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Abstract: The advancement of wireless networking has significantly enhanced beamforming capabil-
ities in Autonomous Unmanned Aerial Systems (AUAS). This paper presents a simple and efficient
classical algorithm to route a collection of AUAS or drone swarms extending our previous work
on AUAS. The algorithm is based on the sparse factorization of frequency Vandermonde matrices
that correspond to each drone, and its entries are determined through spatiotemporal data of drones
in the AUAS. The algorithm relies on multibeam beamforming, making it suitable for large-scale
AUAS networking in wireless communications. We show a reduction in the arithmetic and time
complexities of the algorithm through theoretical and numerical results. Finally, we also present an
ML-based AUAS routing algorithm using the classical AUAS algorithm and feed-forward neural
networks. We compare the beamformed signals of the ML-based AUAS routing algorithm with the
ground truth signals to minimize the error between them. The numerical error results show that
the ML-based AUAS routing algorithm enhances the accuracy of the routing. This error, along with
the numerical and theoretical results for over 100 drones, provides the basis for the scalability of the
proposed ML-based AUAS algorithms for large-scale deployments.

Keywords: drone swarms; UAS; MIMO communication; complexity and performance of algorithms;
wireless communications; multi-beam beamforming; ML algorithm; ANN

1. Introduction

The 5G wireless networking facilitates the improvement of the capacity of beamform-
ing on the collection of unmanned autonomous systems (UAS) or drone swarms [1–10].
Beamforming allows mm-wave multi-input multi-output communication systems to in-
crease the link capacity by exploiting the spatial multiplexing and/or diversity provided
by multiple propagation paths [11–14]. Although beamforming has been implemented
to enhance UAS networking, the existing UAS routing algorithms rely on the ad hoc on-
demand distance vector (AODV) and optimized link state routing (OLSR) [1]. AODV is a
decentralized algorithm that exhibits robustness in dynamic topologies while maintaining
low management overhead [15]. However, it suffers from drawbacks such as the path
discovery consumption and local optimization for the routing generation. On the other
hand, the AntNet [16–19] is an OLSR algorithm that utilizes a virtual efficient message
exchange among neighboring drones [20]. But, it was pointed out in [21] that the cost
of the AntNet algorithm increases when searching for the shortest path in non-ad hoc
environments, and degradation as the network size increases. It is vital to note that the
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OLSR algorithms achieve global optimization in routing generation but incur a higher
overhead [22–24].

1.1. Contribution in Our Previous Work [1] and Building Work from [1]

In contrast to most literature on unmanned autonomous systems, which focuses on a
single flying antenna system (as a hub) [25–30], we proposed a unique mathematical model
to route a collection of AUAS in [1] based on decentralization, followed by spatiotemporal
data and wideband multibeam beamforming to route drone swarms. The algorithm in [1]
is based on the brute-force calculation of the frequency Vandermonde matrices by vectors.
We showed numerical results based on time-stamped beamformed signals of the routing
algorithm and compared those with ground truth signals.

Building upon our previous work [1], and to improve the accuracy and efficiency of
time-stamped beamformed signals of drone swarms, we present novel and efficient AUAS
routing algorithms, i.e., classical followed by ML algorithms. The algorithms are based
on the sparse factorization of the frequency Vandermonde matrices corresponding to each
drone, whose entries are determined via spatiotemporal data. We show analytical and
numerical results of the classical AUAS algorithm to show accuracy concerning the ground
truth signals, and the improvement of arithmetic and time complexities. Furthermore, we
elaborate an ML-based AUAS routing algorithm by combining the classical AUAS routing
algorithm with a feed-forward neural network. We show numerical results for the accuracy
and performance of the ML-based AUAS routing algorithm by reducing and minimizing
errors concerning ground truth signals.

1.2. Introducing Artificial Neural Networks for Drone Swarm

Various ML algorithms, including MultiAgent Reinforcement Learning (MARL) [31],
Q-learning [32], and Deep Q-learning Network (DQN) [33], have been applied to ad-
dress issues in a drone swarm, including throughput and routing. The feed-forward
ANN (FFANN)-based ML algorithms establish differentiable connections between vector
spaces [34,35], and could be utilized to analyze the routing of drone swarms. According
to the Universal Approximation Theorem, properly weighted and biased feed-forward
ANN architectures can approximate any continuous function with precision and accuracy,
depending on the number of hidden units available [36,37]. This remarkable ability for
universal approximation is a result of the hierarchical feed-forward layer structure itself,
rather than the specific choice of non-linear activation functions applied to hidden units [38].
Furthermore, the regular structure of ANNs allows for easy parallelization, making them
highly suitable for efficient hardware implementations, particularly in low-power envi-
ronments [39]. This characteristic makes ANN structures desirable in applications where
the direct implementation of a function would be computationally expensive, but an ANN
approximation of that function would be suitable. An example is the MIMO-based swarm
routing algorithm [1], which is intended to run on resource-constrained onboard UAS con-
trollers. In this application, the enhanced speed and efficiency of a carefully validated ANN
approximation are acceptable, even with some degree of error and undefined behavior in
poorly trained edge cases, as it serves as a component of a larger control system [40,41].

Random matrices play a role in the initialization and training of ANNs, being used
in random feature approaches and defining the initial loss surface. Utilizing random ma-
trix theory allows for the quantification of complex and poorly understood phenomena
exhibited by ANNs, similar to how thermodynamics and other fields describe the behavior
of complex systems through statistical representations of random variables [42]. This
approach offers the opportunity to understand and mitigate the theoretical limitations
of ANNs, using random variables to capture the challenging-to-measure properties of
these networks. Random matrix theory-based models of ANNs facilitate informed hyper-
parameter optimizations, helping assess how close a trained network is to its theoretical
capacity by quantifying the proximity of local training loss minima to the global mini-
mum [43]. Moreover, random matrix theory tools can enhance and accelerate the training
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process by preserving the eigenvalues of layer activations as they propagate through a feed-
forward network [42]. Keeping the eigenvalue densities of each layer uniform mitigates
the vanishing gradient problem, akin to a method of batch normalization that considers
covariance [44]. Additionally, random matrix theory provides tools for augmenting the
gradient descent with second-order optimization processes, which aid in identifying and
escaping ’saddle points’, areas in the error landscape with relatively low values surrounded
by high error plateaus that are not critical points due to the existence of lower error values
along some axis [45]. Furthermore, it is possible to sensibly quantify how well a candidate
network has approximated some function through the use of high-dimensional proba-
bility techniques that move beyond naive measurements of distance, such as Euclidean
distance [46].

1.3. Batch Normalization for Efficient ANN

Batch normalization is a technique used to standardize inputs in ANNs, enabling the
effective training of the network. It boosts accuracy by allowing all layers to be trained,
but this may come at the cost of reduced efficiency. Progressive batch normalization has
been developed to achieve significant improvements in accuracy, up to 18.4% compared to
normal batch normalization [47]. By adjusting batch normalization parameters, maintained
accuracy can be further improved by about 1% over time in some applications, ensuring
both the accuracy and efficiency of the ML algorithms [48]. Batch normalization to optimize
routing for drone swarm can be adopted via class incremental learning (Class-IL) [49],
i.e., an algorithm must incrementally learn to distinguish between a growing number
of objects. Recently, some advances have been made on Class-IL [50–53], incorporating
memory orthogonality to improve IL and avoid a common dilemma called catastrophic
forgetting or catastrophic interference [50].

In addition to batch normalization, there is dropout normalization, which involves
dropping some neurons in ANN layers to promote generalization and robustness dur-
ing training. Combining both normalization methods may increase training time [54].
Hence, we will adopt batch normalization to reduce the complexity of the proposed AUAS
routing algorithm.

When examining the balance between low storage and high computing efficiency in
ANNs, Low-bit Deep Neural Networks (DNNs) could be considered [55]. Yet, the network
faces computational challenges and quantization errors, which in turn impact their train-
ing process. To address this hurdle, authors in [55] had studied stochastic quantization
techniques yielding a loss of accuracy and contributed to enhancements of up to 3% in
performance. This advancement in mitigating the accuracy degradation underscores the
potential for harnessing the inherent nonlinearity of activation functions within ANNs. This
shift from conventional linear activation functions is effective in achieving substantial per-
formance improvements [42]. Thus, we have chosen the “swish” activation function with
a trainable parameter β s.t. swish(x) = x× σβ(x), where σβ(x) = 1

1+e−βx . This function is
favorable because it utilizes the non-linear properties of the sigmoid activation function
while avoiding saturation due to its unbounded nature. This is especially important when
modeling interference patterns, where overlapping extremes can create large values [56].

1.4. Organization and Contribution of This Paper

We list the contribution and organization of this paper as follows:

• In Section 2, we present

– Sparse factorization of the frequency Vandermonde matrices based on each drone,
followed by an efficient classical algorithm to route a collection of AUAS.

– Analytical arithmetic complexity and numerical computational complexity of the
AUAS algorithm. We show that the proposed algorithm is efficient compared to
the brute-force calculations and some other routing algorithms.

• In Section 3, we present time stamp simulations based on the proposed algorithm,
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i.e., the received beamformed signals of drones in the swarm at time stamps. Moreover,
we compare the time-stamped beamformed signals corresponding to the proposed
algorithm with the ground truth signals and the previous work to show the accuracy
and compatibility of the algorithms.

• In Section 4, we present a feed-forward ANN based on the classical AUAS algorithm.
The feed-forward ANN uses 3M + N inputs s.t. O(M) units and O(M2) trainable
parameters when M ≥ N, to optimize the ML-based AUAS routing algorithm. We
show that the optimization of the ML-based AUAS routing algorithm was achieved
based on accuracy and efficiency.

• In Section 6, we conclude this paper.

We emphasize that the objective of this paper is to optimize the AUAS routing algo-
rithm using a feed-forward neural network. The algorithm is different from AODV and
OLSR, as it utilizes multi-beam beamforming to establish communication among drones.
We do not address routing protocols for UAV networks based on topology, position, hier-
archy, deterministic, stochastic, and social networks, as described in [57] and references
therein. Also, we do not address sensors such as the electronic speed control and inertial
measurement unit (an electromechanical device that consists of an accelerometer and a
gyroscope) and controls such as proportional integral derivative control, adaptive con-
trol, localization and mapping methods, marker recognition algorithms, and vision-based
schemes to route UAVs, as described in [58] and references therein.

2. Introducing Sparse Factors for the AUAS Model and a RSwarm Routing Algorithm

In [1], we proposed a mathematical model to route a collection of AUAS consisting
of over 100 members while answering the limitation of the existing AODV-based swarm
members [59,60]. Continuing from the previous work, in this section, we present sparse
factors for the mathematical model to reduce the complexity of the model in [1] and obtain
a fast AUAS routing algorithm. The factorization is presented based on the frequency of
Vandermonde matrices defined via spatiotemporal data. Before starting an AUAS routing
algorithm, let us recall the mathematical model for routing drone swarms in [1].

2.1. Mathematical Model for AUAS Routing in [1]

We assumed a swarm consisting of M number of drones, and each drone—say u—has a
uniform linear array with N elements and d element spacing. We also assumed that there are
M uncorrelated signals impinging on the array from M drones (to establish communication
among drones) with unique directions {θi}M

i=1, amplitudes {ai}M
i=1, and temporal variables

{ωi}M
i=1 s.t. −2π fi ≤ ωi < 2π fi, where fi is the unique temporal frequency in each drone.

These assumptions are made so that each drone could communicate using a unique RF
beacon modulated at a low-rate digital waveform that carries a unique binary identification
code and with no entering or leaving the drone in the drone swarm between deployment
and landing. If x(u)(t) = [x(0, t), x(1, t), · · · , x(M− 1, t)]T—say x(u) denotes the source
signal of drone u at time t, then the received N-beamformed signal of drone u at time t, i.e.,

y(u)(ωi, ai, θi, t) =
N−1,M

∑
k=0,i=1

aiej(ωit−kωiψi)x(u) + ȷ(u), (1)

where ψi = 2π d
λ sin(θi), λ denotes the wavelength of the incident signal, and ȷ(u)(t) =

[n0(t), n1(t), · · · , nN−1(t)]
T—say ȷ(u) is the Additive White Gaussian Noise (AWGN), takes

the vector form y(u)(ωi, ai, θi, t) = [y(0, t), y(1, t), · · · , y(N − 1, t)]T—referred to as y(u).
Now, for all u’s, we can rewrite y(u)’s as a collection of matrix-vector products describing a
MIMO beamforming model, and for each drone, u, described via:

y(u) = V(u)
ki · S

(u)
i · x

(u) + ȷ(u), (2)
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where V(u)
ki =

[
e−jkωiψi

]N−1,M

k=0,i=1
is an N ×M matrix determined by spatial and temporal

frequencies of each drone u, which is the frequency Vandermonde matrix (we recall here
that such frequency Vandemonde matrices are a superclass of discrete Fourier transform
matrices, and could be utilized to realize wideband multibeam beamforming, see [11–14]),
j2 = −1, and S(u)

i = [aiejωit]Mi=1 is an M×M matrix consisting of temporal frequencies and
amplitudes. Thus, we will have a set of M systems of equations, and for each drone u, we
have a system of N equations, i.e., a total of MN equations in (2).

2.2. An Efficient AUAS Routing Algorithm, i.e., RSwarm Algorithm

This section presents a sparse factorization for frequency Vandermonde matrices
determined by the spatiotemporal data of the drone swarm, and hence proposes an efficient
classical algorithm to route a collection of AUAS. Before starting the factorization, let us
take δi = e−jωiψi for each drone i = 1, 2, · · · , M corresponding to the nodes of the frequency

Vandermonde matrices V(u)
ki =

[
e−jkωiψi

]N−1,M

k=0,i=1

Proposition 1. Let the M×M frequency Vandermonde matrix for the drone, u, be given via V(u),
and its nodes be defined via {δ1, δ2, . . . , δM} ∈ C s.t. δi = e−jωiψi for drones i = 1, 2, · · · , M.
Then, the frequency Vandermonde matrix can be factored into the product of bidiagonal matrices s.t.

V(u) = L1L2 · · · LM−1UM−1 · · ·U2U1, (3)

where
Uk =

IM−k−1
1

δM−k(δ1 − 1) 1
δM−k(δ2 − 1) 1

. . . 1
δM−k(δk − 1)


,

and

Lk =



IM−k−1
1
δ1 1

δ2 1
. . . . . .

δk 1


.

where k = 1, 2, · · · , M− 1, I is the identity matrix, and the empty spaces represent zero entries of
the matrices.

Proof. This follows immediately from [11,61], when nodes are defined via δi.

By following the above factorization, we obtain the following simple routing algorithm,
i.e., the RSwarm Algorithm 1, to route a collection of AUAS. In Sections 2.3 and 2.4, we show
that the proposed algorithm attains low arithmetic and time complexities. Furthermore,
in Section 3, we show that the performance of the proposed algorithm is compatible with
the mathematical model (2). Thus, we present the RSwarm algorithm to route M drones,
with each drone having an antenna array with M elements. We note here that the output
of the algorithm provides M-beamformed received signals for each drone u at time t,
i.e., y(u)(ωi, ai, θi, t), where x(u)(t) is the input of the algorithm denoting the source signal
of drone u at time t.
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Algorithm 1 RSwarm
Input: M fi, and t.
Output: y(1), y(2), · · · , y(M).

1. for i = 1 to M
Obtain θi, ai, ωi, ψi
Set δi ← e−jωiψi

end for

2. for u = 1 to M
Obtain x(u) at t

end for

3. for u = 1 to M
for i = 1 to M

Construct S(u)
i

s(u) ← S(u)
i · x

(u)

end for
end for

4. Construct Ṽ[s(u), 02M−1]

5. Calculate Ṽ[:, 1 ... M− 1]
for i = 0 to M− 2

for k = 0 to M− 1
if k + i < (M− 2)

Ṽk(i+1) ← Ṽki
elseif k + i = (M− 2)

Ṽk(i+1) ← Ṽki + Ṽ(k+1)i
elseif k = M− 1

Ṽk(i+1) ← Ṽki · (δk − δ(M−i−2))
else

Ṽk(i+1) ← Ṽki · (δk − δ(M−i−2)) + Ṽ(k+1)i
end if

end for i
end for k

6. Calculate Ṽ[:, M ... 2M− 1]
for i = M− 1 to 2M− 2

for k = 0 to M− 1
if k ≤ (i−M + 1)

Ṽk(i+1) ← Ṽki
else

Ṽk(i+1) ← Ṽ(k−1)i · δ(k−i+M−2) + Ṽki
end if

end for i
end for k

y(u) ← Ṽ[:, 2M− 1]
end for u

7. return y(1), y(2), · · · , y(M)
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2.3. Arithmetic Complexity of the Algorithm

This section presents both the theoretical and numerical results in connection to the
reduction in complexity, and hence shows the efficiency of the proposed routing algorithm.
We recall here that particle swarm optimization has gained more attention as a stochastic
optimization technique to route drone swarms. However, it does not consistently yield rout-
ing algorithms with low complexity [1,20,62]. On the other hand, the paper [63] shows the
performance comparisons of particle swarm optimization and differential evolution tech-
niques while identifying delivery routes, with minimal travel distances having quadratic
complexity in both time and space. Nevertheless, this complexity has been computed based
on a spatial distance matrix derived from the deployment to landing locations [1].

Here, we show that the RSwarm algorithm exhibits complexity that is less than
quadratic. This advantage arises from the inherent property of the algorithm, wherein the
value of N representing the number of elements in the antenna arrays remains constant
after the deployment. Before establishing this, we obtain the arithmetic complexity of the
proposed RSwarm algorithm, as follows.

Proposition 2. The arithmetic complexity of the RSwarm routing algorithm having M number of
drones and each drone consisting of a uniform linear array with N-elements, is O(NMp), where p
is less than the standard quadratic complexity.

Proof. We have M-sets of N-beamformed signals of M-drones, i.e., [y(1), y(2), · · · , y(M)] as
the columns of a throughput matrix to navigate the AUAS swarm. As each N-beamformed
signal y(u) correspondences to each drone described via (2) followed by the sparse factor-
ization (3), the computation of the throughput matrix cost O(NMp), where p is just about
the quadratic power but less than the explicit quadratic complexity.

Remark 1. Since N is fixed after the deployment of the drone swarms, i.e., the number of elements
in the antenna array is fixed after the deployments, and followed by the Proposition 2, the RSwarm
algorithm has just less than the quadratic complexity, i.e., O(Mp), where p < 2, while comparing
with [1,20,62–66]. Furthermore, the RSwarm algorithm allows one to route a drone swarm with over
100 members, which is an improvement compared to the limitations of the existing AODV-based
swarm members [15,59,60].

2.4. Numerical Results for the Arithmetic and Time Complexities of the Algorithm

In this section, we address numerical results based on the arithmetic and time com-
plexities of the proposed routing algorithm. Moreover, the relationship between these
complexities, along with the brute force calculation and the RSwarm algorithm, are illus-
trated in Figures 1 and 2. These figures are drawn in the logarithmic scale representing the
number of additions, number of multiplications, and timing required to execute the mathe-
matical model based on the brute-force calculation vs. the RSwarm algorithms. The x-axis
represents the number of drones, i.e., the number of elements in the antenna arrays (recall
that M and N are the same), while the y-axis represents the arithmetic or time complexities.
Referring to Figure 1, the algorithmic additions, multiplications, and their combination
based on the RSwarm algorithm demonstrate the efficiency of the algorithm, as opposed to
the brute-force calculation. Additionally, these results align with the theoretical complexity
of the algorithm, i.e., the Proposition 2. Compared to the arithmetic complexity graphs in
Figure 1, the time complexity graphs in Figure 2 do not show promising efficiency results
of the RSwarm algorithm vs. the brute-force calculation. This discrepancy could be at-
tributed to limitations in the processor speed and power. But, as expected, Figures 1 and 2
show proportionality between time and arithmetic complexities. Moreover, both Figures
also show that as the number of drones (also the number of elements in antenna arrays)
increases, time and arithmetic complexities proportionally increase with that.
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(a) (b)

(c)

Figure 1. Based on the execution of the proposed algorithm and brute-force mathematical model,
followed by the codes written in Python and the timeit module: (a) shows the log-scaled number of
multiplications, (b) shows the log-scaled number of additions, and (c) shows the log-scaled number
of additions and multiplications.

(a) (b)

(c)

Figure 2. Based on the execution of the proposed algorithm and brute-force mathematical model,
followed by the codes written in Python and the timeit module: (a) shows the log-scaled execution
time corresponding to multiplications, (b) shows the log-scaled execution time corresponding to
additions, and (c) shows the log-scaled execution time corresponding to additions and multiplications.

We note that the graphs in Figures 1 and 2 do not demonstrate a significant improve-
ment for a small number of drones or elements in the antenna arrays. However, they do
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show deviation as the number of drones or elements in the antenna arrays increases. This
is because the RSwarm algorithm’s arithmetic (proportional time) complexities are not
significantly affected by small values, but larger values experience a difference due to the
proximity of the arithmetic and respective time complexity results.

Figures 1 and 2 were generated using the Python code corresponding to the RSwarm
algorithm. The timings were obtained using Python’s timeit module on a Lenovo Thinkpad
X1 equipped with an Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz and 8 GB of RAM.
The system was run with minimal concurrent applications.

3. Time-Stamp Simulations of the Algorithm

In this section, we present the received M-beamformed signals of each drone in the
swarm at different time stamps, and assess the performance of the routing algorithm while
comparing the performance with the output signals based on the previous work in [1] and
ground truth signals.

We define the ground truth activation function as

γu,i,k(t) =
M

∑
u=1

N

∑
k=1

(
M

∑
i=1

sin(ωi · t + 2π · λi · βu,i,k)

)
(4)

where ωi is the temporal frequency of drone i, λi is the spatial frequency of drone i, and
βu,i,k is the distance from drone u’s kth antenna element to each antenna element of drone
i at time t. In this simulation, ωi =

i·2π
10 and λi =

1
ωi

, such that each drone is assigned
a temporal and corresponding spatial frequency that is some multiple of the temporal
frequency assigned to the drone with the slowest temporal frequency. This expresses what
the sum of all waves emanating from each drone relative to drone u would look like from
the view of drone u’s antenna array elements. In this way, the term “ground-truth” refers to
the signal that would be experienced by any particular drone in the simulation. Comparing
the output of this function for any given drone u and the output of the classical AUAS
algorithm for a drone u is an important way to assess the ability of the classical AUAS
model to map each drone’s M triplets of

[
θ(u), a(u), ω(u)

]
to an actual signal, and is also

crucial for defining the training set for the post-processing FFANN designed to correct any
deviation the AUAS algorithm output may have from the output it should have. Figure 3
shows M-beamformed signals corresponding to the antenna arrays in drones 1, 2, ..., M
at time steps 0, 0.1, 0.2, ..., 0.9., i.e., the values of the output signals y(u)(ωi, ai, θi, t), as u
and i go from 1, 2, ..., M. The color spectrum demonstrates the strength of the signal at
time t per drone u at antenna element k. To generate Figure 3, we compare the activation
function with the magnitude of the beamformed output vector multiplied by the sine value
of the phase of the beamformed signals from all drones. This comparison considers spatial
arrangements of drones at a specific time, experienced by each element of the antenna array.
Following [1], we compare the ground truth signals with the output signals corresponding
to the AUAS routing algorithm based on the following expression:

M

∑
i=1
|y(u)| · sin

(
arctan

(
Imag(V(u)

ki · S
(u)
i · x

(u)), Real(V(u)
ki · S

(u)
i · x

(u))

))
(5)

In Figure 3, the spatial arrangement of each drone is equally spaced along the circum-
ference of a circle with a radius of 1 spatial unit. The angle α from the center of the circular
formation to drone u is defined as α

(u)
i = 2π

M i, where the center of the formation is the origin,

and each drone u is represented by spatial coordinates
(

x(u), y(u)
)
=
(

cos α(u), sin α(u)
)

.

The amplitude of the received signal transmitted by drone i to drone u is set to a(u)i = 1,
and each drone’s linear M-element antenna array is horizontally oriented, with antenna
k’s spatial coordinates of drone u represented as

(
x(u) + d(k− 1), y(u)

)
, where d = 0.01

represents the inter-element distance of the antenna arrays.
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(a) (b)

(c)

Figure 3. (a) illustrates the output of the ground truth activation function γu,i,k(t), (b) depicts the
beamformed (output) signals of the mathematical model in [1], and (c) depicts the beamformed
(output) signals of the RSwarm routing algorithm y(u)(ωi, ai, θi, t) over 10 time steps with 0.1 per
time step.

Figure 3 displays the M-beamformed signals (while color and transparency codes
indicate the current amplitude of the signal, where negative amplitudes correspond to
negative-valued sections of the real-valued representation of the signal) in antenna arrays of
M drones (without a base station communication) at various time steps t = 0, 0.1, 0.2, ..., 0.9.
Here, y(u)(ωi, ai, θi, t) represent all combinations of u and i with M = N = 8 and we
compare the performance of the routing algorithm with the results in the paper [1] as well.

In Figure 3, each drone u in the circular spatial arrangement is depicted along the
Drone Index axis, while its M-element antenna array is represented along the Antenna
Element Index axis. It is important to note that this figure does not directly represent
physical space; instead, it summarizes results from the perspective of multiple drones in a
single figure, with each drone’s data stacked along the Drone Index axis.

The beamformed (output) signals of the RSwarm algorithm in Figure 3 demonstrate
favorable results with the ground truth activation. As expected, the beamformed (output)
signals obtained using the brute-force calculation of the model in [1] exhibited similar
results to the RSwarm routing algorithm. This observation confirms that the adaptation of
the sparse factorization to the frequency Vandermonde matrices followed by the RSwarm
algorithm aligns precisely with the mathematical model in [1].

Figure 3 was generated using Python 3.10.12 using numpy 1.25 and matplotlib 3.7.1.

4. Optimize AUAS Routing Algorithm via ML

Feed-forward ANNs (FFANN) can improve the accuracy of the RSwarm algorithm
by quantifying the performance of the ANN approximation, using measures like the loss
and error. The FFANN plays a key role in optimizing the AUAS routing algorithm while
reducing the error between the proposed algorithm and the ground truth signals, especially
in having many drones with large numbers of elements in antenna arrays. The purpose of
this FFANN during training is to interpret the output of the classical RSwarm algorithm
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and correct it to fit what would be expected given the signals being transmitted by other
drones at their assigned frequencies and current orientations relative to a self drone. It
does not predict drone locations directly; rather, it learns the relationship captured by the
interference pattern between the RSwarm algorithm’s output and the ground truth signals
at any given time. In deployment, this FFANN is inverted, transforming the raw sensory
data from a linear beamforming array into the corresponding output from the classical
RSwarm algorithm, which itself may be inverted to recover the distance and direction
from a self-drone to all other drones in a swarm. This may then be used as a heuristic
in many applications, including decentralized path-plotting and packet routing. This
post-processing ANN will have the potential to significantly reduce the deviation from
ground truth signals compared to our previous work on the error data in [1]. Thus, in this
section, we will train parameters for the adaptive neural networks and hence obtain an
optimized AUAS routing algorithm while reducing the error between the ML-based AUAS
algorithm and the ground truth signals. This FFANN is implemented in Keras 2.10.0 backed
by TensorFlow 2.10.1 and NVIDIA cuDNN 11.2.

To analyze the deviation of the received signals (based on the AUAS algorithm) from
ground truth signals, we construct two data-sets based on the real components of the AUAS
routing algorithm, y(u)

real = Real(V(u)
ki · S

(u)
i · x

(u)), as well as directions of incidents {θi}M
i=1,

amplitudes {ai}M
i=1, and temporal variables {ωi}M

i=1 in each drone ∀u ∈ {1, 2, . . . , M}.
The first-data set consists of data generation within the time interval from t = 0.0

to t = 99.9, with 0.1 time steps. This data-set is generated according to the circular
arrangement simulation described in Section 3, except the amplitude of the received signal
of drone u from drone i is not assumed to be a(u)i = 1, but is rather determined by an
amplitude falloff function

a(u)i =
1(

1 + d(u)i

)2 (6)

where d(u)i is the distance from transmitter drone i to receiver drone u.
The arrangement of the drone swarm in this first data-set guarantees that every

drone receives a signal through its antenna array, with intricate interactions among each
component signal. This specific case represented by the simulation scenario would be
inadequate if the FFANN were predicting drone locations directly, since they are static
and regularly structured. Since the FFANN is learning a relationship between wave
patterns among a large number of waves over a long time period from every drone’s
perspective, the scenario is sufficient as a proof-of-concept, since there is significant variety
in the structure of the interference to test the feasibility of extracting a general relationship
between the signal predicted by the classical RSwarm algorithm and the ground truth
signals. This allows the post-processing ANN to demonstrate the generality without
needing a large data set of random drone arrangements.

The second data-set (larger and more complex) consists of data generation with the
time interval from t = 0.0 to t = 99.9 with 0.01 time steps, also using the amplitude falloff
function (6). This training set is generated according to a simulation, with drones traveling
along deterministically generated and randomly assigned linear trajectories. The paths
begin at x(u)0 and y(u)0 within the range [−1, 1] at t = 0 and follow a path dictated by an angle

ϕ(u) within the range [0, 2π). The function that computes a drone’s position
(

x(u), y(u)
)

for any given t is stated as

x(u,t) = x(u)0 + v · cos(ϕ(u)) · t (7)

and
y(u,t) = y(u)0 + v · sin(ϕ(u)) · t (8)
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where x(u)0 is the initial x-coordinate, y(u)0 is the initial y-coordinate, ϕ(u) is the direction

angle, v is the rate of motion (set to v = 0.001), and t is the time parameter. x(u)0 , y(u)0 ,
and ϕ(u) are all determined by a deterministic random process.

This simulation ensures that each drone receives a signal through its antenna array
with intricate interactions between each signal. More general and representative real-
world deployment situations would still be inadequate if the FFANN were predicting
drone locations directly. This is because only a subset of all possible swarm trajectories
are considered. As in the first scenario, the FFANN is learning a relationship between
wave patterns among a large number of waves over a long time period from every drone’s
perspective. But in the case of the second simulation, the origin points for these signals
are randomized with non-static positions, which makes the scenario also sufficient as a
proof-of-concept. As in the first simulation, there is significant variety in the structure of
the interference to test the feasibility of extracting a general relationship between the signal
predicted by the classical RSwarm algorithm and the ground truth signals. The second data-
set allows the post-processing ANN to further demonstrate generality and flexibility with
a larger, more complex data-set, allowing feasibility with real-world deployment scenarios.

Let us take each training input vector of the form

x̃(u,t) :=
[
θ
(u)
1 , a(u)1 , ω

(u)
1 , . . . , θ

(u)
M , a(u)M , ω

(u)
M , y(u,t)

1 , . . . , y(u,t)
N

]
. (9)

Recall from the mathematical model (2), followed by the RSwarm algorithm, that
the training vectors x̃(u,t) encompass various attributes including directions, amplitudes,
and temporal frequencies. This comprehensive representation is important due to the
multitude of potential source signal configurations, each corresponding to distinct ground-
truth signals. By incorporating this information, the model is empowered to enhance its
capacity to deduce instances in which y(u)

real diverges from the ground-truth signals while
avoiding reliance on the AUAS routing algorithm’s outputs. We note here that the variable
t is not included explicitly in the input vectors, because the time variable is confined to
being a seed value for generating signals within both the AUAS routing algorithm and
ground-truth functions.

We consider each training output vector based on the deviation from ground truth
and of the form,

ỹ(u,t) := norm
([

ỹ(u,t)
1 , . . . , ỹ(u,t)

N

])
− norm

([
ỹ(u,t)

1GT
, . . . , ỹ(u,t)

1GT

])
=
[
ỹ(u,t)

1dev
, . . . , ỹ(u,t)

Ndev

]
.

(10)

where
norm

([
ỹ(u,t)

1 , . . . , ỹ(u,t)
N

])
=
[
y′(ỹ(u,t)

1 , ỹ(u,t)), . . . , y′(ỹ(u,t)
N , ỹ(u,t))

]
,

norm
([

ỹ(u,t)
1GT

, . . . , ỹ(u,t)
NGT

])
=
[
y′(ỹ(u,t)

1GT
, ỹ(u,t)

GT ), . . . , y′(ỹ(u,t)
NGT

, ỹ(u,t)
GT )

]
,

(11)

and

y′(y, ṽ) =
y−min(ṽ)

max(ṽ)−min(ṽ)
. (12)

Given the dynamic movement of drones across different time stamps, and considering
the diverse phase offsets, a strategic approach was adopted. Specifically, each y(u)

real was

incorporated within x̃(u,t). Consequently, for each training instance y(u)
real within x̃(u,t), and

each training instance ỹ(u,t), an individualized min-max normalization is applied using y′,
where y represents a scalar value within either y(u)

real or ỹ(u,t), ṽ is the vector y(u)
real or ỹ(u,t),

min(ṽ) is the minimum scalar value in ṽ, and max(ṽ) is the maximum scalar value in
ṽ. Each instance of x̃(u,t) contains an instance of y(u)

real and each ỹ(u,t) is an instance of the

deviation vector
[
ỹ(u,t)

1dev
, . . . , ỹ(u,t)

Ndev

]
. Each instance exhibits a distinct range, of which many
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are collectively depicted on each heatmap. The deviation from the ground signals with the
visualization could be observed in terms of noise data, as illustrated in Figure 4.

The validation data-sets for both simulation scenarios are selected by allocating 10%
of the generated data for validation purposes. Each validation sample x̃(u,t) is chosen at
random from the entire data-set, meaning each instance of x̃(u,t) is chosen using random
values of both t and u. This selection process ensures that the validation data effectively
mirrors the network’s capacity to capture the interplay between the ground truth signals
and the ML-based AUAS routing algorithm within the scope of our simulation scenarios. In
larger, more comprehensive simulations, the range of potential relationships is significantly
vast. However, the successful signal correction generalization within these simulations in-
dicates that the performance may be comparable to the random case with a large, unbiased
dataset. Given that our data exhibit interdependencies among incident signals that remain
unaccounted for within our limited-scale data-sets, adopting an approach like selecting
the final 10% of the time series as a contiguous segment would not yield a meaningful
assessment of the network’s proficiency in showing the relationship between the output
signals y(u)

real and ground-truth signals in our simulations.

(a) (b)

(c) (d)

Figure 4. Depictions of the deviation of the RSwarm algorithm from ground truth signals, and pre-
dicted deviation from ground truth from the RSwarm algorithm by the static position simulation-
derived FFANN model having 128 drones—each drone having eight element antenna arrays.
(a) shows the deviation of the RSwarm algorithm with the ground truth at t = 0.3 in the static
position scenario, (b) shows the predicted deviation based on the RSwarm algorithm with FFANN to
ground truth at t = 0.3 in the static position scenario, (c) shows the deviation of RSwarm algorithm with
the ground truth at t = 10.0 in the static position scenario, and (d) shows the predicted deviation based
on the RSwarm algorithm with FFANN to the ground truth at t = 10.0 in the static position scenario.

The FFANN model has 5 fully connected hidden layers with 3M+N
2 units per layer.
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The number of elements in the network input vectors |x̃(u,t)| = 3M + N, since there are
M triplets of

[
θ(u), a(u), ω(u)

]
in every instance of x̃(u,t), i.e.,

[
θ
(u)
1 , a(u)1 , ω

(u)
1 , . . . , θ

(u)
M , a(u)M

]
,

as well as an instance of y(u)
real with |y(u)

real | = N elements. Empirically, halving this number
yielded an acceptable performance, but further hyperparameter tuning may uncover a
more precise scaling expression for the number of hidden units per layer. As mentioned
in Section 4, we harness the swish activation in every layer except the linearly-activated
output layer s.t.

swish(x) = x · 1
1 + exp(−βx)

, (13)

where β is a learned parameter. Swish was chosen empirically due to exceeding the
performance of networks that used ReLU, LeakyReLU, sigmoid, and tanh for their hidden
layers. This may be due to the inherently smooth and non-linear nature of the problem of
correcting a waveform. Thus, activation functions such as ReLU and LeakyReLU may be
inappropriate due to their sharp transitions and linear behavior for positive inputs [67,68],
and sigmoid and tanh may be less than ideal due to the vanishing-gradient problem [68,69].
Swish is by nature smooth, unlike ReLU and LeakyReLU, and does not suffer from the
vanishing gradient problem to the same extent as sigmoid and tanh [68]. l2 regularization
was tested with the constant λ setting to 0.0001, 0.001, and 0.01, but all of these cases
degraded the model performance significantly. Thus, l2 regularization was not used. Batch
normalization was used on all hidden layers except the final hidden layer to improve the
model performance and reduce the training time.

Figure 4 depicts the model performance at t = 0.3 and t = 10.0. By predicting the
deviation of the output of the classical RSwarm AUAS routing algorithm from the signal
that is expected per the results of a physical simulation, the deviation may be removed.
Thus, when the FFANN is inverted, the signal sensed by the drone is used as input to
the model, and the signal is mapped into a form that the inverse of the classical RSwarm
routing algorithm may take as input and turn into M triplets of

[
θ(u), a(u), ω(u)

]
; this serves

as a heuristic vector for many path-plotting and packet-routing algorithms that could be
implemented in the swarm. While the model does manage to capture the shape of the
deviation, it struggles to match the desired magnitude.

The proposed RSwarm algorithm does not exhibit substantial accuracy when compared
with the ground truth function, as depicted in Figures 4a,c and 5a,c. One could observe a
remarkable enhancement of the accuracy when employing the FFANN with the RSwarm
algorithm and comparing it with the ground truth function in both simulation scenarios,
as illustrated in Figures 4b,d and 5b,d. As a result, the integration of the multibeam
beamforming-based mathematical model followed by the RSwarm algorithm with the ML
significantly enhances the accuracy in routing the drone swarm.

In Figure 6, the graphical representation is shown for each model loss centered around
the RSwarm algorithm integrated with the FFANN. Here, the loss is depicted in terms of the
mean-squared error (MSE), and the performance is quantified in terms of the mean-absolute
error (MAE) via

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (14)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (15)

where yi represents an element of the training vector ỹ(u,t), and ŷi represents the model
prediction for the ith element of the model output vector ˆ̃y(u,t).
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(a) (b)

(c) (d)

Figure 5. Depictions of the deviation of the RSwarm algorithm from ground truth signals, and the
predicted deviation of the RSwarm algorithm by the dynamic movement simulation-derived FFANN
model from the ground truth with 128 drones; each drone had eight elements of antenna arrays.
(a) shows the deviation of the RSwarm algorithm with the ground truth at t = 0.3 in the dynamic
position scenario, (b) shows the predicted deviation based on the RSwarm algorithm with FFANN
in the ground truth at t = 0.3 in the dynamic position scenario, (c) shows the deviation of RSwarm
algorithm with the ground truth at t = 10.0 in the dynamic position scenario, and (d) shows the
predicted deviation based on the RSwarm algorithm with FFANN in the ground truth at t = 10.0
in the dynamic position scenario. For clarity in the visual interpretation, the rows in the predicted
deviation images are sorted such that each subsequent row is the closest in Euclidean distance to

the preceding one by computing the pairwise Euclidean distances dij =
√

∑k(xik − xjk)2, where dij

represents the Euclidean distance between rows i and j, and xik and xjk are the k−th components
of rows i and j, respectively. The rows in (a,c) are ordered following the same row index sequence,
ensuring that for any given row in the prediction depiction, the corresponding row in the target
depiction matches it.

This configuration includes 128 drones; each drone is equipped with 8-element antenna
arrays. The training for the model based on the smaller data-set with static drone positions is
spanned over 512 epochs and utilized the Adam optimizer with a batch size of 64, while the
training for the model based on the larger data-set with dynamic drone positions is spanned
over 96 epochs. The training was conducted for 512 and 96 epochs, respectively, because
the loss between the training and validation sets began to diverge beyond this point for this
architecture. This configuration empirically results in an acceptable performance, but it may
be possible to increase the batch size while maintaining a high network performance with
larger, more varied data-sets, since general patterns may be captured more effectively within
individual batches. As evident from the visual representation in Figure 6, the performance
of the training process exhibits a great improvement as the number of epochs advances,
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simultaneously leading to a substantial reduction in the validation set loss. This shows
the efficacy of the RSwarm algorithm with the FFANN, i.e., the ML-based AUAS routing
algorithm, demonstrating the ability to rectify predictions based on the training data.
Furthermore, the consistent decrease in the loss over epochs signifies the convergence
of the proposed model, in conjunction with the FFANN, towards an alignment with the
ground truth values.

(a) (b)

(c) (d)

Figure 6. Model performance metrics’ mean-squared-error loss and mean-absolute error for each
training epoch is shown here for each model, i.e., AUAS algorithm with FFANN for both simulations,
having 128 drones, each with 8-element antenna arrays. (a) shows mean-squared-error loss for
the static position simulation-derived model, (b) shows mean-absolute-error for the static position
simulation-derived model, (c) shows mean-squared-error loss for the dynamic motion simulation-
derived model, and (d) shows mean-absolute-error for the dynamic motion simulation-derived model.

5. Discussion

The presented AUAS algorithm followed by FFANN is specifically tailored for training
with a fixed number of drones denoted as M, each associated with pre-defined weights
{ωi}M

i=1. Through our training processes, we established that these models exhibit a degree
of robustness in scenarios where certain drones experience failures. In the simulation
scenario with static drone positions, this robustness is demonstrated by the spatial config-
uration of drones, wherein drones are located diametrically opposite to a given drone u
and thus have a negligible impact on its deviation from the actual value, attributed to the
amplitude falloff function (6). In the simulation scenario with dynamic drone movement,
this robustness is demonstrated as various drones move in and out of range from other
drones, again attributed to the amplitude falloff function. To enhance this robustness to
drone failure within the model, a more extensive training data-set could be constructed,
incorporating drones with randomly assigned amplitudes of 0 to represent drones that are
non-functional or otherwise separated from the swarm.

Thus, we have defined a heuristic that exhibits distinct advantages over those used
by AODV and OLSR. By feeding raw antenna array data into the inverse of the FFANN
described, and feeding that output into the inverse of the classical RSwarm AUAS algorithm,
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a table of neighbors, including their distances and directions from any “self” drone, may be
efficiently generated. This information may be used for packet routing or physical path-
plotting (among other potential applications). This heuristic is passive and does not require
packet-based route establishment nor maintenance; it also does not require the broadcasting
of link-state information. By harnessing the intrinsic properties of beam-forming linear
antenna arrays, an overhead associated with AODV and OLSR may be reduced.

Our simulation scenarios are computationally efficient (see Sections 3 and 4). The im-
plementation of FFANN effectively demonstrates the enhanced performance of the classical
RSwarm algorithm. One could also construct and train on a data-set using simulations that
involve non-linear trajectories, demonstrating their potential. Such a data-set would likely
lead to the development of more versatile and potent models, as it would capture a broader
range of relationships between the AUAS routing algorithm and the ground-truth function.

Our pre-processing scheme prioritizes speed and low complexity during training
and inference. However, this may come at the cost of accuracy. By normalizing the y(u)

real

component of the network (output vector), input vectors x̃(u,t), vectors
[
ỹ(u,t)

1 , . . . , ỹ(u,t)
N

]
,

and
[
ỹ(u,t)

1GT
, . . . , ỹ(u,t)

1GT

]
(used to compute

[
ỹ(u,t)

1dev
, . . . , ỹ(u,t)

Ndev

]
), the pre-processing inference in

deployment is fast. This is because the procedure only normalizes one small vector without
having to store any buffer of prior instances of y(u)

real . This scheme does not need to know
the statistical distribution of all possible instances of each vector. This depends on how
accurately the training data represents real-world deployment scenarios. To do this, either
a simulation environment or a large-scale real-world data-set is needed.

When we normalize y(u)
real and y(u)

GT based on their entire distribution, the magnitudes

of y(u)
real and y(u)

GT often end up being significantly different from each other. While the ranges

of the distributions for y(u)
real and y(u)

GT differ, there is often a similarity in the relationships
between individual antenna elements at a given point in time for both. The main focus
is on the interrelationships that show the difference between the output of the ML-based
AUAS algorithm and the actual signal. The ability of the post-processing ANN to observe
these relationships should not be affected by significant differences in the “baseline” values
of individual y(u)

real and y(u)
GT . This verifies that the ANN needs a buffer of previous values to

determine which magnitude is greater. Consequently, the network eventually produces
consistently biased predictions, incorporating the averages of both high positive and low
negative values in an almost unpredictable manner. Consequently, the predictive capability
of the network diminishes significantly, resulting in a close-to-zero output value that lacks
effectiveness. By implementing the pre-processing scheme detailed in Section 4, we can
retain the structural features of the data (frequency and relative amplitude information from
various received signals), while eliminating the significant variations in the "baseline" mean.
This, in turn, enables us to effectively correct the output of the network and maintain its
shape. This greatly improves the AUAS routing algorithm, making it more useful for tasks
such as path plotting and packet routing. The functioning of these applications depends on
the accurate arrangement of other drones in relation to the signal strength and direction,
as perceived by the self-drone. Including a previous y(u)

real history buffer in the input to
the ANN might provide the network with sufficient context to deduce these significant
differences in magnitude, consequently broadening the applicability to situations where
relative ordering alone is insufficient. However, implementing this approach may result
in increased computational complexity because of the buffer and potentially require extra
units in the post-processing ANN.

In a deployment context, the correction model’s capacity to handle drones is inherently
constrained to a maximum limit. However, leveraging transfer learning allows one to
employ a model across a spectrum of drone quantities, up to a designated threshold Mmax.
It is worth noting that adapting a model for different values of M through fine-tuning is
distinct from the concept of randomly assigning some ai values to 0. In this context, the
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manual consideration and configuration of θi and ωi values, as well as the arrangement of
drones with a negligible amplitude in the training x̃(u,t) vector, become essential.

In the utilization of transfer learning, determining the optimal value for Mmax neces-
sitates a judicious assessment of the trade-off between the additional training time and
model size, weighed against the advantages of reusable models across swarms of varying
sizes without requiring retraining. Elevated values of Mmax heighten the training duration
and model complexity while permitting the deployment within swarms of sizes <= M.
Conversely, smaller Mmax values expedite the training and lower inference computational
costs, albeit accommodating only smaller swarms. The impact of each trade-off depends
on the experimental evaluation.

To optimize inference efficiency without substantial overhead, one could use convo-
lutions over a historical series of y(u)

real values, rather than relying solely on instantaneous
values. This strategy leverages the fixed spatial spacing between antenna elements, cap-
turing a fragment of the temporal information due to the propagation delay. However, it
is crucial to note that this temporal aspect is dependent upon the individual values of θi
and ωi for each incident wave, thus introducing complexities for the model to infer. By con-
sidering such historical data, the model gains insights into the temporal dependencies of
y(u)

real features, as well as their interconnections with each corresponding θi and ωi. The
evaluation of the performance improvement achieved with this architecture still needs to
be tested through experiments, which will likely be influenced by the size and nature of
the training data set.

6. Conclusions

We presented a novel, efficient, and classical RSwarm algorithm to route a collection of
Autonomous Unmanned Aerial Systems. Our approach is based on the factorization of the
frequency of Vandermonde matrices containing spatiotemporal data. We addressed time
and arithmetic complexities, demonstrating their proportionality. Compared to brute-force
calculations, the proposed algorithm exhibits low arithmetic and time complexities. We
showed numerical simulations based on the beamformed signals of the proposed algorithm
and compared that with ground truth signals. Finally, we presented an ML-based AUAS
routing algorithm by combining the classical RSwarm routing algorithm with a feed-forward
neural network. We compared the numerical results of the ML-based AUAS algorithm with
the ground truth signals to demonstrate the accuracy of the proposed ML-based AUAS
algorithm. The presented ML-based AUAS algorithm is a numerically accurate and scalable
routing algorithm for a large-scale deployment.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial neural network
AUAS Autonomous Unmanned Aerial Systems
AODV Ad-hoc on-demand distance vector
DNN Deep neural network
DQN Deep Q-learning Network
FFANN Feed-Forward Artificial Neural Network
MARL Multi-Agent Reinforcement Learning
MIMO Multiple-input multiple-output
ML Machine learning
OLSR Optimized Link State Routing
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