotor 2Quadrotor 1 Quadrotor 2 Quadrotor 1 Quadrotor 2

Figure 1. A comparison among the “V”-shaped [4–6], trapezoid-shaped [7–9], and proposed “Y”-
shaped suspension method.

The second challenge lies in two-quadrotor formation control. Existing approaches can
be roughly categorized into virtual leader scheme-based and leader–follower scheme-based
approaches, with the latter requiring a quadrotor designated as the leader to be followed
by another quadrotor to maintain the formation. For both schemes, cooperation between
the two quadrotors is achieved by using the global reference and neighbor’s information
obtained via a communication network in the local controller, but the information trans-
mitted differs. In [10], the desired trajectory for the payload is seen as a virtual leader,
while the two quadrotors act as followers to track the virtual leader’s trajectory in a forma-
tion. In contrast, by sharing a global yaw angle reference, neural network graph-theoretic
distributed adaptive control is proposed in [11] to ensure that formation is maintained in
a desired path in a leader–follower manner. Unlike in [11], where the quadrotors share
global references, Ref. [12] assumes that only the leader quadrotor has access to the global
reference, while the other quadrotor employs a PID-like controller to follow the leader at a
constant distance. However, only one directional flight along the x-axis can be achieved
by this methodology. From the above observations, achieving cooperative path-following
control generally requires the two quadrotors to have full knowledge of the global reference;
when one quadrotor does not, formation behavior can be largely limited. Therefore, the
topic of using limited global reference information to achieve complex formation behaviors,
including path-following and formation transformation, is still open.

Since a cable-suspended payload increases the system’s degrees of freedom and un-
deractuated characteristics [13] and makes the system less robust against disturbances, the
third challenge is achieving the stabilization and high-accuracy trajectory tracking control
of the quadrotors under the cable pulling disturbance force that is transmitted from payload
swing. Energy-based nonlinear adaptive control is proposed in [14] to ensure the stability
of a closed-loop system under payload swing. However, system robustness cannot be
easily or quantitatively regulated. Reference [15] presents a reinforcement learning-based
position controller to achieve accurate cable-suspended payload delivery and system stabi-
lization, and it was verified in a simulation to be capable of rejecting unknown disturbances,
including payload swing. The application of such a method requires a preliminary train-
ing process, and the stability and robustness of the training results cannot be guaranteed
by a rigorous mathematical analysis. For the delivery of different payloads with vari-
ous weights, an adaptive dynamic compensator-based cooperative controller is proposed
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in [7] to dynamically estimate the system parameter perturbation caused by the payload
weight change. Nevertheless, the performance of this framework, as mentioned by the
authors, can be ensured only when the system moves under an almost constant velocity
along a desired trajectory with low/moderate acceleration. In [10], the authors design
a sliding mode formation controller incorporating a nonlinear disturbance observer to
estimate and compensate for external disturbance and payload swing, which also comes
with the cost of unwilling control signal chattering. In spite of the efforts made by existing
works, the problem of designing a simple yet effective cooperative controller that is able
to achieve quantitative, desired robustness against payload swing disturbance has not yet
been fully resolved.

To rise up to the aforementioned three challenges, this paper aims to provide a sys-
tematic solution to the payload delivery problem, where a novel “Y”-shaped payload
suspension method is considered. To reveal the physical characteristics of such a quadrotor–
payload system, a payload swing motion model is first derived by decomposing the swing
into a forward–backward process and a lateral process, and it is then related to the quadro-
tor dynamics by converting the swing into disturbance cable pulling forces acting on each
quadrotor. The quadrotor–payload comprehensive model is highly coupled and nonlinear,
and, thus, the feedback linearization technique is exploited to decouple the model into six
subsystems in the form of a disturbed second-order model. A guidance law is proposed for
the two quadrotors to achieve the desired formation and formation transformation, and, for
the quadrotor in particular, which cannot access the global reference, the guidance law also
helps to generate a local reference according to its neighbor’s state and control input. Based
on the guidance law, a robust cooperative controller is proposed by incorporating an uncer-
tainty and disturbance estimator (UDE) that dynamically estimates and compensates for
external disturbance and payload swing disturbance in real time. To achieve the prescribed
disturbance rejection and trajectory tracking performance, parameter mapping is proposed
for the UDE in different channels, such that the parameter tuning is unified by a single
parameter, ε. A stability and performance analysis based on singular perturbation theory
verifies the effectiveness of parameter mapping, showing that quantitatively reducing ε
enhances both system robustness and tracking accuracy. Numerical simulations affirm the
excellent performance of the proposed guidance law and robust cooperative controller in
various flight scenarios. The contributions of this paper are summarized as follows:

1. We propose a novel “Y”-shaped suspension method to improve payload carrying
and dropping efficiency, and a payload swing model is derived specifically for the
“Y”-shaped suspension to show explicitly how swing disturbance affects the motion
of the quadrotors.

2. A novel, comprehensive design of the guidance law and UDE-based cooperative
control is proposed for the “Y”-shaped quadrotor–payload system to achieve not
only robust formation control but also high-accuracy trajectory tracking under the
communication constraint of only one quadrotor having access to the global trajectory
reference. Moreover, the proposed guidance law features formation transformation
and flight mode variation capabilities to achieve complex flight manners, such as
cooperative obstacle avoidance in a cluttered environment.

3. In contrast to the frequency domain analysis [16], this paper provides a rigorous time
domain-based stability and robustness analysis using singular perturbation theory,
where a parameter mapping method is proposed to unify the parameter tuning of
different control channels. The analysis shows that the formation trajectory tracking
accuracy and robustness against payload swing disturbance are related monotonically
to a single designable parameter, ε, by which the system performance can be easily
and quantitatively improved.

The rest of this paper is organized as follows: In Section 2, dynamic and kinematic
models of the quadrotors and the suspended payload are derived, and then the models are
simplified for the control design. Section 3 presents the design of the guidance law and the
UDE-based cooperative controller, followed by the stability and performance analysis of the
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closed-loop system. In Section 4, simulation results are presented to show the effectiveness
of the proposed approach in different scenarios. Finally, conclusions are drawn in Section 5.

2. Problem Formation

The variables and parameters of the quadrotor–payload system are defined in
Tables 1 and 2, where superscripts “I , B, and L” indicate the frame that the variable
is expressed in, and subscript i ∈ {1, 2} denotes the i-th quadrotor.

Table 1. Quadrotor–payload system variable definitions.

Symbols Variable Description

PI
i = [xIi , yIi , zIi ]

T Position of the i-th quadrotor
PI

p = [xIp , yIp , zIp ]T Position of the payload
ϕi, θi, ψi Rotation angles of the i-th quadrotor
VB

i = [VB
ix , VB

iy , VB
iz ]

T Linear velocity of the i-th quadrotor

VI
p = [VI

px, VI
py, VI

pz]
T Linear velocity of the payload

ωB
i = [ωB

ix, ωB
iy, ωB

iz]
T Angular velocity of the i-th quadrotor

ωia, ωib, ωic, ωid Rotor rotation speeds of the i-th quadrotor
Ωi = −ωia − ωib + ωic + ωid Sum of the rotor rotation speeds of the i-th quadrotor
FB

iqz Thrust command for the i-th quadrotor

τB
i = [τB

ix , τB
iy , τB

iz ]
T Torque command for the i-th quadrotor

FB
iaq = [FB

iaqx, FB
iaqy, FB

iaqz]
T Air drag on the i-th quadrotor

FI
Dp = [FI

Dpx, FI
Dpy, FI

Dpz]
T Air drag on the payload

TI
p = [TI

px, TI
py, TI

pz]
T Cable pulling force on the payload

TI
i = [TI

ix, TI
iy, TI

iz ]
T Cable pulling force on the i-th quadrotor

FB
iDq = [FB

iDqx, FB
iDqy, FB

iDqz]
T Total disturbance force on the i-th quadrotor

α, β Payload swing angles
δ Quadrotor formation yaw angle
λ The angle between the cables that connect the quadrotors
L Formation size: the distance between the two quadrotors
AI

α = [AI
αx, AI

αy, AI
αz]

T Payload acceleration induced by the rotation of α

AI
β = [AI

βx, AI
βy, AI

βz]
T Payload acceleration induced by the rotation of β

AI
δ = [AI

δx, AI
δy, AI

δz]
T Payload acceleration induced by the rotation of δ

AI
Q = [AI

Qx, AI
Qy, AI

Qz]
T Acceleration of the midpoint of the two quadrotors

AI
iQ = [AI

iQx, AI
iQy, AI

iQz]
T Acceleration of the i-th quadrotor

Table 2. Quadrotor–payload system parameter definitions and nominal values.

Symbols Parameter Description Nominal Values

mq Quadrotor mass 1 kg
mp Payload mass 0.05 kg
l Length of the cable that connects the knot and payload 0.5 m
lq Length of the cables that connects the knot and quadrotor 0.707 m
JB
x , JB

y , JB
z Quadrotor moment of inertia 0.01 kg·m2

Jr Rotor moment of inertia 3.789 × 10−6 kg·m2

K Air drag coefficient 0.04 kg/m
g Gravitational acceleration 9.8 m/s2
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2.1. Frame Setup

In this paper, the directions of all rotation angles, angular velocities, and angular accel-
erations are defined based on the right-hand rule. In the considered quadrotor cooperative
transportation problem, the cables suspended from the quadrotors and connected to the
payload form a “Y” shape. To describe the motion of the quadrotor–payload system, some
frames are defined in what follows. Note that all frames used in this paper are right-handed.
As shown in Figure 2, I = {xI , yI , zI} is the inertial frame, and Bi = {xBi , yBi , zBi} is
the body-fixed frame for the i-th quadrotor. The blue frame I ′ = {x′I , y′I , z′I} is defined
by translating the origin of I to the midpoint of the two quadrotors. The purple frame
L1 = {xL1 , yL1 , zL1} shares the same origin as I ′, with its yL1 pointing to Quadrotor 1
and zL1 pointing to the ground. Then, the rotation angle around the z′I -axis from I ′ to
L1 is δ, defined as the quadrotor formation yaw angle. Under normal conditions, the
quadrotor–payload system intends to fly along the xL1 -axis, whereas in some extreme cases
(see Section 4.3), for example, when the system needs to pass through narrow corridors,
the system might fly along the yL1 -axis. Rotating L1 around its yL1 -axis by payload swing
angle α results in the purple frame L = {xL, yL, zL}, which is further used in Section 2.3
for payload swing motion modeling.

d

1Quadrotor 2Quadrotor 
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L
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Figure 2. Frames for the modeling.

2.2. Modeling of Quadrotors

The quadrotor dynamics and kinematics are established by Newton’s laws of motion
and angular momentum theorem. For linear motion, we have

V̇B
ix =

FB
iDqx
mq

+ VB
iy ωB

iz − VB
iz ωB

iy − g sin θi,

V̇B
iy =

FB
iDqy
mq

+ VB
iz ωB

ix − VB
ix ωB

iz + g cos θi sin ϕi,

V̇B
iz = −

FB
iqz

mq
+

FB
iDqz
mq

+ VB
ix ωB

iy − VB
iy ωB

ix + g cos θi cos ϕi,

(1)

where the total disturbance force on the i-th quadrotor is

FB
iDq = FB

iaq + RB
I TI

i , (2)

in which the air drag term is expressed as

FB
iaq = RB

I (−
1
2

K
∥∥∥VI

i

∥∥∥
2
VI

i ), (3)

and TI
i is the pulling force from the cable on the i-th quadrotor, which is specified in

Section 2.3. The rotation matrix from the body frame to the inertial frame is defined as
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RI
B = (RB

I )
T =

 cos θi cos ψi sin ϕi sin θi cos ψi − sin ψi cos ϕi cos ϕi sin θi cos ψi + sin ψi sin ϕi
cos θi sin ψi sin ϕi sin θi sin ψi + cos ψi cos ϕi cos ϕi sin θi sin ψi − cos ψi sin ϕi
− sin θi cos θi sin ϕi cos θi cos ϕi

. (4)

The angular dynamics and kinematics are given by
ω̇B

ix = 1
JBx
(τB

ix + JBy ωB
iyωB

iz − JBz ωB
iyωB

iz − JrωB
iyΩi),

ω̇B
iy = 1

JBy
(τB

iy + JBz ωB
ixωB

iz − JBx ωB
ixωB

iz + JrωB
ixΩi),

ω̇B
iz =

1
JBz
(τB

iz + JBx ωB
ixωB

iy − JBy ωB
ixωB

iy),

(5)


ϕ̇i = ωB

ix + tan θi(ω
B
iy sin ϕi + ωB

iz cos ϕi),

θ̇i = ωB
iy cos ϕi − ωB

iz sin ϕi,

ψ̇i =
1

cos θi
(ωB

iy sin ϕi + ωB
iz cos ϕi).

(6)

2.3. Modeling of Payload Motion

The motion of the payload is best illustrated in Figure 3. Specifically, the payload
swing is decomposed into two individual processes, where two swing angles, α and β, are
defined. To simplify the payload motion, we impose the assumption that the cables and the
cable knot are massless, which nicely results in the coplanarity property of the suspended
payload Pi, cable knot Oi, and two quadrotors A and B. In the first forward–backward
process, payload swing angle α rotates the vertical ABNM plane into the ABCD plane
around the yL-axis, transforming the knot from O1 to O2 and the payload from P1 to P2. In
the second lateral process, swing angle β rotates the cable O2P2 around the x′L-axis (which
is parallel to xL) within the ABCD plane, transforming the payload from P2 to P3.

1Quadrotor 

A B

CD

M N

l

p

p

$O

1O

L

2O

$x

A B

CD

M N

ql฀
ql

2Quadrotor 

p

p

$O

r

2O

1Quadrotor 

L

Forward-backward process Lateral process

2Quadrotor 

Figure 3. The forward–backward and lateral processes of the “Y”-shaped-cable-suspended payload
swing motion.

Based on Newton’s laws of motion, the payload motion is modeled by

TI
p + GI

p + FI
Dp = mp(AI

Q + AI
δ + AI

α + AI
β ), (7)

where TI
p is the cable pulling force, which is derived later; GI

p = [0 0 mpg]T is the payload

gravity; FI
Dp = − 1

2 K
∥∥∥VI

p

∥∥∥
2
VI

p is the air drag; and AI
Q, AI

δ , AI
α , and AI

β are the payload
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acceleration relative to I induced by the linear motion of OL and the rotations of δ, α, and
β, which are given by

AI
Q =

1
2
(AI

Q1 + AI
Q2), (8)

AI
δ = −δ̇2rIδ + δ̈I × rIδ , (9)

AI
α = −α̇2rI + α̈I × rI , (10)

AI
β = −β̇2lI + β̈I × lI . (11)

In acceleration expressions (9)–(11), the first and second terms represent centripetal and
tangential acceleration, respectively.

To simplify the derivation, herein, we first express the cable pulling force and the
acceleration terms in L, and we then use the rotation matrix

RL
I = (RI

L)
T =

 cos α cos δ cos α sin δ − sin α
− sin δ cos δ 0

sin α cos δ sin α sin δ cos α

 (12)

to covert these terms to I .
From Figure 3, by using the geometry properties, it is readily found that the cable

pulling force vector on the payload is expressed using pulling force Tp as

TL
p = Tp

 0
sin β

− cos β

. (13)

Moreover, rL is defined as the vector in L whose length is r and direction is perpendicular
to segment AB pointing to the payload. Similarly, lL is a vector in L with length l, and it
points from the cable knot to the payload. In addition, rIδ is a vector perpendicular to the
z′I -axis, and it has a length equal to the distance from the payload to the z′I -axis and points
from the z′I -axis to the payload.

Then, we have the following geometric relationships:

rL = r

 0
0
1

, lL = l

 0
− sin β
cos β

, rLδ =

 r sin α cos α
−l sin β

r sin2 α

, (14)

where

r = lq cos
λ

2
+ l cos β, λ = arccos(

2l2
q − L2

2l2
q

). (15)

Note that we assume that L is constant in (15), which significantly simplifies the payload
motion model. However, in the control design, L is possibly a time-varying parameter that
determines the adjustable formation size of the system, which is practically meaningful
when encountering realistic situations like obstacle avoidance.

By combining (7)–(15) and using some algebraic manipulations, the explicit dynamics
of the swing angles and the cable pulling force are given as
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α̈ =
1
r
{−g sin α − [

1
2
(AI

1Qx + AI
2Qx)− δ̇2(r sin α cos δ + l sin β sin δ)− δ̈(r sin α sin δ − l sin β cos δ)

−
FI

Dpx

mp
] cos α cos δ − [

1
2
(AI

1Qy + AI
2Qy)− δ̇2(r sin α sin δ − l sin β cos δ) + δ̈(r sin α cos δ + l sin β sin δ)

−
FI

Dpy

mp
] cos α sin δ + [

1
2
(AI

1Qz + AI
2Qz)−

FI
Dpz

mp
] sin α}, (16)

β̈ =
1
l
{−α̇2r sin β − g cos α sin β + [

1
2
(AI

1Qx + AI
2Qx)− δ̇2(r sin α cos δ + l sin β sin δ)− δ̈(r sin α sin δ − l sin β cos δ)

−
FI

Dpx

mp
](sin α sin β cos δ − cos β sin δ) + [

1
2
(AI

1Qy + AI
2Qy)− δ̇2(r sin α sin δ − l sin β cos δ) + δ̈(r sin α cos δ

+l sin β sin δ)−
FI

Dpy

mp
](sin α sin β sin δ + cos β cos δ) + [

1
2
(AI

1Qz + AI
2Qz)−

FI
Dpz

mp
] cos α sin β}, (17)

Tp = mp{α̇2r cos β + β̇2l + g cos α cos β − [
1
2
(AI

1Qx + AI
2Qx)− δ̇2(r sin α cos δ + l sin β sin δ)− δ̈(r sin α sin δ

−l sin β cos δ)−
FI

Dpx

mp
](sin β sin δ + sin α cos β cos δ) + [

1
2
(AI

1Qy + AI
2Qy)− δ̇2(r sin α sin δ − l sin β cos δ)

+δ̈(r sin α cos δ + l sin β sin δ)−
FI

Dpy

mp
](sin β cos δ − sin α cos β sin δ)− [

1
2
(AI

1Qz + AI
2Qz)−

FI
Dpz

mp
] cos α cos β}. (18)

According to Newton’s third law, the force acting on the cable knot is opposite to the
force acting on the quadrotor. Through the geometric relationship between the quadrotors
and the payload, we obtain the cable pulling forces on the i-th quadrotor as

T1 = −
Tp

2
(

sin β + cos β tan λ
2

sin λ
2

), (19)

T2 = −Tp(
cos β

cos λ
2

−
sin β + cos β tan λ

2

2 sin λ
2

). (20)

Then, we can readily express the pulling force vector in L and use rotation matrix RI
L to

obtain the cable pulling force vectors on the i-th quadrotor:

TI
1 = T1

 − sin δ sin λ
2 − sin α cos δ cos λ

2
cos δ sin λ

2 − sin α sin δ cos λ
2

− cos α cos λ
2

, (21)

TI
2 = T2

 sin δ sin λ
2 − sin α cos δ cos λ

2
− cos δ sin λ

2 − sin α sin δ cos λ
2

− cos α cos λ
2

. (22)

2.4. Model Simplification

It can be seen that the quadrotors and payload models are coupled and nonlinear,
rendering control design difficult. Thus, we decouple the quadrotor–payload system into
six subsystems to simplify the control design process.

First, by applying the small-angle conditions

sin θi = sin ϕi = 0, cos θi = cos ϕi = 1 (23)



Drones 2023, 8, 103 9 of 25

to angular motion dynamics (5) and (6), and by taking the point-mass assumption of linear
motions (1), the quadrotor dynamics in I can be approximated by

ϕ̈i =
1
JBx
(τB

ix + JBy θ̇iψ̇i − JBz θ̇iψ̇i − Jr θ̇iΩi),

θ̈i =
1
JBy
(τB

iy + JBz ϕ̇iψ̇i − JBx ϕ̇iψ̇i + Jrϕ̇iΩi),

ψ̈i =
1
JBz
(τB

iz + JBx ϕ̇i θ̇i − JBy ϕ̇i θ̇i),

(24)


AI

iQx = ẍI
i = − 1

mq
(FB

iqz sin ϕi sin ψi + FB
iqz cos ϕi sin θi cos ψi + dI

ix),

AI
iQy = ÿI

i = − 1
mq

(−FB
iqz sin ϕi cos ψi + FB

iqz cos ϕi sin θi sin ψi + dI
iy),

AI
iQz = z̈I

i = − 1
mq

(FB
iqz cos ϕi cos ψi + dI

iz) + g,

(25)

where dI = RI
BFB

Dq denotes the total disturbance, including the air drag and disturbances
caused by the payload gravity and swing.

Second, we apply the feedback linearization technique to dynamics (24) and (25) to
further simplify the model. After defining the virtual inputs as

uiϕ = 1
JBx

τB
ix ,

uiθ = 1
JBy

τB
iy ,

uiψ = 1
JBz

τB
iz ,

uix = − 1
mq

(FB
iqz sin ϕi sin ψi + FB

iqz cos ϕi sin θi cos ψi),

uiy = − 1
mq

(−FB
iqz sin ϕi cos ψi + FB

iqz cos ϕi sin θi sin ψi),

uiz = − 1
mq

FB
iqz cos ϕi cos ψi + g,

(26)

and the total disturbances as

fiϕ = 1
JBx
(JBy θ̇iψ̇i − JBz θ̇iψ̇i − Jr θ̇iΩi),

fiθ = 1
JBy
(JBz ϕ̇iψ̇i − JBx ϕ̇iψ̇i + Jrϕ̇iΩi),

fiψ = 1
JBz
(JBx ϕ̇i θ̇i − JBy ϕ̇i θ̇i),

fix = − 1
mq

dIix,

fiy = − 1
mq

dIiy,

fiz = − 1
mq

dIiz,

(27)

dynamics (24) and (25) are converted into second-order subsystems in the form of{
ξ̈ i = uξ

i + f ξ
i ,

η̈i = uη
i + f η

i ,
(28)

where ξ i = [ψi, xi, yi, zi]
T and ηi = [ϕi, θi]

T are the state vectors, uξ
i = [uψ

i , ux
i , uy

i , uz
i ]

T and
uη

i = [uϕ
i , uθ

i ]
T are the virtual input vectors, and f ξ

i = [ f ψ
i , f x

i , f y
i , f z

i ]
T and f η

i = [ f ϕ
i , f θ

i ]
T

are the total disturbance vectors.

2.5. Communication Topology and Control Objectives

In this paper, the communication network topology among the quadrotors and the
global reference system is described in Figure 4, where only Quadrotor 1 has access to the
reference signals (desired trajectory PI

d and desired formation yaw angle δd), while the two
quadrotors can exchange their own states, control inputs, and desired formation size Ld via
the network. In the rest of this paper, we generally use subscript “d” of a variable to denote
its corresponding “desired” trajectory, i.e., its global reference signal.
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Desired 

Trajectory

Quadrotor 

1

Quadrotor 

2

Figure 4. The communication network topology.

The control objectives of this paper are to design a guidance law and robust cooperative
controller for quadrotors under the communication network topology specified in Figure 4
such that the following are achieved:

(i) The quadrotors achieve synchronized yaw angle tracking, i.e., ψi(t) → δd(t) as t → ∞;
(ii) The quadrotors asymptotically track the desired trajectory in the desired, possibly

time-varying formation specified by Ld(t) in the absence of disturbances;
(iii) In the presence of disturbances, the trajectory tracking error and the formation error

can be quantitatively regulated within a small neighborhood of zero.

3. Guidance and Robust Control Design

To achieve the aforementioned control objectives, we propose a novel two-module
framework, as shown in Figure 5.
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Figure 5. The proposed guidance and robust cooperative control scheme for the quadrotor formation.

Specifically, on the one hand, via the desired formation yaw angle δd and formation size
Ld, one role of the guidance module is to generate the formation offset for the cooperative
control module of the two quadrotors to achieve formation flight. Meanwhile, particularly
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for Quadrotor 2, another essential role is to calculate the local reference signals to address
the unavailability of the global desired trajectory imposed by the communication topology
specified in Figure 4.

On the other hand, the robust control module for each quadrotor includes a cooperative
position controller, an attitude controller, and a control command conversion module that
converts high-level acceleration commands into low-level attitude angle references and
a thrust command FB

iqz. To deal with the disturbances induced by the payload swing, an
uncertainty and disturbance estimator (UDE) that actively compensates for the disturbance
is incorporated in both the position and attitude controllers.

In what follows, the design of each module is presented in detail.

3.1. Design of the Guidance Law

In this section, the global reference system is first defined, followed by the design of
the guidance law for Quadrotor 2 to generate its local reference.

Suppose that the global desired trajectory for Quadrotor 1 satisfies

ξ̈1d = uξ
1d, (29)

where uξ
1d denotes the desired input. To form a formation with distance Ld at yaw angle δd,

the desired trajectory for Quadrotor 2 is
ξ2d = ξ1d + ∆

ξ
d,

ξ̇2d = ξ̇1d + ∆̇
ξ
d,

ξ̈2d = uξ
1d + ∆̈

ξ
d,

(30)

where ∆
ξ
d represents the desired formation offset that satisfies

∆
ξ
d =


∆ψ

d
∆x

d
∆y

d
∆z

d

 =


0

Ld sin δd
−Ld cos δd

0

. (31)

The first-order and second-order derivatives of ∆
ξ
d are

∆̇
ξ
d =


∆̇d
∆̇x

d
∆̇y

d
∆̇z

d

 =


0

Ld δ̇d cos δd + L̇d sin δd
Ld δ̇d sin δd − L̇d cos δd

0

 (32)

and

∆̈
ξ
d =


∆̈ψ

d
∆̈x

d
∆̈y

d
∆̈z

d

=


0

−Ld δ̇2
d sin δd + Ld δ̈d cos δd + L̇d δ̇d cos δd + L̈d sin δd + L̇d δ̇d cos δd

Ld δ̇2
d cos δd + Ld δ̈d sin δd + L̇d δ̇d sin δd − L̈d cos δd + L̇d δ̇d sin δd

0

. (33)

In this formation, the yaw angles and heights of the two quadrotors must be synchronized.
Note that for the ψ channel in particular, we set ψid = δd to ensure that the two

quadrotors align their yaw angles with the formation yaw angle.
The desired trajectories (29) and (30) are called “global” reference systems, and they are

specified by the prescribed control objectives. However, restricted by the communication
topology, Quadrotor 2 does not have access to its global reference (30), and, thus, we are
required to design Quadrotor 2’s guidance law to generate the “local” reference based on
the neighboring information of Quadrotor 1 and the desired formation information Ld such
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that the global objectives are achieved. The idea of this paper is to replace the unavailable
desired signals in (30) with their corresponding states and the input of Quadrotor 1, which
leads to the following guidance law (i.e., the local reference for Quadrotor 2):

ξ⋆2d = ξ1 + ∆
ξ
2,

ξ̇⋆2d = ξ̇1 + ∆̇
ξ
2,

ξ̈⋆2d = uξ
1t + ∆̈

ξ
2,

(34)

where uξ
1t is the trajectory tracking control input term of Quadrotor 1 designed in

Section 3.2, and formation offset ∆
ξ
2 uses ψ1 to approximate δd and satisfies

∆
ξ
2 =


∆ψ

2
∆x

2
∆y

2
∆z

d

 =


0

Ld sin ψ1
−Ld cos ψ1

0

. (35)

Then, ∆̇
ξ
2 and ∆̈

ξ
2 are respectively given by

∆̇
ξ
2 =


∆̇ψ

2
∆̇x

2
∆̇y

2
∆̇z

2

 =


0

Ldψ̇1 cos ψ1 + L̇d sin ψ1
Ldψ̇1 sin ψ1 − L̇d cos ψ1

0

 (36)

and

∆̈
ξ
2 =


∆̈ψ

2
∆̈x

2
∆̈y

2
∆̈z

2

=


0

−Ldψ̇2
1 sin ψ1+Ldψ̈1 cos ψ1+L̇dψ̇1 cos ψ1+L̈d sin ψ1+L̇dψ̇1 cos ψ1

Ldψ̇2
1 cos ψ1+Ldψ̈1 sin ψ1+L̇dψ̇1 sin ψ1−L̈d cos ψ1+L̇dψ̇1 sin ψ1

0

. (37)

This guidance law design, however, causes another practical issue, that is, signal ψ̈1 used
in (37) is immeasurable. Therefore, we employ the following Luenberger state observer
(LSO) to provide an estimate of ψ̈1 denoted by ¨̂ψ1:[

˙̂ψ1
¨̂ψ1

]
=

[
−l1 1
−l2 0

][
ψ̂1
˙̂ψ1

]
+

[
l1
l2

]
ψ1 +

[
0
1

]
uψ

1 , (38)

where ψ̂1 is the estimate of ψ1; l1 and l2 are the observer feedback gains; and uψ
1 is the

control input, which is designed in the following section.

3.2. Design of the Robust Controller

To achieve the control objectives, the controller should be designed to deliver the fol-
lowing: (i) the trajectory tracking of the global reference; (ii) the desired formation specified
by Ld and δd; and (iii) payload swing disturbance rejection to ensure system robustness.
Therefore, for the ξ and η channels, the robust controller is respectively designed as

uξ
i = uξ

it + uξ
ic − f̂ ξ

i , (39)

uη
i = uη

it − f̂ η
i , (40)

where uξ
it and uη

it are the trajectory tracking terms, uξ
ic is the cooperative control term that

forms the desired formation, and f̂ ξ
i and f̂ η

i are the UDE terms (designed in Section 3.3)
that compensate for the disturbances.
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Remark 1. As shown in Figure 5, the reference system for the ξ channel is given by an exogenous
global reference (29) and a local reference (34) generated by the guidance law, whereas the ξ channel,
which represents the low-level tilt angle control system, obtains its reference signals based on the
acceleration commands provided by the ξ channel. Low-level reference signal generation is known
as “control command conversion”, as detailed in Section 3.4.

Herein, we define the state tracking errors as{
ξ̃ i = ξ id − ξ i,
η̃i = ηid − ηi.

(41)

Since Quadrotor 2 only has access to its local reference (34), we design a trajectory
tracking controller for each quadrotor separately. For Quadrotor 1, the trajectory tracking
terms are designed as

uξ
1t = uξ

1d + kξ
1p ξ̃1 + kξ

1d
˙̃ξ1, (42)

uη
1t = uη

1d + kη
1pη̃1 + kη

1d
˙̃η1, (43)

where uξ
1d and uη

1d are the feedforward terms that drive the system move in a desired

manner, (kξ
1p ξ̃1 + kξ

1d
˙̃ξ1) and (kη

1pη̃1 + kη
1d

˙̃η1) are the feedback terms that eliminate the

trajectory tracking errors, and kξ
1p, kξ

1d, kη
1p, and kη

1d are the feedback gains.
For Quadrotor 2, the trajectory tracking terms are designed as

uξ
2t = ξ̈⋆2d, (44)

uη
2t = uη

2d + kη
2pη̃1 + kη

2d
˙̃η2, (45)

where ξ̈⋆2d is the feedforward control term provided by the local reference system (34).
To achieve cooperative formation control, we design the uξ

ic term based on the forma-
tion offsets ∆

ξ
d and ∆

ξ
2 given by (31) and (35), respectively. Therefore, we have

uξ
1c = α

ξ
1(ξ2 − ξ1 − ∆

ξ
d) + β

ξ
1(ξ̇2 − ξ̇1 − ∆̇

ξ
d), (46)

uξ
2c = α

ξ
2(ξ1 − ξ2 + ∆

ξ
2) + β

ξ
2(ξ̇1 − ξ̇2 + ∆̇

ξ
2), (47)

where α
ξ
i and β

ξ
i are the position and velocity cooperative formation control gains.

Remark 2. In the design of the Quadrotor 2’s trajectory tracking control (44), we only include
one feedforward term, as the feedback term, if designed based on the local reference system (34) as
kξ

2p(ξ
⋆
2d − ξ2) + kξ

2d(ξ̇
⋆
2d − ξ̇2), plays a similar role to the cooperative formation control term uξ

2c
given in (47). Therefore, the feedback term is omitted for Quadrotor 2.

3.3. Design of UDE

To enhance the robustness of the quadrotors against payload swing disturbance, the
idea is to design an uncertainty and disturbance estimator (UDE) for each channel to
dynamically estimate the disturbance in real time and then actively use the estimation
signal to compensate for the disturbance. Since the models (28) for the ξ and η channels are
in the same form, without the loss of generality, we first design the UDE for the ξ channel,
and then the results apply straightforwardly to the η channel. Thus, the related discussion
for the η channel is omitted for simplicity.
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Following the design principle of classic UDE-based control [17], we let the estimate of
the disturbance, denoted by f̂ ξ

i , satisfy the following relationship in the frequency domain
by noting (28):

F̂ξ
i (s) = Gξ

i (s)Fξ
i (s) = Gξ

i (s)[s
2ξ i(s)− sξ i(0)− ξ̇ i(0)− Uξ

i (s)], (48)

where we use the uppercase letter of a variable to denote its Laplace transform;
Gξ

i (s) = diag{Gψ
i (s), Gx

i (s), Gy
i (s), Gz

i (s)} is a transfer function matrix representing one
design freedom of the UDE; and Gξ

i (s), ξ ∈ {ψ, x, y, z} are strictly proper, stable, rational
transfer functions to be designed later.

By assuming zero initial conditions and substituting (39) into (48), we obtain

F̂ξ
i (s) = Gξ

i (s)[s
2ξ i(s)− Uξ

it(s)− Uξ
ic(s) + F̂ξ

i (s)]. (49)

Solving F̂ξ
i (s) from (49) yields

F̂ξ
i (s) = [I − Gξ

i (s)]
−1Gξ

i (s)[s
2ξ i(s)− Uξ

it(s)− Uξ
ic(s)], (50)

where I is the identity matrix with compatible dimensions. The role of the transfer function
Gξ

i (s) is to ensure the physical realizability of F̂ξ
i (s), and, thus, we select

Gξ
i (s) =

1

Tξ
i s + 1

, ξ ∈ {ψ, x, y, z}, (51)

where Tξ
i > 0 is the parameter that determines the UDE estimation bandwidth. Substitut-

ing (51) into (50) gives

F̂ξ
i (s) = Tξ

i [sξ i(s)−
1
s
(Uξ

it(s) + Uξ
ic(s))], (52)

where the gain matrix satisfies

Tξ
i = diag{ 1

Tψ
i

,
1

Tx
i

,
1

Ty
i

,
1

Tz
i
}. (53)

The time domain expression of (52) is

f̂ ξ
i (t) = Tξ

i [ξ̇ i(t)−
∫ t

0
uξ

it(t) + uξ
ic(t)dt]. (54)

3.4. Control Command Conversion

In the classic quadrotor dual-loop control structure, the control command conversion
module converts high-level commands into low-level references. For the zi channel, by
using relationship (26), the thrust command Fiqz is obtained as

FB
iqz =

m(g − uz
i )

cos ϕi cos θi
. (55)

Moreover, the xi and yi channel control commands, representing the desired acceleration,
are converted into the desired roll angle ϕid and pitch angle θid given by

θid = arcsin(−
m(ux

i cos ψi + uy
i sin ψi)

FB
iqz cos ϕi

), (56)

ϕid = arcsin(−
m(ux

i sin ψi − uy
i cos ψi)

FB
iqz

). (57)
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To avoid the singularity issues encountered when | mux
i

FB
iqz cos ϕi cos ψi

| > 1 or | muy
i

FB
iqz cos ψi

| > 1, we

apply the linear approximation x ≈ sin−1(x) to (56) and (57) and obtain the reference signal
for the η channel:

ηid =

[
θid
ϕid

]
=

 −m(ux
i cos ψi+uy

i sin ψi)

FB
iqz cos ϕi

−m(ux
i sin ψi−uy

i cos ψi)

FB
iqz

. (58)

Remark 3. The trajectory tracking control terms (43) and (45) require reference signal η̇id and
feedforward signal uη

id = η̈id, which are the first- and second-order derivatives of ηid. In practical
applications, if the quadrotors are not required to maneuver aggressively, these derivatives are
insignificant and, thus, can be set to zero, which is implemented in most quadrotor flight control
firmware. Otherwise, a numerical differentiation of ηid might be needed.

3.5. Stability and Performance Analysis

In this section, the stability of the quadrotor formation and the robustness against
disturbances are analyzed using singular perturbation theory. The conditions required for
the feedback gains to ensure system stability are given in the following stability condition:

Stability Condition 1. For the ξ ∈ {ψ, x, y, z} channels, kξ
ip > 0, kξ

id > 0, α
ξ
1 + α

ξ
2 > 0, and

β
ξ
1 + β

ξ
2 > 0. For the η ∈ {ϕ, θ} channels, kη

ip > 0, and kη
id > 0.

To simplify parameter tuning, we introduce the following parameter mapping:{
Tξ

i = εTξ∗
i , ξ ∈ {ψ, x, y, z},

Tη
i = εTη∗

i , η ∈ {ϕ, θ},
(59)

where ε > 0 is the singular perturbation parameter that bridges the UDE parameters of the
two quadrotors, and Tξ∗

i and Tη∗
i are positive tunable parameters. Now, we are ready to

present the main analysis results of the proposed guidance and control framework.

Theorem 1. Under Stability Condition 1, the following statements hold:

(i) All the states of the two quadrotors are bounded by applying the proposed guidance law and
UDE-based robust controllers to the six channels;

(ii) The trajectory tracking errors of the quadrotor formation, as well as the low-level attitude
angle tracking errors, can be quantitatively regulated and satisfy

|ξ̃i(t)| ≤ σ
ξ
i (ε), ∀t > tξ

i , ξ ∈ {ψ, x, y, z}, (60)

|η̃i(t)| ≤ σ
η
i (ε), ∀t > tη

i , η ∈ {ϕ, θ}, (61)

where σ
ξ
i (ε) and σ

η
i (ε) are the specified ultimate bounds of tracking errors ξ̃i(t) and η̃i(t), respec-

tively, satisfying σ
ξ
i (ε) → 0 and σ

η
i (ε) → 0 as ε → 0, and tξ

i and tη
i are their corresponding

settling times.

Proof of Theorem 1. The proof of this theorem is presented in Appendix A.

Remark 4. The statement (ii) of Theorem 1 shows that the system tracking performance and
robustness are monotonic functions of ε; that is, by reducing a single parameter, ε, to enhance the
disturbance rejection performance of the UDE, the quadrotor state tracking errors can be reduced to
an arbitrarily small neighborhood of zero in the steady state. This feature is practically attractive
because the parameter tuning for improving system robustness is simple and intuitive.
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4. Simulation

In this section, the effectiveness of the proposed guidance and control framework
for the two quadrotors carrying a suspended payload is verified numerically via MAT-
LAB/Simulink simulations. Regarding the parameters and control gains used in the
simulations, the parameters of the system are specified in Table 2, and the control gains are
summarized in Table 3.

Table 3. Control gains used in the simulations.

Control Channels
Control Gains

kip kid αi βi T∗
i ε l1 l2

x 3 2 5 5 1 1 \ \
y 3 2 5 5 1 1 \ \
z 0.5 1 5 5 0.04 1 \ \
ϕ, θ 20 20 \ \ 0.05 1 \ \
ψ 3 2 5 5 1 1 100 100

The initial positions of the quadrotors are PI
1 (0) = [0m, 0m,−1m]T ,

PI
2 (0) = [0m,−1m,−1m]T , and, thus, the initial formation size is L(0) = 1m, while the

initial formation yaw angle is δ(0) = 0 rad. The initial quadrotor attitude angles, the
payload swing angles, and the quadrotor linear/angular velocities are all set to zero.

To show the capabilities of the proposed framework in terms of cooperative take-off,
level flight, coordinated turn, formation size change, and formation flight manner change,
we herein consider three different flight scenarios, as summarized in Table 4. Moreover,
the system robustness against payload swing disturbance is verified in Scenario 4, where
a set of different parameters ε = {0.5, 1, 2, 5} is applied to the UDE during hovering. The
simulation results for each scenario are detailed below.

Table 4. Scenarios considered in the simulations.

Scenario Number Scenario Description

1 Take-off and level flight with varying formation size
2 Coordinated turn in a circular flight
3 Obstacle avoidance via time-varying formation flight
4 Robustness verification during hovering

4.1. Scenario 1

In Scenario 1, the two quadrotors start by hovering at their initial positions for 10 s.
Then, the two quadrotors carry the payload, ascend to an altitude of zI = −4 m, and fly
along the xI -axis with a desired velocity of 0.1 m/s. For 40–60 s, the formation size L shrinks
gradually from 1 m to 0.5 m at a constant speed and then maintains 0.5 m afterwards.

The simulation results are given in Figures 6 and 7. From a stability and robustness
viewpoint, it is seen that all system states are bounded during the flight, and robust trajec-
tory tracking is achieved for the quadrotor formation under payload swing disturbance.
Moreover, the proposed guidance law and cooperative controller enable the formation to
change its size dynamically in a flight mission, and this capability is practically meaningful
when the formation needs to pass through narrow corridors, as demonstrated in Scenario 3.
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Reference Payload

Quadrotor 1 Error of Quadrotor 1

Quadrotor 2 Error of Quadrotor 2

L Error of L

Error of 

Figure 6. Scenario 1: flight trajectories of the formation and other states of the quadrotors and the
payload.

Quadrotor 1 Quadrotor 2

Figure 7. Scenario 1: UDE disturbance estimation signals.

4.2. Scenario 2

Unlike Scenario 1, where the quadrotor formation flies forward along the xL1-axis,
i.e., where the flight direction is perpendicular to the two-quadrotor formation, Scenario 2 re-
quires the quadrotor formation to fly laterally along the yL1-axis to point
PI

d = [0m, 5m,−1m]T . Then, the quadrotor formation makes a coordinated turn in a
circular flight path with a radius of 5 m by varying its yaw angle δ. During the turn, the
desired formation yaw angle δd increases at an angular velocity of 0.1 rad/s.

It is seen in Figure 8 that payload swing angle β is stimulated by the lateral motion
of the formation. But thanks to the disturbance estimation and rejection capability of
the proposed UDE shown by Figure 9, the payload swing only causes a very small per-
turbation in the formation size L, as shown in Figure 8. Furthermore, in circular flight,
the two quadrotors deliver excellent synchronized tracking performance of the desired
formation yaw angle δd, which results in high-accuracy trajectory tracking.
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Reference Payload

Quadrotor 1 Error of Quadrotor 1

Quadrotor 2 Error of Quadrotor 2

L Error of L

Error of 

Figure 8. Scenario 2: flight trajectories of the formation and other states of the quadrotors and the
payload.

Quadrotor 1 Quadrotor 2

Figure 9. Scenario 2: UDE disturbance estimation signals.

4.3. Scenario 3

The capability of the proposed methodology is best illustrated by its application in
a complex flight environment, where the quadrotor formation passes through a narrow,
winding corridor. The simulation results are given in Figures 10 and 11. From Figure 10, it
is observed that, to avoid collision, the formation size shrinks in Phase 1. When the corridor
is too narrow to allow the quadrotor formation to fly through, as shown in Phase 2, the
formation flies in a lateral manner instead and then restores its size in Phase 3 when the
corridor becomes broader.
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Reference Payload

Quadrotor 1 Error of Quadrotor 1

Quadrotor 2 Error of Quadrotor 2

L Error of L

Error of 

Obstacle

Phase 2

Phase 3

Phase 1

Figure 10. Scenario 3: flight trajectories of the formation and other states of the quadrotors and
the payload.

Quadrotor 1 Quadrotor 2

Figure 11. Scenario 3: UDE disturbance estimation signals.

4.4. Scenario 4

To verify Theorem 1 presented in Section 3.5, that is, the notion that the tracking
performance of the proposed control can be improved by decreasing a single parameter, ε,
we apply a set of ε = {0.5, 1, 2, 5} to the UDE. Moreover, the proposed control without the
UDE (denoted by “no compensation” in Figure 12) is also tested and compared to show
the effectiveness of the UDE in terms of robustness enhancement. In this scenario, the
quadrotors hover at their initial positions. The lateral component of the cable pulling force
induced by the payload gravity on each quadrotor forces the quadrotors to become closer.
It is seen in Figure 12 that, without the UDE to compensate for the disturbance force, the
feedback control alone fails to maintain the formation size L. In contrast, when applying a
smaller ε to the UDE, the deviation of the formation size becomes smaller. This result is
consistent with the statement (ii) of Theorem 1, showing the advantage of the proposed
control regarding parameter tuning.
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Figure 12. Scenario 4: formation size and UDE disturbance estimation signals under different
ε parameters.

5. Conclusions

This paper investigates the guidance and cooperative control of two quadrotors car-
rying a cable-suspended payload in a novel “Y”-shaped manner. To explicitly show the
impact of payload swing on the linear motions of the two quadrotors, we first derive the
payload swing motion dynamics associated with quadrotor acceleration, and then we
establish a comprehensive, nonlinear, coupled quadrotor–payload model that converts the
payload swing into disturbance cable pulling force vectors on the quadrotors. The compre-
hensive model is decoupled into six second-order subsystems by the feedback linearization
technique. To address the problem of Quadrotor 2 not having access to the reference
signals, a guidance law for Quadrotor 2 is proposed using Quadrotor 1’s measurable state
information and estimates of unmeasurable state derivatives provided by a Luenberger
state observer. Based on the local reference signals provided by the guidance law and the
neighbor’s state information, uncertainty and disturbance estimator-based cooperative
control is proposed for the two quadrotors to actively reject payload swing disturbance
and achieve robust trajectory tracking in a desired, possibly time-varying formation. A
singular perturbation theory-based performance analysis is provided, showing a practically
attractive feature of the proposed control whereby the disturbance rejection performance
and the overall trajectory tracking accuracy can be simultaneously improved by tuning
one single parameter, ε. Simulation results for three different scenarios are demonstrated
to verify the effectiveness of the proposed control and its capability of achieving obstacle
avoidance by varying the formation size and formation flight manner.

In the future, we aim to extend the proposed method to the cooperative formation
control of multiple quadrotors carrying a suspended payload by cables in a “Y”-like shape.
Specific steps include (1) deriving a generic model for the quadrotor–payload system and
(2) designing a cooperative guidance law and local robust controller using multi-agent
system distributed control theory.
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Appendix A. Proof of Theorem 1

The UDE estimation error is defined as

f̃ ξ
i = f ξ

i − f̂ ξ
i . (A1)

By combining (48), (51), and (A1), the UDE estimation error can be expressed in the
frequency domain as

F̃ξ
i (s) = [I − Gξ

i (s)]F
ξ
i (s), (A2)

which can be rewritten in the time domain as

˙̃f ξ
i = −Tξ

i f̃ ξ
i + ḟ ξ

i , (A3)

where Tξ
i is given in (53).

From (35), it can be seen that the ψ channel is in a cascade connection with the x and y
channels. Therefore, we start with the analysis of the ψ channel. By plugging the control
design (39) into the quadrotor model (28) and then subtracting the model from the global
reference systems (29) and (30) for the two quadrotors, we obtain the following tracking
error dynamics in the ψ channel:

˙̃ψ1
¨̃ψ1
˙̃ψ2
¨̃ψ2


︸ ︷︷ ︸

˙̃ψ

=


0 1 0 0

−kψ
1p − α

ψ
1 −kψ

1d − β
ψ
1 α

ψ
1 β

ψ
1

0 0 0 1
−kψ

1p + α
ψ
2 −kψ

1d + β
ψ
2 −α

ψ
2 −β

ψ
2


︸ ︷︷ ︸

Aψ
r


ψ̃1
˙̃ψ1

ψ̃2
˙̃ψ2


︸ ︷︷ ︸

ψ̃

+


0 0
−1 0
0 0
0 −1


︸ ︷︷ ︸

Bψ
r

[
f̃ ψ
1

f̃ ψ
2

]
︸ ︷︷ ︸

f̃ ψ

. (A4)

By substituting the parameter mapping (59) into (A3), we obtain the UDE estimation error
dynamics for the two quadrotors in the ψ channel as

ε

[
˙̃f ψ
1
˙̃f ψ
2

]
︸ ︷︷ ︸

˙̃f ψ

=

 − 1
Tψ∗

1
0

0 − 1
Tψ∗

2


︸ ︷︷ ︸

Aψ
b

[
f̃ ψ
1

f̃ ψ
2

]
︸ ︷︷ ︸

f̃ ψ

+ε

[
1 0
0 1

]
︸ ︷︷ ︸

Bψ
b

[
ḟ ψ
1

ḟ ψ
2

]
︸ ︷︷ ︸

ḟ ψ

. (A5)

Up to now, we have derived the tracking error dynamics (A4) and the UDE estimation dy-
namics (A5), which are exactly in the form of the standard singular perturbation model [18].
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Thus, it is natural to exploit singular perturbation theory to analyze the system stability and
robustness. By letting ε = 0 in (A5), we obtain the quasi-steady state of the f̃ ψ dynamics:

f̃ ψ∗ = 0. (A6)

Then, by plugging the quasi-steady state f̃ ψ∗ into (A4) and letting ε = 0, the following
reduced model is obtained:

˙̃ψ = Aψ
r ψ̃. (A7)

It is readily verified that the origin of (A7) is an exponentially stable equilibrium under
Stability Condition 1. Meanwhile, the boundary-layer model corresponding to (A5) is

˙̃f ψ = Aψ
b f̃ ψ, (A8)

which is also exponentially stable at its origin by noting (59). Therefore, by using
Theorem 11.4 in [18], we conclude that there exists a ε∗ > 0, such that ∀0 < ε < ε∗,
and the tracking error dynamics (A4) and the UDE estimation dynamics (A5) are both
stable, provided the boundedness of f ψ

i and its derivatives up to the second order. Thus,
the boundedness of ψi and f̂ ψ

i is verified.
Now, we show the robustness of the ψ channel. The solution of the reduced model (A7) is

ˆ̃ψ(t) = eAψ
r ψ̃(0). (A9)

Via Theorem 11.2 in [18], we conclude that there exists a positive constant kψ such that
∀0 < ε < ε∗ and ∀t > 0, and the following inequality holds:∥∥∥ψ̃(t)− ˆ̃ψ(t)

∥∥∥
2
≤ kψε. (A10)

Hence, we have

∥ψ̃(t)∥2 ≤
∥∥∥ψ̃(t)− ˆ̃ψ(t)

∥∥∥
2
+

∥∥∥ ˆ̃ψ(t)
∥∥∥

2
≤ kψε +

∥∥∥ ˆ̃ψ(t)
∥∥∥

2
. (A11)

Note that (A7) is stable, and we have
∥∥∥ ˆ̃ψ(t)

∥∥∥
2
→ 0. Thus, it is clear that there exist tψ

i > 0,

ε∗∗ > 0, and ultimate bound σ
ψ
i (ε) satisfying σ

ψ
i (ε) → 0 as ε → 0, such that ∀0 < ε < ε∗∗,

and the following inequality holds:

|ψ̃i(t)| ≤ ∥ψ̃(t)∥2 ≤ kψε +
∥∥∥ ˆ̃ψ(t)

∥∥∥
2
≤ σ

ψ
i (ε), ∀t > tψ

i . (A12)

Since the z channel has an identical form to the ψ channel, an analysis of its stability
and robustness can be performed in the same way as that presented above, and, thus, it
is omitted here. In what follows, we analyze the x and y channels. The tracking error
dynamics are


˙̃ξ1
¨̃ξ1
˙̃ξ2
¨̃ξ2


︸ ︷︷ ︸

˙̃ξ

=


0 1 0 0

−kξ
1p − α
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1 −kξ

1d − β
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1 α
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1 β

ξ
1

0 0 0 1
−kξ

1p + α
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2 −kξ

1d + β
ξ
2 −α

ξ
2 −β

ξ
2


︸ ︷︷ ︸

Aξ
r


ξ̃1
˙̃ξ1
ξ̃2
˙̃ξ2


︸ ︷︷ ︸

ξ̃

+


0 0
−1 0
0 0
0 −1


︸ ︷︷ ︸

Bξ
r

[
f̃ ξ
1

f̃ ξ
2

]
︸ ︷︷ ︸

ξ̃

+


0
0
0
1


︸ ︷︷ ︸

Eξ
r

Eξ , ξ ∈ {x, y}, (A13)

where Eξ = hξ(ψd) − hξ(ψ1) = ∆̈ξ
d − ∆̈ξ

2 + α
ξ
2(∆

ξ
d − ∆ξ

2) + β
ξ
2(∆̇

ξ
d − ∆̇ξ

2) is the formation
offset-related term satisfying
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Ex = (Ldψ̈d cos ψd + L̇dψ̇d cos ψd + L̈d sin ψd + L̇dψ̇d cos ψd − Ldψ̇2
d sin ψd)

−(Ldψ̈1 cos ψ1 + L̇dψ̇1 cos ψ1 + L̈d sin ψ1 + L̇dψ̇1 cos ψ1 − Ldψ̇2
1 sin ψ1)

−α
y
2(Ld sin ψ1−Ld sin ψd)−β

y
2(Ldψ̇1 cos ψ1+L̇d sin ψ1−Ldψ̇d cos ψd−L̇d sin ψd), (A14)

Ey = (Ldψ̇2
d cos ψd + Ldψ̈d sin ψd + L̇dψ̇d sin ψd − L̈d cos ψd + L̇dψ̇d sin ψd)

−(Ldψ̇2
1 cos ψ1 + Ldψ̈1 sin ψ1 + L̇dψ̇1 sin ψ1 − L̈d cos ψ1 + L̇dψ̇1 sin ψ1)

−αx
2(Ld cos ψd−Ld cos ψ1)−βx

2(L̇d cos ψd−Ldψ̇d sin ψd−L̇d cos ψ1+Ldψ̇1 sin ψ1). (A15)

Similar to the parameter mapping (59) employed in the ψ channel, by mapping
Tξ

i = εTξ∗
i , ξ ∈ {x, y}, it is found that the UDE estimation error dynamics are

ε

[
˙̃f ξ
1
˙̃f ξ
2

]
︸ ︷︷ ︸

˙̃f ξ

=

 − 1
Tξ∗

1
0

0 − 1
Tξ∗

2


︸ ︷︷ ︸

Aξ
b

[
f̃ ξ
1

f̃ ξ
2

]
︸ ︷︷ ︸

f̃ ξ

+ε

[
1 0
0 1

]
︸ ︷︷ ︸

Bξ
b

[
ḟ ξ
1

ḟ ξ
2

]
︸ ︷︷ ︸

ḟ ξ

, ξ ∈ {x, y}. (A16)

Via singular perturbation theory, it is readily concluded that ∀0 < ε < ε∗, and the error
dynamics (A13) and (A16) are stable under Stability Condition 1, provided the boundedness
of f ξ

i and its derivatives up to the second order; thus, the states ξi and the UDE estimation
signals f̂ ξ

i are bounded.
As for the robustness analysis, the reduced model that corresponds to (A13) is

˙̃ξ = Aξ
r ξ̃ + Eξ

r Eξ , ξ ∈ {x, y}, (A17)

and its solution is denoted by

ˆ̃ξ(t) = eAξ
r ξ̃(0) +

∫ t

0
eAξ

r (t−τ)Eξ
r Eξ dτ, ξ ∈ {x, y}. (A18)

From the stability of systems (A4) and (A5), we conclude that state ψ1 and its derivatives
up to the third order are bounded. Furthermore, reference signal ψd and its derivatives
up to the third order can be designed to be bounded. Then, it is clear that the derivative
of function hξ , denoted by ḣξ(ψ), is bounded by a positive constant ḣξ

max, and, thus, the
following inequality holds by noting (A12):

|Eξ | = |hξ(ψd)− hξ(ψ1)| ≤ ḣξ
max|ψd − ψ1︸ ︷︷ ︸

ψ̃1

| ≤ ḣξ
maxσ

ψ
1 (ε)

∆
= σEξ (ε), ξ ∈ {x, y}, (A19)

where the bound σEξ (T
ψ
1 ) → 0 as ε → 0. Then, we have∥∥∥ ˆ̃ξ(t)

∥∥∥
2

≤
∥∥∥eAξ

r t ξ̃(0)
∥∥∥

2
+

∥∥∥∥eAξ
r t
∫ t

0
e−Aξ

r τdτEξ
r σEξ (ε)

∥∥∥∥
2

≤
∥∥∥eAξ

r t ξ̃(0)
∥∥∥

2
+ σEξ (ε)

∥∥∥(eAξ
r t − I)(Aξ

r )
−1Eξ

r

∥∥∥
2
, ξ ∈ {x, y}. (A20)

Based on the boundedness of
∥∥∥(eAξ

r t − I)(Aξ
r )

−1Eξ
r

∥∥∥
2

provided by the exponential stability
of the reduced model (A17), we use singular perturbation theory to conclude that there
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exist kξ > 0, a tξ
i > 0, ε∗∗ > 0, and ultimate bound σ

ξ
i (ε) satisfying σ

ξ
i (ε) → 0 as ε → 0,

such that ∀0 < ε < ε∗∗ and ∀t > tξ
i , and the following inequality holds:

|ξ̃i(t)| ≤
∥∥ξ̃(t)

∥∥
2 ≤

∥∥∥ξ̃(t)− ˆ̃ξ(t)
∥∥∥

2
+

∥∥∥ ˆ̃ξ(t)
∥∥∥

2

≤ kξ ε +
∥∥∥eAξ

r t ξ̃(0)
∥∥∥

2
+ σEξ (ε)

∥∥∥(eAξ
r t − I)(Aξ

r )
−1Eξ

r

∥∥∥
2

≤ σ
ξ
i (ε), ξ ∈ {x, y}. (A21)

Up to now, we have finished the proof of Theorem 1 for the ξ ∈ {ψ, x, y, z} channels,
and the next step is to analyze the η ∈ {ϕ, θ} channels. The tracking error dynamics and
UDE estimation error dynamics are respectively given by[ ˙̃η

¨̃ηi

]
︸ ︷︷ ︸

˙̃ηi

=

[
0 1

−kη
ip −kη

id

]
︸ ︷︷ ︸

Aη
r

[
η̃i
˙̃ηi

]
︸ ︷︷ ︸

¨̃η

+

[
0
−1

]
︸ ︷︷ ︸

Bη
r

f̃ η
i , η ∈ {ϕ, θ}, (A22)

and
ε ˙̃f η

i = − 1
Tη∗

i
f̃ η
i + ε ḟ η

i , η ∈ {ϕ, θ}. (A23)

Under stability Condition 1, it is clear that the reduced model

˙̃η = Aη
r η̃, η ∈ {ϕ, θ}, (A24)

and the boundary-layer model

˙̃f η
i = − 1

Tη∗
i

f̃ η
i , η ∈ {ϕ, θ}, (A25)

are exponentially stable at the origin. The remaining parts can be proven in the same way
as the proof of the ψ channel and is omitted. This ends the proof of Theorem 1.
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