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Abstract: The primary objectives of this paper are to test an adaptive sampling method for an
autonomous underwater vehicle, specifically tailored to track a hydrocarbon plume in the water
column. An overview of the simulation of the developed applications within the autonomous system
is presented together with the subsequent validation achieved through field trials in an area of
natural oil seeps near to Scott Inlet in Baffin Bay. This builds upon our prior published work in
methodological development. The method employed involves an integrated backseat drive of the
AUV, which processes in situ sensor data in real time, assesses mission status, and determines the next
task. The core of the developed system comprises three modular components—Search, Survey, and
Sample—each designed for independent and sequential execution. Results from tests in Baffin Bay
demonstrate that the backseat drive operating system successfully accomplished mission goals,
recovering water samples at depths of 20 m, 50 m, and 200 m before mission completion and
vehicle retrieval. The principal conclusion drawn from these trials underscores the system’s re-
silience in enhanced decision autonomy and validates its applicability to marine pollutant assessment
and mitigation.

Keywords: autonomous underwater vehicle; adaptive control algorithm; backseat driver; modular
control system; natural oil seeps; oil plume detection; real-time analysis; adaptive sampling

1. Introduction

The underwater realm presents unique challenges that can impede the practical
progress of mechatronics engineering. For example, these challenges encompass com-
munication difficulties with the surface, the unavailability of GPS data, diminished sensor
effectiveness and durability due to increasing pressures and restricted light at depth, a
frequent lack of comprehensive knowledge about uncharted operational zones, and dif-
ficulties induced by unpredictable currents. In this demanding environment with scant
information, adaptive capability stands out as a pivotal feature in underwater mechatronics
engineering. It bolsters the decision-making autonomy of autonomous agents, enabling
them to adjust their actions based on real-time, in situ information.

In this context, underwater agents must adeptly gather pertinent data about their sur-
roundings or target, maximizing their utility to realize mission objectives. Unlike terrestrial
robotics where targets are usually visible or tangible, in underwater scenarios the precise
location of the target, whether it is a thermocline, hydrothermal vent, dispersing oil plume,
or migrating phytoplankton, may remain uncertain owing to lack of precise positioning
information, both in terms of present location and its location over time. Consequently,
underwater agents are typically equipped with an array of sensors and computational
systems capable of processing and analyzing incoming data in real time or close to real
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time, ensuring they can swiftly derive information and act upon their sensory inputs. These
adaptive responses not only enhance mission reliability but also significantly elevate the
likelihood of successful outcomes.

Some AUV-based adaptive methodologies and strategies have been developed for
diverse underwater scenarios and tested by several researchers for various underwater
targets. For thermocline tracking, Zhang et al. [1] have developed an autonomous al-
gorithm focusing on detecting and tracking thermoclines by monitoring the maximum
vertical temperature gradient. Cruz and Matos [2] introduced a reactive behavior approach
for AUVs to adapt their depth in real time to remain near the thermocline, improving
sampling efficiency. Moving to oil plume delineation, Jakuba et al. [3] reported on the use
of AUVs to investigate subsea hydrocarbon plumes and emphasized the coordination of
AUVs with conventional instruments. Kukulya et al. [4] addressed the need for reliable
detection of environmental hazards in the Arctic using AUVs equipped with commercial
off-the-shelf sensors for under-ice oil detection. Their study highlighted the importance
of near real-time data transfer and first responder training. Shifting to chemical plume
tracing, Camilli et al. [5] explored integrating analytical sensors on AUVs to improve data
assimilation and adaptive operation, using a seabed submersible for methane source iden-
tification. Farrell et al. [6] focused on olfactory-based AUVs for chemical plume tracing,
demonstrating success in tracing chemical plumes in turbulent oceanic flows. Li et al. [7]
presented a behavior-based adaptive mission planner for AUVs to trace chemical plumes
accurately, using various sensors and behaviors inspired by moths’ pheromone track-
ing. More recently, ref. [8] focused on understanding the long-term variability of natural
hydrocarbon seeps, employing a multimethod approach combining in situ camera ob-
servations and acoustic and satellite sensing to connect hydrocarbon seep characteristics,
while [9] proposed an adaptive sampling strategy using multiple autonomous underwater
vehicles (AUVs) and a Gaussian process model. Their proposed heterogeneous strategy
cooperative sampling method allowed them to reduce error in the estimate of chlorophyll
concentration by 15.6% with limited communication. In terms of target tracking purpose,
ref. [10] presented a subsumption architecture implemented as behaviors in a finite-state
machine and showcased successful detecting and tracking of an Arctic (ice) front in the
Trondheimsfjord. Another tracking example comes from work conducted by [11], who
proposed a novel detection and tracking method for thermoclines. Utilizing the sense,
plan, and act control method and online evaluation, a successful coverage observation of a
dynamic water column with multiple thermoclines was demonstrated through field tests
in the South China Sea. The work described in [12] combined underwater robotic sampling
with ocean models proposing a stochastic spatial–temporal proxy model of mine tailings
discharge in the sea. Their model was built based on a Gaussian process and enabled the
selection of informative sampling sites. Their strategy successfully adapted the robot’s
path based on in situ data, optimizing the mapping of tailings distributions. An adaptive
sampling strategy [13] for AUVs was developed to explore and map ocean gradients, using
a hexagonal grid path. The hexagonal grid discretized the survey area and prioritized the
strongest gradients within the AUV’s spatiotemporal envelope. Their method, validated in
a river front, embraced intelligent sensing and enhanced resource efficiency. Additional
illustrative examples prior to 2019 can be identified in the literature review [14], specifically
related to adaptive sampling techniques, as well as the detection and tracking of under-
water targets, employed in AUVs. These studies collectively contribute to AUV-based
adaptive strategies for tracking thermoclines, delineating oil plumes, and tracing chemical
plumes in diverse underwater environments, offering valuable insights for autonomous
underwater exploration and research.

In this project, the anticipated target from natural seepage was a mixed-phase oil
plume comprising discrete oil droplets and methane gas bubbles suspended in the water
column. The primary objective of this research is to validate our autonomously devel-
oped system, designed to adaptively respond to its surrounding environment through
real-time measurements. Additionally, we aim to modify the mission task by enhancing
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decision autonomy. The underlying assumption, substantiated by empirical evidence,
is that in the absence of sufficient knowledge about the target—specifically, petroleum
hydrocarbon—and its whereabouts, we can effectively delineate the oil plume. This, in
turn, enables us to determine the most logical location for water sampling. To enhance
detection accuracy, the vehicle was fitted with a scanning sonar (Ping360) and fluorometers
(UviLux: polyaromatic hydrocarbons (PAH) unit and Chromophoric Dissolved Organic
Matter (CDOM) unit), positioned atop the vehicle. Each sensor was designated to detect a
distinct characteristic of the oil plume. The team developed an adaptive sampling method
encompassing three sequential modules. Utilizing real-time sensor data, the AUV selects
and executes these modules adaptively. The system underwent successful validation dur-
ing a 2023 North Atlantic mission near the natural hydrocarbon seeps adjacent to Scott
Inlet, Baffin Bay, Canada. Six missions were planned and executed, resulting in the retrieval
of four water samples from varied depths of 0 m, 20 m, and 200 m.

2. Methodology
2.1. Equipment

Memorial University’s Explorer AUV is a modular autonomous underwater vehicle,
designed and manufactured by International Submarine Engineering, with a torpedo
shaped main body, nose cone and tapered tail (See Figure 1). The pressure hull is made of a
specific aluminum alloy to enable the depth pressure rating to be achieved and it protects
the components that need waterproofing such as the batteries and electronic units. The
free-flooding sections (forward and aft of the pressure hull) are made of glass reinforced
plastic and contain the actuators (planes and thruster), navigation sensors (depth, doppler
velocity log and obstacle avoidance sonar), communication and location devices (acoustic
modem, GPS, USBL) and payload sensors (scanning, multibeam, and side scan sonars).
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Figure 1. Hull structure of Memorial University’s Explorer autonomous underwater vehicle.

While the AUV was in operation, the vehicle could communicate with the surface
control computer (SCC) through several means: radio telemetry (when on the surface),
underwater acoustic telemetry (when underwater) and an ethernet link (when on the deck).
Table 1 shows the specification of the AUV.
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Table 1. Specification of the MUN Explorer AUV.

Characteristics Specifications

Length 5.3 m

Hull Diameter 0.69 m

Dry Weight 830 kg

Energy 18 kWh

Maximum Depth 3000 m with 10% safety factor

Typical Cruising Speed 1.5 m/s

Speed Range 1 m/s to 2 m/s

Power Source and Capacity 17.6 kWh secondary lithium battery bank

Computer cPCI modules for vehicle and payload control

Hydroplanes 4 NACA 0026 stern planes
2 NACA 0026 fore planes

Navigation iXsea PHINS III Inertial Navigation System

D-GPS Trimble MB-Two GNSS

Velocity Sensor RDI Workhorse 300 kHz DVL

Depth Sensor Paroscientific Digiquartz series 8000

Altitude Sensor Kongsberg Maritime 1107 Digital Altimeter

Positioning System Sonardyne Ranger 2 USBL system

Acoustic Telemetry Teledyne Benthos ATM-886 modem and UDB-9000 deck box

Radio Telemetry Ubiquiti Bullet

Satellite Beacon Xeos Apollo

Integrated Sensors and Payload

R2Sonic 2024 Multibeam Echosounder System
Edgetech 2200 M Side Scan Sonar System/Sub-bottom Profiler

Seabird Fastcat 49 CTD
Valeport MiniSVS

The Memorial AUV incorporates two key computer components in its operation,
known as the Frontseat Drive and the Backseat Drive, both playing crucial roles in guiding
and maneuvering the vehicle throughout the mission. The Backseat Drive autonomously
makes decisions regarding the next target location based on real-time sensor measurements
and generates corresponding commands. Meanwhile, the Frontseat Drive assumes the
responsibility of evaluating these commands, primarily with safety considerations in mind,
and then takes control of the actual vehicle motion, including adjustments to heading and
depth. This division of responsibilities between command generation (Backseat Drive) and
control execution (Frontseat Drive) in AUV operations offers several advantages. It en-
ables the accommodation of varying real-time requirements by decoupling specific system
components, allowing for flexibility in software implementation, facilitating the addition
and modification of submodules at each level due to an independent data processing
mechanism, and ensuring operational safety by enabling double checking of commands
generated by the Backseat Drive and the ability to activate or deactivate override modes in
accordance with safety regulations set by the Frontseat Drive.

We implemented the Missions Oriented Operating Suite (MOOS-IvP), an open-source
system designed to function as a Backseat Drive system. This system was executed from a
payload computer (PCC–the Backseat Drive), which received updates about the vehicle’s
motion, including position, heading, and speed, from the main vehicle computer (VCC),
the Frontseat Drive. Subsequently, the PCC generated the desired vehicle parameters, such
as heading, depth, and speed, and relayed them back to the VCC. This closed-loop system
ensures that every autonomous decision is made based on the most recent measurements
acquired from the payload sensors. The AUV control architecture, as described, is visually
represented in Figure 2.
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The vehicle was equipped with an array of detection and collection instruments,
including a scanning sonar (Ping360 of BlueRobotics), two fluorometer units–CDOM and
PAH (UviLux of Chelsea Technologies), and a water sampling unit (multi water sampler
of KC-Denmark). The Ping360 operates at a frequency of 750 Hz and has a maximum
range of 50 m. In our previous published research we conducted tests comparing various
sonar frequencies to assess their performance in detecting oil droplets [15]. Our findings
indicated that higher frequency sonars exhibited superior detection capabilities for the
smaller oil droplets. However, the decision on sonar frequency involves a trade-off that
considers factors such as affordability, depth rating, updating speed, compatibility with the
AUV’s operating system, and physical constraints like weight and size.

In preparation for field trials, we conducted simulation and tank tests to assess the
acoustic features of different sized bubbles and the detection capacity of different sonars.
This work extended our previous research, where we extensively examined three dif-
ferent sonars, each with a distinct frequency, against oil droplets and gas bubbles in a
wave tank, along with micro air bubbles (100 to 500 microns) in a local lake [15]. Addi-
tionally, we conducted further tests using the Ping360 sonar against micro air bubbles
(<100 microns) in an open ocean setting [16], and in a towing tank against micro air bubbles
(100 to 250 microns) [17]. These tests assessed the detection capability and performance of
the selected sonar in capturing micro air bubbles, closely resembling the acoustic features
of oil droplets.

The size range of methane bubbles and oil droplets from natural oil seepage varies
across different seep locations and over time. However, a study conducted at one of the
hydrocarbon seeps [8] has provided insights into the observed sizes. According to the
findings, the average bubble/droplet diameter was observed to be 9.0 ± 1.4 mm.

The fluorometers are designed to measure fluorescence concentration, with a detection
limit of 600 ppb. The multi water sampler was composed of eight syringes, each of which
could be filled by external water pumped through a hose system. An actuator, controlled
by the PCC computer, mechanically operated the syringe plungers. Our payload sensors
integrated with the vehicle are shown in Figure 3.
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2.2. Three-Module Sequence

Within the Backseat Drive mission plan, we incorporated three distinct modules:
Search, Survey, and Sample. These modules can function independently as standalone
missions, but their flexibility enables their sequential combination to align with specific
mission objectives. In this mission, we designed these modules to operate synergistically,
with the completion of one mission task by a module triggering the activation of another,
facilitated by the real-time collection and analysis of data.

The Search module initiates the mission by employing the sonar system to scan a
wide region on either side of the AUV’s path, following designated waypoints. In the
mission described in this paper, its primary goal was to pinpoint the presence of a vertical
hydrocarbon stream. Analysis of the collected acoustic data was intended to enable the
identification of regions with high hydrocarbon potential, and the relevant information
would then be transferred to the subsequent module. The Survey module, triggered by
data from the Search module, was designed to guide the AUV back to these pinpointed
zones. During this phase, the UviLux fluorometer continuously measured the fluorescence
concentration, confirming the presence of hydrocarbons along the route. Once the hydro-
carbon presence is validated, the Sample module becomes active. It deploys a multi water
sampler, capable of obtaining seawater samples (8 × 100 mL) from each location authen-
ticated by the Survey module. Our method relies on three modular blocks of algorithms,
each designed for compatibility. While these modules are presented sequentially in our
study, it is important to recognize their capacity to function independently. We opted for a
sequential structure, deeming it the most effective approach for an AUV operating in real
time without prior data.

In addition to these three modules, the MOOS mission framework incorporated two
additional modes: Loiter and Return. These modes provide further flexibility in the mission.
The resulting mission architecture is illustrated in Figure 4, which shows the designed
Backseat Drive (MOOS) architecture with its various modes, including SEARCH, SURVEY,
SAMPLE, LOITER, and RETURN (See Figure 4). This multimode approach was intended
to adapt the AUV system to address a range of mission objectives.
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2.3. MOOS Applications

The MOOS framework also incorporated four applications developed by our team
for this work. They were designed to complement and support the various modules:
pPlumeDetector, pSurveyPlanner, pProbMapper, and pWaterSampler.

The pPlumeDetector application plays a critical role while the Search module is active.
It continuously analyzes each scanned image collected by the Ping360 sonar, actively
searching for acoustic signal peaks. The plume is recognized as a dense group of points
within the sonar data, following a sequence of five steps:

• Range-Gating: This initial step involves zeroing out data within the range of the sonar
head, which typically contains significant noise.

• Segmentation: The dataset is partitioned into background data and positive detec-
tions. A sample is considered a detection if its intensity exceeds 25% of the sonar’s
full-scale range.

• Image Creation: In this step, the sonar data is downsampled while preparing for the
computationally expensive clustering process.

• Clustering: The clustering process identifies high-density groups of detection pixels
in the image, categorizing them as clusters while discarding outliers as noise. The
density-based spatial clustering of applications with noise (DBSCAN) algorithm [18]
was utilized for this purpose.

• Geo-Referencing: The final step transforms the cluster center positions from image
(pixel) coordinates to local (eastings, northings) coordinates.

At the conclusion of the Search module, the pSurveyPlanner application comes into
play by generating a new set of waypoints to guide the AUV to its next task.

Another critical application in our approach is pProbMapper which utilizes kernel
density estimation (KDE) for forecasting the probability density distribution of underwater
fluorescence. KDE, as described by Fotheringham, et al. [19], is a technique that estimates
the weighted density of an event across a gridded surface by applying a spatial filter. This
method is particularly effective in detecting concentrated hotspots based on point data,
making it ideal for our spatial exploration analysis and visualization of chemical distribu-
tions. Moreover, KDE facilitates the visualization of regions with higher concentrations of
underwater hydrocarbons [20], aligning perfectly with our objective in these missions of
understanding the distribution of fluorescence in Baffin Bay.

The general form of the two-dimensional kernel density estimator, expressed in
Equation (1) following the work of Xie and Yan [21], serves as the foundation for our
methodology. This function is employed to estimate the distribution of PAH by incorpo-
rating real-time PAH sampling data as input weights. The resulting outputs are mapped
surfaces that convey the probability density of the PAH distribution across the mission
region. In Equation (1),

f (x) =
1

nh∑n
i=1 K

(
x − Xi

h

)
, (1)

where f (x) represents the density estimation at location x with a group of points Xi, h is the
bandwidth of the KDE, n is the number of observations, and x − Xi is the distance between
each point x and the location Xi. The Gaussian kernel function, as shown in Equation (2),

(x) =
1

h
√

2π
exp

(
− (x − Xi)

2

2h2

)
(2)

following [22], is employed in this study for its effectiveness in estimating the KDE. This
robust approach ensures that our pProbMapper effectively generates coordinates for water
sampling based on fluorescence data collected during the survey module.

In conjunction with pWaterSampler, our system validates the fluorescence values at
the sampling location, ensuring they remain sufficiently high to trigger the sampler. The
survey pattern, configured in the shape of a lawnmower, is complemented by the utilization
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of a large bowtie search pattern and a small bowtie sampling pattern. This combination
enhances our capability to thoroughly study and sample underwater environments, such
as those in our missions in Baffin Bay (See Figure 5).
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To fortify our adaptive system’s capabilities, we implemented a Backup Opinion
Strategy (BOS) as a contingency plan to address potential limitations during the Search
module, particularly when the Ping360 sonar was active yet unable to detect any sign of a
hydrocarbon plume. The ideal mechanism would involve the Search, Survey, and Sample
sequential operation. However, in the event the Search module does not produce results for
transmission to the Survey module, potentially due to a lack of plume detection, the system
transitions to the BOS. This alternative approach involves subscribing to the next best opin-
ion from the fluorometer data, ensuring that data collection remains ongoing throughout all
active modules and missions. Rather than terminating the mission and surfacing, losing the
opportunity to further survey and sample, the Survey module takes in the second opinion
based on the continuous fluorometer data. This BOS serves as a pragmatic solution to
maximize the mission’s efficiency while the vehicle is at depth. By integrating real-time data
from the fluorometer, the adaptive system maintains adaptability and resilience, ensuring
that valuable information is continuously gathered and utilized, even in scenarios where
traditional detection methods may face challenges. This strategic approach underscores
the system’s versatility and its commitment to optimizing hydrocarbon or other marine
pollutants exploration and sampling efforts in dynamic underwater environments.

3. Simulation

This section describes the simulation results of two key applications: pPlumeDetector
and pProbMapper. Also described is the successful validation of the pPlumeDetector through
real-world trials conducted in Holyrood Bay, NL, Canada, using a micro air bubble plume;
used as an environmentally friendly proxy for an oil plume. Subsequently, the section
progresses to describe the pProbMapper application, providing a view of its simulation
results and highlighting how it serves as a tool in preparing for field trials.

3.1. pPlumeDetector

The pPlumeDetector was validated using trials data collected at Holyrood Bay, NL,
Canada. The trials were designed to collect acoustic data of a micro air bubble plume,
which was used as an acoustically similar, environmentally friendly proxy for an oil plume.
The plume was created by a bubble generator [16], and the Explorer AUV executed a
lawnmower mission around the generator’s submerged discharge nozzle. The Ping360
scanning sonar mounted on the Explorer AUV continuously scanned a 1200 sector on the
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port side of the vehicle during the mission. Logs containing the sonar data and the AUV’s
pose were replayed to generate the proposed plume detection algorithm’s output.

The pPlumeDetector successfully identified high-density features in several scans of
the sonar data during the playback test. A visualization of the algorithm’s processing
steps for a single sector scan is provided in Figure 6a–c, showing the high-resolution input,
range-gated sonar data, and segmented sonar data, respectively. These images are created
for illustration purposes only and are not generated by the algorithm. The downsampled
image in Figure 6d, however, is created by the algorithm. DBSCAN identified four high-
density clusters in this image, and the pixels belonging to each cluster are labelled with a
unique colour in Figure 6e. Each grey circle in Figure 6f indicates the computed center and
radius of the encompassed cluster.
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A summary of the algorithm’s output is provided in Figure 7, where sequentially
detected cluster centres, found by using this approach, are plotted alongside the AUV’s
track line during the mission.
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3.2. pProbMapper

The pProbMapper was also validated using trials data collected at Holyrood Bay, NL,
Canada. Within the study area, PAH data were collected using the onboard UviLux sensor
on the Explorer AUV, which served as the basis for the KDE analysis. The UviLux outputs
the PAH reading in quinine sulphate units (QSUs) at each update interval. The PAH
dataset comprises both the PAH readings and their corresponding spatial coordinates,
along with the Explorer’s navigational paths, making it well-suited for assessing the spatial
distributions of PAH probability densities. The grid size of the KDE in this study was
defined as 200 × 200. This unitless figure refers to the resolution of data points in KDE
analysis. The choice of this grid size was based on the requirements of the KDE analysis to
effectively represent the spatial distribution of data points.

Figure 8 presents the results of the first playback test. Figure 8a illustrates the real-time
PAH measurement along the vehicle’s path waypoints, depicted in a scatter plot format.
The colour gradient represents the range of PAH readings, with bright yellow indicating
the highest PAH level and dark blue the lowest. In this track, the peak PAH reading was
sampled at the location of (260 m, 161 m).
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(b) predicted probability density map, and (c) the composite map.

Figure 8b shows the predicted probability density map using the KDE, while Figure 8c
represents a composite map where Figure 8b serves as the foundational background layer
and Figure 8a is superimposed as the upper layer. Figure 8b,c reveal that the gradient
colour scale delineates the estimated probability density from low density in dark blue
to high density in bright yellow. The results indicated that the predicted density varied
markedly, especially near waypoints with high PAH readings where the predicted density
was also higher. Conversely, around the waypoints with lower PAH readings, the predicted
densities were notably reduced. The highest predicted probability density was pinpointed
at the location of (260 m, 166 m), which is 5 m from the real-world highest PAH reading
at (260 m, 161 m). This proximity highlights the KDE’s efficacy, as the predicted hotspot
closely aligns with the actual areas exhibiting high fluorescence, validating the model’s
accuracy in PAH hotspot prediction.

The results of the second playback test are shown in Figure 9, which is similar to
Figure 8. Within Figure 9a, the peak PAH reading was observed at the coordinates
(310 m, 232 m), whereas the predicted highest probability in Figure 9b was located at
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(314 m, 232 m). The distance bias between the two coordinates is 4 m. Additionally, the
composite visualization in Figure 9c also exhibited a high correlation between regions of
intense fluorescence and the estimated hotspot locations.
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The playback test results illustrate that the KDE effectively transforms a dot pattern
into a continuous surface, providing an enhanced representation of potential fluorescence
distributions. This facilitates the detection of potential hotspots with higher levels of PAH.
The simulation demonstrates that the predicted hotspots using the KDE are significantly
consistent with the actual regions with high PAH measurement.
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4. Field Trial
4.1. Experimental Set-Up

We executed experiments at two chosen locations within the region of the natural oil
and gas seep site near Scott Inlet in Baffin Bay [23]. These site selections were made with
the aim of providing a comprehensive representation of environmental conditions and
potential impact zones (See Figure 10). The main offshore site, positioned approximately
20 nautical miles offshore in the region of known seeps [24,25], presented an open ocean
setting, offering unique challenges and environmental conditions. In contrast, one of these
locales, namely the Qurlurnilikuluk fjord, offered a relatively sheltered water environment.
We used this site to retest our AUV operations when inclement weather prevented operation
at the offshore site. The GPS coordinates marking the boundaries of these two regions can
be found in Table 2.
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Table 2. The GPS coordinates of the two regions selected for the field experiments.

Region Latitude Longitude Depth

Region 1

70.911988 −71.382196

20 m
70.911988 −71.343833
70.928124 −71.343833
70.928124 −71.382196

Region 2

71.373661 −70.085272

20 m, 50 m, and 200 m
71.373665 −70.037331
71.388893 −70.037603
71.388891 −70.085272

Our research foundation is rooted in a systematic review of past investigations,
commencing with Loncarevic and Falconer’s 1976 reports on natural petroleum seep-
age [26,27]. Subsequent studies, including the analysis of petroleum residues and the
geological terrain by Levy [28–30], MacLean [31], MacLean [32], and the review authored
by MacLean, et al. [33], have significantly contributed to our understanding of this unique
environment. The exploration, which culminated in the 1985 Pisces IV submersible expedi-
tion [25], provided crucial confirmation of the existence of natural oil seeps, and unveiled
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the presence of potential petroleum source rocks within the region. In a contemporary
context, the year 2018 witnessed the pioneering work of [23], who undertook an exhaus-
tive interdisciplinary examination of microbiology and benthic ecology in the Scott Inlet
region. Their research unraveled the intricate interplay between hydrocarbon seepage,
the benthic biota, and microbial communities in this unique ecosystem, thereby revealing
the indispensable role of seep communities in the complex dynamics of Arctic methane
cycling. Rooted in the rich legacy of this region, our primary objective was to substantially
enhance and validate the capabilities of our autonomous system. The focus of our mission
was directed towards advancing the efficiency and precision of tools utilized for detecting
marine hydrocarbons in this dynamic and unique ecosystem.

4.2. Support Vessel and LARS System

We utilized the 32 m long research vessel from the Greenland Institute of Natural
Resources, (R/V) Sanna, as our dedicated support vessel (See Figure 11). The R/V Sanna is
named after the Inuit mythological figure Sassuma Arnaa, or Zedna, who is known as the
Mother of the Ocean. Equipped with two wet laboratories, one dry laboratory, a chemical
laboratory, a cold laboratory, and an −80 ◦C freezer, the ship provided the versatility
required for our mission tasks. The stern deck featured essential equipment such as the
A-frame winches, crane, and a capstan, which played a pivotal role in efficiently moving the
vehicle from/to the wet laboratory to the deck, facilitating the AUV’s launch and recovery
processes. In particular, the wet laboratory served as a dedicated space for AUV repair,
especially when the pressure hull needed to be opened for maintenance, a task that it was
possible to complete even under adverse weather conditions. Meanwhile, the second wet
laboratory was utilized by our team for various purposes, housing essential equipment and
tools for mission preparation, predive checks, and other necessary tasks. This multifaceted
setup of the R/V Sanna provided us with the capability and flexibility essential for the
success of our research, ensuring continued AUV operations even in challenging conditions.
The launch and recovery system (LARS) utilized for this mission was developed and built
by Memorial’s Technical Services, following a design from the University of Southern
Mississippi and the University of Tasmania, as referenced in [34]. It was installed on the
deck of the R/V Sanna, significantly enhancing the effectiveness of our AUV deployment
and retrieval operations.

The launching and recovery procedure of the AUV involved a systematic sequence of
steps to ensure the safe and effective deployment and retrieval of the vehicle. To initiate the
launching process, the ship’s A-Frame was connected to the LARS ramp through a cable
and a crossbeam (See Figure 11). This connection formed a secure link that would facilitate
the controlled movement of the AUV. The A-frame and associated winch were used to lift
the frame slightly. A windlass winch and chain system attached to the LARS was used to
extend the upper moving frame of the LARS over the aft of the vessel, while periodically
adjusting the position of the A-frame and the height of the LARS. This positioning was
critical in preparing the AUV for deployment and ensuring a smooth transition from the
ship to the water. For the final stage of the launching process, the ship’s A-frame winch
was employed to lower the A-frame and, subsequently, the LARS winch was utilized to
carefully lower the AUV into the water. During this descent, a pin on the LARS winch
wire was strategically released, allowing for a controlled and swift release of the AUV.
This synchronized operation ensured a smooth transition of the AUV from the ship to the
water, harnessing the force generated by the controlled descent for an efficient and timely
deployment. The AUV, propelled by its short descent down the LARS, swiftly transitioned
to a floating position in the water, fully prepared to commence its mission.

On return and upon reaching the surface, the operator remotely triggers the pop-up
buoy of the AUV. Subsequently, the nose rope connected to the pop-up buoy is hooked
and drawn toward the ship. After the vehicle is positioned behind the ship and aligned
with the LARS, the recovery process unfolds in a reversed sequence. This includes the
systematic retrieval of the AUV, ensuring a controlled return to the ship. These procedures
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were essential to the success of the AUV missions and the safety measures involved in each
launch and recovery operation.
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4.3. Mission Design

In the planning phase preceding the field trials, the mission plan was structured to
serve dual purposes: ‘Stand-alone module tests’ and ‘Adaptive missions’, each contributing
to the overarching goal of assessing the robustness and adaptability of the system (see
Table 3).

Table 3. Summary of Backseat Drive AUV missions.

No. Mission Activated Module Pattern Sample Depth Site

1 Module test Sample Bowtie Yes 20 m Qurlurnilikuluk

2 Module test Survey Lawnmower No 20 m Qurlurnilikuluk

3 Module test Search Angle/Bowtie No 20 m Qurlurnilikuluk

4 Adaptive Survey–Sample W-shape Yes 20 m Qurlurnilikuluk

5 Adaptive Search–Survey Zigzag No 50 m Baffin Bay

6 Comprehensive Search–Survey–Sample Zigzag/Bowtie Yes 200 m Baffin Bay

The ‘Stand-alone module tests’ were formulated to subject each individual
module—Search, Survey, and Sample—to rigorous evaluation. Distinct mission patterns,
including lawnmower, bowtie, and zigzag, were incorporated into these tests to ensure
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a thorough examination of the isolated functionality and operational conditions of each
module. These tests assessed the independent performance of the modules, crucial for
identifying potential strengths and weaknesses. Simultaneously, the ‘adaptive missions’
were conceived to assess the interaction and data transfer capabilities between the modules.
These missions were divided into two categories: dual module tests and a full compre-
hensive mission involving all three modules. The adaptive missions aimed for real-world
scenarios, testing the system’s ability to transition between modules while ensuring the
coherent transfer of data.

Within the comprehensive mission, a site selection strategy was employed to optimize
the potential for hydrocarbon plume detection (See Figure 12). By strategically targeting
the most probable locations for plume observation, the mission maximized its chances
of capturing relevant data. In Figure 12, observed oil seep locations from previously
reported remotely operated vehicle (ROV) missions [23] are depicted with concentration
level indicators. Notably, the zigzag path chosen for the mission was strategically aligned
with the line of oil seeps. This deliberate route selection was intended to enhance the
system’s efficacy in capturing hydrocarbon plumes by ensuring thorough coverage of
potential seep locations.
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While the AUV has a maximum depth rating of 3000 m, as indicated in Table 1, we
intentionally constrained the operating depth to a maximum of 200 m for the missions
detailed in this study. This decision aligns with the targeted depth range of the region
where oil seepage was anticipated, which ranged from 200 to 250 m. The imposition of this
depth constraint during the missions was driven by safety considerations. In unforeseen
events, such as water leaks, which might propel the vehicle beyond the defined ‘safe’ virtual
box (x, y, and z maximum constraints), the mission was programmed to terminate. This
ensured the protection and intact retrieval of the vehicle.

5. Results
5.1. Overall Mission Description

After preliminary shakedown tests were conducted, we executed a series of six sys-
tematically planned missions, each designed to verify specific facets of the Backseat Drive
AUV system (Table 3). Figures 13 and 14 outline the discrete assessments conducted in the
Search, Survey, and Sample modules, emphasizing their autonomous functionalities. The
adaptive Mission 4 verified the integration of the Survey and Sample modules. The second
adaptive mission (Mission 5) served as a methodical rehearsal for the offshore mission,
concentrating on the primary Search module, while Mission 6 encapsulated the entirety
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of the adaptive mission. Diamond markers delineate target waypoints, while yellow tri-
angles denote sampling locations, and a red circle designates the mission’s starting point.
The water depth profile for each mission is shown beneath its corresponding plot on the
mission track.
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Module Test 1 took place in Qurlurnilikuluk Fjord, chosen for its minimal current and
absence of wave activity. This was important as an early winter storm meant that the ship
had to remain at this location for several days. In this mission, the AUV was set to descend
to a depth of 20 m to execute a bowtie manoeuvre and assess the Sample module’s software
block and sampling hardware unit. The sampler syringes successfully collected a water
sample at the designated location (marked by a yellow triangle), adhering to the prescribed
bowtie path at 20 m depth. Subsequently, the vehicle was set to descend further to a depth
of 40 m before returning. This test validated the feasibility and performance of the Sample
module design and sample unit.

Module Test 2 focused on the Survey module, employing a lawnmower path with four
vertical legs spanning 1.16 km, each separated by a uniform distance of 150 m. This test
primarily evaluated the Survey module’s performance, specifically checking the functional-
ity of pProbMapper at 20 m depth. The Survey module effectively generated new sampling
points for the subsequent module based on fluorescent concentration data collected by the
UviLux PAH sensor. Although the fluorescent concentration level in Qurlurnilikuluk Fjord
was relatively low, with minimal variation between the background and the calculated
most probable peak area in the path, the module demonstrated sensitivity in analyzing data
even at these low-concentration survey areas. Additionally, the Survey module successfully
initiated the next Sample module as intended.

In Module Test 3, the performance of the Search module, driven by the Backseat Drive
computer, was tested at a location in Qurlurnilikuluk Fjord, where a higher likelihood
of detecting hydrocarbons was expected, allowing for additional testing before offshore
missions. The Search module, where the vehicle adhered to specified waypoints and exe-
cuted a bowtie pattern search at each point, performed successfully. The pPlumeDetector
continuously analyzed the Ping360 sonar data during the mission. However, the subse-
quent Survey module was not triggered at the mission’s conclusion as no targets over the
threshold level were identified in the sonar data. The log file revealed that the pSurvey-
Planner did not generate a new series of waypoints because all collected data fell below
this set threshold. Consequently, it became evident that this module could prematurely
terminate the entire mission when launching a combined adaptive mission. To address
this, we implemented a Backup Opinion Strategy to ensure the Survey module could be
triggered, even in areas with low bubble or oil droplet plumes that could not be identified
by the sonar.

Mission 4, executed in Qurlurnilikuluk Fjord, was an adaptive mission incorporating
combined Survey and Sample modules at a depth of 20 m. The mission entailed two
primary objectives: firstly, to visit five predetermined waypoints and subsequently to
determine the most probable location for the plume; and secondly, to trigger the Sample
module to navigate the vehicle to the designated location and collect a water sample. The
onboard analysis indicated that the calculated plume location was in close proximity to
the fourth waypoint (marked by a green circle). The AUV adaptively returned to this
location and the Sample module was triggered, leading to the collection of a water sample.
The Loiter mode was executed between the Survey and Sample modules, a transition not
readily discernible on the vehicle trajectory plot due to the relatively short processing time.
Detailed analysis of the adaptive performance by pProbMapper in this module is presented
in the next section.

Vehicle performance and a weather window enabled transitioning to the offshore
region of Baffin Bay, where oil and methane seeps were known to exist and where two
missions were carried out successfully. The vehicle was first deployed to a depth of 50 m,
visiting the 15 designated waypoints as shown in Figure 12. Although initially planned as
an adaptive mission with combined Search and Survey modules, only the Search module
was active, and the bowtie search pattern failed to activate due to an error. Real-time USBL
data on the surface computer consistently reported the AUV’s position differently from
the planned trajectory throughout the mission, indicating a robust SW-tending current at a
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depth of 50 m. Upon resurfacing, the vehicle was near the fifth waypoint instead of the
intended fifteenth.

Owing to time and ship logistics, with only one remaining opportunity for a com-
prehensive mission, a cautious measure for water sampling, Forced Sampling (FS), was
implemented. This strategy ensured that the water sampler would be triggered if the
mission terminated for any reason. So, for the final mission, which aimed to include all
modules, the number of waypoints was reduced to four, the target depth was set to 200 m,
and the vehicle successfully visited all four waypoints, executing a bowtie pattern search at
each waypoint. Upon completion of the Search module, the pPlumeDetector, in analyzing
the sonar data, generated no new waypoints due to an unexpectedly low level of acoustic
data as no streams of methane or oil were sensed in the water column. As a result, the
Backup Opinion Strategy was implemented, pinpointing a relative high spot of PAH near
the third waypoint during the Loiter mode. Subsequently, the Survey module directed the
AUV to return to the third waypoint (marked by a green circle). Unfortunately, a ground
fault (indicating a water leak) led to the premature termination of the mission as soon as
the Sample module became active. The Forced Sample mechanism activated, allowing a
water sample to be collected as the AUV executed an override return to surface manoeuvre.

5.2. Adaptive Control Evaluation

During the adaptive Mission 4, the highest PAH concentration was identified at coor-
dinates (498 m, 279 m) in Figure 15a, while the predicted highest probability in Figure 15b
was situated at (498 m, 281 m), indicating a minimal spatial discrepancy of 2 m. The
PAH density maps in Figure 15b,c do not delineate distinct hotspots of extremely high
density, presenting a rather homogeneous field in the region of this test. This occurrence is
because of the inherently narrow range of PAH values within the dataset, resulting in a
KDE representation with limited contrast. During this mission, the recorded range of PAH
measurements spanned from only 1.42 QSU to 4.27 QSU. Regardless, the highest spot was
identified and the AUV was adaptively directed back to this spot to take a water sample.
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The incorporation of PAH observations as weights in the KDE introduces the potential
for the density estimation to be influenced by the PAH readings, with the predicted density
of each data point expected to be proportional to its PAH value. Consequently, the identifi-
cation of potential hotspots can be obscured if the spectrum of PAH values is constrained.
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Although the adaptive sampling mission was successfully executed here, further investiga-
tion and refinement of the methodology would be necessary to address these limitations
and enhance the capability of the pProbMapper for the aim of a test to specifically detect and
characterize hydrocarbon hotspots in varying environmental conditions.

In Mission 6, a bowtie pattern was employed during the Search phase. The outcomes
of this exploration are illustrated in Figure 16, revealing a hotspot correlated with higher
fluorescence within the mission region. The maximum PAH concentration, as indicated
in Figure 16a, occurred at coordinates (316 m, 192 m). In close proximity, Figure 16b
identified the predicted highest probability at (316 m, 191 m), demonstrating a negligible
spatial deviation of only 1 m. This analysis using the KDE function in pProbMapper predicts
the high-probability areas associated with elevated PAH concentrations. The position
identified and shown in Figure 16b was identified in the adaptive mission as the subse-
quent waypoint for a target water sample. This integration of predictive modeling and
actionable decision-making highlights the efficacy of the comprehensive mission strategy,
providing valuable insights for real-time adaptive navigation and sampling in the dynamic
underwater environment.
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Building upon the outcomes of the field trials, the pProbMapper can effectively pinpoint
hotspots characterized by high fluorescence, showcasing a clustered distribution within
the surveyed areas. The resulting density map displayed a continuous representation of
the fluorescence distribution, closely aligning with the real regions exhibiting elevated
fluorescence values. The experimental findings verified the accurate predictive capabilities
of the pProbMapper, demonstrating high consistency with actual high-fluorescence zones.
This method proves invaluable for the Backseat Drive computer to adaptively select optimal
vehicle waypoints where water samples or another action can be taken, significantly
enhancing the overall efficiency of the missions.

6. Discussion

The missions indicate the effectiveness of a modular system for adaptive control of
an AUV to address specific challenges associated with hot spots identified in data from
subsurface sensor readings. The adaptive sampling strategy, coupled with the modular
structure featuring individually operable task components, played a pivotal role in achiev-
ing precise identification of subsurface data hot spots, with the planned target in these
tests being hydrocarbon delineation. This accuracy in pinpointing the highest parameter of
interest and determining optimal sampling locations is crucial for real-world applications,
especially in dynamic deep ocean environments.

The demonstrated sequential module triggering system represents a step forward
in adaptability, offering a level of flexibility that is essential for addressing various con-
figurations and scenarios in underwater exploration. The modular architecture enables
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the integration of diverse payload sensors, enhancing the system’s versatility for different
mission objectives and applications. For instance, the incorporation of optical sensors
could allow for detailed visual inspections, while particle analyzers could provide insights
into the composition of underwater particulate matter. Including a methane sniffer or
underwater mass spectrometer would enhance the system’s capability to detect specific
hydrocarbon compounds in addition to the PAH sensor used here, and multibeam sonars
would enhance the simultaneous target recognition capability of the scanning sonar used
here, and also enable target recognition from mapping capabilities for a more comprehen-
sive understanding of the underwater environment. Additionally, transitioning from a
single beam scanning sonar to a more advanced multibeam sonar configuration is recom-
mended, as this transition holds the potential to increase the likelihood of detection, while
concurrently minimizing the risk of nondetection in dynamic underwater environments.

The efficacy of the pProbMapper module in predicting and characterizing hydrocarbon
hotspots hinges on precise parameter settings. The bandwidth of the KDE emerges as
a crucial parameter, determining the searching radius and control of the smoothness of
the KDE surface [35]. A larger bandwidth yields a smoother distribution, but it may
sacrifice detailed information on the density of surfaces. Conversely, a narrower bandwidth
accentuates finer variations, but potentially obscures clustering characteristics [36]. The
adjustable nature of bandwidth selection, tailored to the concentrations of observations
in a specific area [37], is paramount. A limited range in the sensor observations can
potentially lead to an under-representation in identifying hotspots. In our study, a smaller
bandwidth is preferred to create a more localized density estimation, thereby providing
a finer resolution of the density map in locating a position for a water sample to be
taken. As the observed PAH value range in this study was relatively narrow, a smaller
bandwidth was applied to capture the localized variation more effectively. The weight of
the KDE constitutes another pivotal parameter. Utilizing raw PAH data directly reflects
the intensity of each measurement point for density estimation, potentially leading to
an overemphasis on areas with high readings. On the other hand, employing baseline-
adjusted values as weights—that is by subtracting the minimum PAH value from each
reading—normalizes the dataset. In cases where the range of PAH values is narrow,
subtracting the minimum value accentuates relative differences between observations. This
approach proved useful for highlighting hotspots compared to their surroundings and
enhanced the accuracy of density estimation. Careful consideration of these parameters
enhances the robustness of pProbMapper and contributes to its capability in predicting and
characterizing hydrocarbon hotspots.

Notwithstanding the challenges encountered here in the Search phase with pPlumeDe-
tector, where it was not able to generate meaningful coordinates for the Survey module
owing to the limited presence of oil or methane bubbles identified in the water column, the
field trials substantiated the operational feasibility and adaptive capability of the method.
The limitations observed, stemming from potential oversights in scanning procedures, such
as potentially missing an extremely narrow vertical hydrocarbon plume, the potentially
intermittent nature of methane seeps, or encountering unexpectedly pristine surveyed
regions, highlight the importance of using multiple sensors to navigate and effectively
target items of interest. This adaptive capability forms a foundational aspect of the system’s
robustness in dynamic underwater environments.

The field trials also brought to light an unexpected frequency of hardware break-
downs and replacements, surpassing initial projections, even when accounting for the
17-year age of Memorial’s AUV. Environmental challenges, largely beyond our immediate
control—ranging from low temperatures to adverse weather conditions, the prevalence of
icebergs, and freshwater run-off from snow and glaciers—as well as potential vibration
during the extended shipping journey of the AUV, contributed significantly to hardware
issues resulting in newly-encountered ground fault issues from small leaks at connectors
and O-ring failures. Recognizing and comprehensively understanding these challenges is
paramount for future missions, prompting the need for enhanced preparedness, increased
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redundancy of equipment, and a thorough consideration of external factors that may im-
pact mission durations. To bolster future mission success, meticulous consideration of
environmental challenges becomes imperative. Strategic measures, including increased
duplication of critical parts and an acknowledgment of the potential curtailment of mission
duration due to external factors such as adverse weather or staff-related issues, should be
integrated into mission planning.

7. Conclusions

In conclusion, the journey from methodological development to simulation and, as
reported here, to field trials has indicated the successful performance and adaptability of an
AUV Backseat Drive adaptive control and sampling system, especially in the challenging
underwater environment of Baffin Bay. The framework established through these tests
describes an autonomous smart underwater system as a foundational technology for future
applications in the identification and delineation of marine pollutants or other items of
interest in the water column. Its adaptability, demonstrated through the implementation of
a sequential module triggering architecture in our specific case, sets the stage for continued
refinement and application across diverse underwater scenarios. The flexibility of the
modular approach underscored the system’s capacity to accommodate various mission
requirements, utilizing different sensors and allowing for versatile deployment in different
underwater environments and with different mission goals and research objectives. Each
mission served as a crucial building block, testing various mission types and scenarios,
contributing to the iterative refinement and validation of our adaptive system. The ability
to target and identify marine pollutants in particular, such as macro or microplastics, high-
lights the potential of the approach in environmental monitoring and conservation efforts.

Overall, we have concluded that our research showcased the successful performance
and adaptability of the developed system. The demonstrated ability to target pollutants,
coupled with insights gained from trials, positions this system as a valuable asset for
environmental monitoring and conservation. In confronting challenges, the trials high-
lighted the imperative need for enhanced preparedness and increased redundancy in future
missions. These insights are pivotal for the advancement of autonomous underwater ex-
ploration methodologies, guaranteeing the reliability and success of forthcoming missions
in complex underwater ecosystems.
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