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Abstract: Currently, space-based information networks, represented by satellite Internet, are rapidly
developing. UAVs can serve as airborne mobile terminals, representing a novel node in satellite IoT,
offering more accurate and robust data streaming for connecting global satellite–UAV collaborative
IoT systems. It is characterized by high-speed dynamics, with node distances and visibility constantly
changing over time. Therefore, there is a need for faster and higher-quality topology optimization
research. A reliable, secure, and adaptable network topology optimization algorithm has been pro-
posed to handle various complex scenarios. Additionally, considering the dynamic and time-varying
nature of these types of networks, the concept of time slices has been introduced to accelerate the
iterative efficiency of problem-solving. Experimental results demonstrate that the proposed algorithm
is expected to exhibit better convergence and performance in subsequent iterations compared with
traditional solutions. Besides being a solution for topology optimization, the proposed algorithm
offers a new way of thinking, enabling the handling of larger satellite–UAV collaborative IoT systems.

Keywords: satellite IoT; UAV; topology optimization; graph partitioning; simulated annealing

1. Introduction

Near-Earth satellite–UAV collaborative networks are a ubiquitous IoT system that inte-
grates synchronous satellites or medium- to low-orbit satellites and includes stratospheric
balloons and manned or unmanned drones [1]. It not only effectively enhances network
critical performance but also breaks geographical limitations, achieving seamless, global
three-dimensional coverage and supporting users’ access anytime, anywhere, bridging the
digital divide between different regions. The UAV serves as an airborne mobile terminal,
representing a novel node in satellite-based IoT. With the advantages of low cost, wide
coverage, flexibility, and high line-of-sight [2], UAVs are widely used to assist in IoT data
collection and provide a more accurate and robust data stream [3] for connecting global
satellite–UAV collaborative IoT systems. For example, employing UAVs to patrol a desig-
nated area allows for clearer observations of crop growth [4] and natural disasters [5] than
satellite remote sensing. Drone-assisted autonomous navigation [6], camera shooting [7],
and outdoor positioning technology [8] can help with Building Information Modeling
(BIM) for construction [9]. The satellite–UAV collaborative IoT systems scenario is shown
in Figure 1.

Moreover, the emergence of new business and application scenarios (such as digital
twins [10] and industrial Internet of Things [11]) and their increasingly stringent key per-
formance indicators necessitate the deep integration of communication, information, big
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data, AI, and control technologies within the ubiquitous communication systems. This inte-
gration further supports a cloud-native, flexible, streamlined, intelligent, secure, and open
network, providing distributed, cross-domain, flexible, and agile expansion capabilities.

Wheat

RiceCorn

Natural Disaster Monitoring

Crop-growing Sky Keeper

Drone Live Scan Modeling

High Orbit UAVs/Drones

Long Distance

Satellite to Drones

Satellite to Ground

Drones to Ground

Figure 1. The satellite–UAV collaborative IoT systems scenario. Schematic diagram of the integration
of satellites and drones in the Internet of Things. Compared with satellite remote sensing, drones
can more accurately observe crop growth and natural disasters and model the construction of
buildings (BIM).

This IoT system of near-Earth satellite–UAV collaboration differs fundamentally from
ground-based IoT systems. Firstly, each satellite and drone is in constant high-speed mo-
tion relative to the earth and ground infrastructure. Secondly, the internode distances and
visibility change over time. Lastly, the onboard computing load capabilities of the nodes
are limited, especially for older satellites and mini-drones, which may have insufficient
processing power. These characteristics present unique challenges for space-based IoT.
Furthermore, the nodes of satellite–UAV collaborative IoT systems are exposed to the harsh
space environment of deep vacuum and suffer from extreme weather, radiation, intense vi-
brations, and extreme temperature ranges. These factors result in much higher uncertainties
in network communication compared with traditional ground-based IoT networks.

The characteristics of low energy consumption and relatively long flight time of drones,
as well as their ability to effectively expand coverage, are receiving increasing attention.
Consequently, more and more researchers are engaging in exploratory studies [1,11,12]
related to near-Earth satellite–UAV collaborative IoT system initiatives. This work aims to
design a reliable, secure, and controllable network topology optimization algorithm that
can adapt to various complex scenarios, enabling the rapid and efficient establishment



Drones 2024, 8, 44 3 of 14

of highly resilient networks while fulfilling communication tasks. Compared with the
traditional methods that focus too much on solution efficiency, the innovation of the
proposed method is that instead of choosing the two aspects of neighborhood solution
generation and estimation function computation as the entry point of optimization, a new
optimization path is provided. Starting from the initial solution generation, the partition is
first divided and optimized; then, the partition is merged and iterated, greatly reducing the
number of iterations for the subsequent simulated annealing process and thus reducing the
code’s running time. Doing so provides a good initial solution for the simulated annealing.
Also, it ensures the convergence speed of the solution in the subsequent iterations, leading
to better results for the algorithm.

The rest of this paper is organized as follows: Section 2 briefly introduces some
background and our motivations. Section 3 elaborates on our proposed method. Section 4
presents the experiments and results. Section 5 reviews the related works. Section 6
concludes the paper.

2. Related Work

The existing research on the topology optimization of satellite–UAV-integrated net-
works mainly focuses on two categories. One category improves the topology structure
of networks through optimization using distributed minimum spanning tree algorithms.
The other category involves heuristic randomized search algorithms, such as the algorithm
proposed in this work. Heuristic randomized search methods aim to randomly explore the
solution space in search of the global optimal solution for the objective function.

There are also numerous other precise or approximate algorithms within this research
category. Yan et al. [13] proposed a simulated annealing algorithm that considers multiple
time slices as states under multiple constraints. Additionally, greedy algorithms [14],
other simulated annealing algorithms [15], scheduling algorithms [16], load balancing
algorithms [17], and immune algorithms [18] based on single time slices were proposed
one after another.

In simulated annealing-based solving algorithms, there are multiple options for gen-
erating neighborhood solutions, including the spanning tree random selection method,
the random link switching method [13], and the mixed maximum flow.

It is also worth mentioning that on the basis of the time slice model of satellite networks,
there are usually little changes in the visibility matrix between adjacent time slices. There is
an adaptive method [19] for the simulated annealing algorithm, which utilizes the solution
in the last time slice to reduce redundant computing and iterations.

Most of the existing research is less concerned with the initial solution of the opti-
mization algorithm and excessively focused on the efficiency of the iterations. Sometimes,
a smartly constructed initial solution will largely determine the number and efficiency of
the following iterations. The algorithm proposed is not only an excellent initial solution
generation method but also a recursive partition method. At the same time, this algorithm
also retains and integrates some optimizations from the above-related research and further
optimizes the indexes on this foundation.

3. Concepts and Models

In this section, we introduce the research hypotheses for the discussed issues, the re-
quired prior knowledge and key concepts from related fields, and the achievements of
previous research.

3.1. Network Modeling

Network modeling plays a pivotal role in the research, design, and operation of net-
works. Scientific network modeling can assist us in gaining a profound understanding
of network structures and relationships, accurately unveiling the intrinsic patterns and
characteristics of networks. The relationship between networks and graph theory is in-
separable. Graph theory offers a concise and powerful method for representing various
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complex relationships within networks, whether they are computer networks [20], satellite
networks [21], transportation networks [22], social networks [23], or networks from other
domains. In networks, nodes can correspond to vertices in graph theory, while links can
correspond to edges.

If the time-varying satellite–UAV-integrated networks can be abstracted as a graph,
we can leverage the rich tools and methods of graph theory to analyze and understand the
network’s structure, characteristics, and behavior.

The topological relations of the satellite–UAV-integrated networks can be represented
by the geometric representation G = (V , E) in graph theory. Where G denotes the topologi-
cal model, and V denotes the set of nodes in the topological model with size N . E denotes
the set of edges in the topological model with size M. The unique G can be determined by
combining V and E . G records the information of all nodes and all edges, which is unique
and irreducible. The process of abstracting a time-varying dynamic satellite network into a
graph structure is shown in Figure 2.

Figure 2. The time-varying dynamic satellite–UAV-integrated network is abstracted into a graph
structure. In a more abstract view, the network forms a graph with undirected edges, in which the
distances between node pairs in graph theory are equal to the transmission delays between satellites.

The delay in satellite–UAV-integrated networks mainly comes from four sources:
uplink delay, downlink delay, transmission delay between satellites, and internal calcula-
tions and processing delays. Now, suppose there is a satellite–UAV-integrated network
with N satellites and drones. A routing path P is made up by an order of M nodes
v1, v2, . . . , vM−1, vM, and the internal processing delay of node vi is Ini. Then, the total
delay for routing path P in the time slice s is

delay(s, v1, vM) =
M

∑
i=1

Ini +
M−1

∑
i=1

distance(s, vi, vi+1) + Tup ++Tdown (1)

For simplicity, the distance between node pairs replaces the transmission delay be-
tween nodes. distance(s, vi, vi+1) is the transmission delay between node vi and vi+1 in
time slice s, assuming that the internal delay Ini of all satellites in the network is almost
the same and is Tin. Further, considering that the delay is the same for uplink Tup and
downlink Tdown for routing path P with the same start and end points, the equation can be
simplified as follows:

delay(s, v1, vM) = MTin +
M−1

∑
i=1

distance(s, vi, vi+1) (2)

For old satellites, their computing power is usually low, resulting in the internal
delay being far greater than the transmission delay of the signal. This means Ini ≫
distance(vi, vj), so the model can be simplified as

delay(s, v1, vM) ≈ MTin (3)
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The delay only depends on the number of nodes on the routing path P . For this
condition, an unweighted constellation model with an N × N edge matrix Vi,j can be set
for further calculation. In a time slice, Vi,j = 1 if node vi and vj are mutually visible,
and Vi,j = ∞ if invisible.

The weight constellations model is suitable for more advanced satellites and drones,
which have higher computational power, resulting in a significant reduction in single
satellite computation and processing latency. The final effect presented can be approximated
as Ini ≪ distance(vi, vj), so the model can be simplified as

delay(s, v1, vM) ≈
M−1

∑
i=1

distance(s, vi, vi+1) (4)

The delay only depends on the total length of the path. For this condition, a weighted
graph with an N × N edge matrix Vi,j can be set for further calculation. In a time slice,
Vi,j is the latency or distance between vi and vj if they are mutually visible, and Vi,j = ∞
if invisible.

3.2. Time Slice Modeling

The concept of time slicing originated from the scheduling process of each process
by the kernel in a time-sharing operating system [24]. In the scheduling process of the
operating system, the kernel allocates some time slices to each process. Within one time
slice, the kernel only runs one process. Due to the typically short length of time slices, users
do not perceive the switching process of time slices. In the user’s view, all processes operate
together. In this way, a time-sharing operating system can achieve concurrent computing.

In a near-Earth satellite–UAV collaborative IoT system, all nodes continuously operate
at high speeds within their respective orbits or tracks, and the distances and relative
positions between nodes constantly change. A common approach is to divide the entire
operational cycle of a dynamic network into multiple time slots and perform separate
calculations within each time slot [25]. Each time slot corresponds to a period of time
with a specific network topology, and the topology structure during that period is referred
to as a topology snapshot. This abstraction allows us to transform the dynamic satellite–
UAV-integrated networks into a static, discrete form of a graph. This work uses the equal
time interval slicing method to divide time slices and topology sampling on an interval
basis [26]. Equal time interval division is shown in Figure 3.

Figure 3. Equal interval time slice model. The equal-time interval slice partitioning method divides
time into equal periods and captures network snapshots at the beginning of each period.

3.3. Simulated Annealing

A simulated annealing (SA) algorithm is a heuristic algorithm used to solve various
complex optimization problems [27]. It takes inspiration from the cooling process in
metal forging. The algorithm starts from an initial solution and generates new candidate
solutions by making small random changes to the current solution. It introduces the concept
of temperature T, which controls the probability of accepting new candidate solutions.
The probability of accepting a new neighborhood solution is shown as follows:

P =

{
1, Ft+1 < Ft

e
Ft−Ft+1

kT Ft+1 ≥ Ft
(5)
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where Ft is the objective function of the current solution and Ft+1 is that of the new
neighborhood solution. T is the current temperature and k is an arbitrarily set constant.

A simulated annealing algorithm has a wide range of applications and is capable of
handling complex optimization problems with large search spaces and nonlinear objective
functions. It has been successfully applied to various real-world problems, including the
traveling salesman problem [28], vehicle routing problem [29], scheduling problem [30],
and parameter optimization in machine learning [31].

3.4. Graph Partitioning

Graph partitioning (GP) provides a method for the recursive or parallel processing of
graph-structured data, reducing the size of the data while ensuring that the partitioning
has minimal impact. This has great significance for many distributed systems. In recent
years, with the development of networks and IoT systems, graph partitioning has been
playing a role in many fields [32].

The goal of graph partitioning is divided into edge-cut and vertex-cut, which means
that the vertexes or edges in a graph are divided into several balanced sets so that the edges
or points between different sets are minimized. The graph partitioning mentioned in this
thesis refers specifically to edge-cut, in which all vertices in a graph are divided into k
disjoint subsets. An illustration of edge-cut graph partitioning is shown in Figure 4. The
different colors of a node indicate which partition it belongs to. Gray edges indicate edges
in different partitions and colored edges indicate edges in the same partition. Since nodes
are randomly assigned to different partitions, there are many interpartition edges. When
no graph partitioning is performed, Figure 4a shows a very terrible partition. After graph
partitioning, Figure 4b shows that nodes are assigned to highly clustered partitions.

(a) Terrible graph partitioning (b) Obvious partitioning

Figure 4. An illustration of edge-cut. The color of a vertex represents which partition it belongs to.
The gray links are interpartition edges and colored links are edges inside a partition: (a) shows a poor
partitioning while (b) is good, as the vertexes are assigned into highly connected groups.

We now describe the model in mathematical language. Suppose there is an input
undirected graph with N vertexes represented by an N ×N adjacency matrix A composed
of 0 and 1 to indicate connectivity and a given constant K indicating the number of
segmentations to find a color vector C of length N , which meets the following requirements:

Ci ∈ [1,K], ∀i ∈ [1,N ] (6)

max

(
N
∑
i=1

[Ci = x]

)
− min

(
N
∑
i=1

[Ci = y]

)
≤ tolerance, ∀x, y ∈ [1,K] (7)
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where tolerance is the maximum acceptable difference between two different sets. Under the
conditions above,

min
N

∑
i=1

i

∑
j=1

Ai,j
[
Ci ̸= Cj

]
(8)

Graph partitioning is a classic NP-complete problem, so it is usually difficult to find
the optimal solution in a finite time. The current graph partitioning methods mainly include
spectral methods, geometric methods, and heuristic methods. Considering the research
problem in this thesis, that is, the number of nodes in satellite–UAV-integrated networks
is far fewer than that in large-scale networks, it is a good heuristic solution to use the
simulated annealing described above.

4. Methodology

Considering satellite–UAV-integrated network visibility, payload computing capacity,
maximum link count per satellite, and the total number of communication links, an objective
function is formulated to minimize end-to-end delay in satellite networking. To optimize
the satellite–UAV collaborative IoT systems topology, we introduce the Graph Partition-
ing Simulated Annealing (GPSA) algorithm, which combines the graph partitioning and
simulated annealing algorithms.

Furthermore, considering the dynamism and temporal nature of this network, the con-
cept of time slices is introduced, enhancing the efficiency of iterative problem-solving.

4.1. Optimization Objectives and Constraints

The core focus of this work lies in constructing and optimizing the topology structure
of satellite–UAV-integrated networks to minimize the average end-to-end communication
delay for nodes such as satellites and drones while ensuring a high level of network
resilience. Assuming a consistent transmission rate of electromagnetic waves in a vacuum,
the internode distances can be considered as the end-to-end delay.

To describe the problem abstractly, in time slice si, an adjacency matrix A(si) is given
to represent the graph with N nodes, and a subgraph should be found to minimize the
objective function under some restrictions. Suppose the selected visible matrix to be C(si)
in time slice si, ensuring that

min τ(si) =
2

N (N − 1)

N−1

∑
i=1

i−1

∑
j=1

DelacyC
(
si, vi, vj

)
(9)

An algorithm should be designed to find a subgraph C with distance sum τ(si) as
small as possible in the time slice si, and the running time should be as short as possible. In
addition to the dynamic nature of networks, there are other limitations that contribute to
the complexity of satellite–UAV-integrated network optimization:

• For invisible node pairs, it is required that they cannot have links.
• Due to the limitation of the number of transmitters and receivers on satellites, the num-

ber of satellites that can be linked simultaneously with other satellites/drones is limited.
• Considering the load balancing of the overall network, the total number of links cannot

exceed a given value.
• The internode communication is assumed to be bidirectional by default. For a link

from vi to vj, there must be a corresponding edge from vj to vi.

The aforementioned constraints can be formalized as follows:

Ci,j =

{
compare

(
Ai,j, ∞

)
,Ai,j < ∞

∞ ,Ai,j = ∞
(10)

DegreeC(vi) =
N
∑
i=1

[Cv,i < ∞] ≤ Maxdegree, ∀vi ⊆ [1,N ] (11)
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EdgesumC =
N
∑
i=1

i

∑
j=1

[Cv,i < ∞] ≤ Maxedge (12)

Ci,j = Cj,i, ∀i, j ∈ [1,N ] (13)

4.2. Simulated Annealing Optimization Based on Graph Partitioning

It is not easy to handle such a huge central network for satellite–UAV collaborative
IoT systems. It is necessary to segment this huge network rationally and reduce the data
flow between different parts after segmentation. It is based on this consideration that a
novel optimization algorithm proposed is introduced by integrating the GP algorithm
with the SA algorithm for satellite–UAV collaborative IoT system topology optimization.
GPSA is inspired by the generation method of network maxflow neighborhood [33]. This
method is based on the fact that the edges on the minimum cut have a strong influence
on the connectivity and invulnerability of the graph. This can be useful in reducing
overall computational and hardware complexity. First, graph partitioning can decompose
large-scale networks into multiple smaller subnetworks, thus allowing these parts to be
computed in parallel on different processing units. It is very useful in distributed computing
to reduce computation complexity and increase algorithm-solving efficiency. Second,
the load of each subpart is relatively uniform after segmentation, avoiding bottlenecks in
the overall performance of the network due to the overloading of certain nodes. Third,
the communication overhead between nodes is an important consideration in satellite
Internet. By rationally dividing the network, the communication requirements between
nodes are reduced so that the sum of link communication costs (bandwidth, etc.) for each
part is minimized, thus improving overall performance.

For a given satellite–UAV-integrated network, GPSA uses the idea of divide and
conquer to perform graph partitioning, processes them sequentially, and then merges the
results, giving priority to cutting edges. Figure 5 is a flow diagram of the GPSA algorithm.

Adapt initial 

solution

Graph 

partitioning Merging

Partial 

Simulated Annealing

Partial 

Simulated Annealing

Partial 

Simulated 

AnnealingDistance matrix

Network Topology

Optimization results

Figure 5. A flow diagram of simulated annealing optimization based on graph partitioning.

The GPSA algorithm first divides the input graph into partitions by the visual matrix
and selects some edges in the set of cut edges to preserve in advance. In this thesis,
the number of partitions divided by the graph is 4. For each partition, allocate the maximum
number of edges in proportion to the number of interior points in the partition. Then,
the visibility matrix and distance matrix of each partition are processed, and the initial
solution is inherited from the former time slice and adapted according to the self-adapt
method. Afterward, apply a partial SA on each partition given a larger exit threshold. It
is worth mentioning that this step can be performed in parallel. When the procedures of
all partitions are completed, the solution matrices of the subgraph are mapped back to the
solution matrix of the full graph, which are merged with the cut edges selected in advance
into a complete initial solution, and then the SA algorithm is applied again on this whole
graph initial solution.
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The existing works mostly focus on the efficiency (number of iterations) of the iterative
process and overlook the situation of the initial solution. However, the structure of the
initial solution largely determines the subsequent iterative process. It is an effective way
to continuously divide and process the network into smaller and smaller partitions for
near-Earth satellite–UAV collaborative IoT systems that may emerge in the future and then
merge them step by step into the solution of the entire network.

4.3. Complexity Analysis

Time complexity analysis is a crucial tool for estimating how the efficiency (time)
of an algorithm changes as the size of the problem scales. It aids us in gaining a deeper
understanding and evaluating the performance of algorithms in practical applications.

4.3.1. Complexity Analysis of the Simulated Annealing Part

The specific running time of a simulated annealing algorithm basically depends on
the number of iteration steps. But different solving methods may differ in the convergence
speed of the solution. In this work, the convergence speed of the solution can be used
to shorten the steps of simulated annealing iterations. Specifically, the visible matrix C is
chosen to calculate the average delay between pairs of points as the theoretical optimal
solution τmin, followed by selecting a numerical value as the exit threshold ρ. The exit
threshold ρ is a controllable parameter that balances the quality of the solution and the
number of iterations. The simulated annealing process terminates when the convergence
rate τC of the current solution satisfies Equation (14). This approach can effectively reduce
the number of iterations.

τC = ρ × τmin (14)

The number of iteration steps of the simulated annealing algorithm only depends
on the initial temperature T, the decay rate of each temperature ∆T, and the final exit
temperature ε. If K is the total number of iteration steps, then there is

KSA = log∆T ε − log∆T T (15)

Therefore, the number of iteration steps is a controllable variable. The objective
function of the solution is defined as the average delay of the topological network, in other
words, the shortest path between all point pairs. The famous Floyd algorithm is designed
to solve this problem within O

(
N 3). The final complexity of the simulated annealing

algorithm in this work is O
(
KSAN 3).

4.3.2. Complexity Analysis of the Graph Partitioning Part

In each iteration, there are mainly two parts: generating new neighborhood solu-
tions and calculating the objective function of the solution. For generating neighborhood
solutions, it only needs to randomly select vertexes with different colors, which can be
performed in O(1) time. For the other part, to compare the objective function of the solution,
the number of adjacent vertexes with the same color should be calculated, which needs
O(N ) time to enumerate each adjacent edge. So, the total complexity is O(N ) for a single
iteration. It is much faster than the SA algorithm for topology optimization.

Due to the low complexity of a single iteration, the complexity of the GP algorithm
changes after several iterations. Consider the time complexity of swapping all vertices
u and v in one iteration to be O

(
N 2). The comparison of objective functions can also be

completed within O
(
N 2) time through preprocessing. Noticing that the entropy only

decreases without increasing in each iteration and the entropy does not twice exceed the
total number of edges, that is, O

(
N 2) (the actual number is far less than this value), so the

total complexity does not exceed O
(
N 4). The final complexity of the graph partitioning

algorithm is O
(
KSAN 2 +N 4).



Drones 2024, 8, 44 10 of 14

4.3.3. Total Complexity Analysis

If the original graph is divided into M partitions, then for each partition, the complexity

of simulated annealing is O
(
Kmulti−SA

(
N
M

)3
)

. Without considering the optimization of

parallel operations, the total time complexity is O
(
Kmulti−SA

N3

M2

)
. To sum up, without

omission, the time complexity of GPSA is

O
(
KSAN 3 +Kmulti−SA

N3

M2 +KGPN 2 +N 4
)

(16)

The total number of iterations KSA for the main simulated annealing algorithm is
greater than the number of iterations Kmulti−SA for partial simulated annealing. The KSAN 3

term is also much larger than the KGPN 2 +N 4 term. Overall, GPSA, like regular simulated
annealing, still has the complexity bottleneck of O

(
N 3). In actual simulations, it also meets

theoretical expectations, as shown in the next section.

5. Implementation and Evaluation

The algorithm programs are implemented in C++, with the compiler standard being
GNU g++ 14. In order to evaluate the performance of our model, all experiments are run
on Intel(R) Core(TM) i5-9300H CPU with 2.40 GHz. The maximum training time for an
experiment is limited to 24 h.

5.1. Datasets

The data used for the experiments in this section are generated using the Satellite
Tool Kit (STK). STK is a software that can support satellite orbit generation, analysis,
and calculation.

• Iridium. The Iridium constellation, consisting of 66 satellites, is composed of six
circular orbits that pass over Earth’s poles. Each orbit plane contains 11 evenly
distributed satellites, allowing for global coverage in this configuration.

• Globalstar. The Globalstar constellation consists of 48 satellites distributed among
8 circular orbits with an inclination of 52◦. Each orbit plane contains 6 satellites,
and none of the Globalstar orbits pass over the poles. Due to the smaller number of
satellites in the Globalstar constellation, the satellites are positioned at an altitude
approximately twice that of the Iridium constellation to achieve global coverage.

• 108-Star-Drone. Additionally, in this section, a mega constellation in near-Earth
orbit is generated using STK, comprising 96 satellites and 12 drones in formation.
The 96 satellites are distributed across 6 orbital planes, with each plane containing
16 satellites, all at an orbit altitude of 550 km. The formation of 12 drones hovers
uniformly near the ground.

The main parameters of the three datasets are provided in Table 1.

Table 1. The main parameters of the three constellation datasets.

Orbital Parameters Iridium Globalstar 108-Star-Drone

Orbital altitude (km) 1414 780 550
Orbital inclination 52◦ 86.3◦ 60◦

Number of orbital 8 6 6
Number of satellites in a single orbit 6 11 16

Polar constellation Nonpolar Polar Nonpolar

5.2. Benchmark Methods

• MIX-SA [34]. Typically, the larger the connectivity of a network, the more stable and
invulnerable it is. The size of the minimum cut represents the number of disjoint paths
between two nodes in the network. The more disjoint paths there are, the stronger
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the network’s ability to maintain communication, even if a link fails. Simulated
annealing algorithms based on maximum flow minimum cut exchange ensure that
the connectivity of the solution is not reduced during each search for a neighboring
solution.

• DLS-SA [13]. Dual-link random switching, as a heuristic local search strategy, is
commonly used in combination with simulated annealing algorithms to solve combi-
natorial optimization problems. Its main idea is to randomly select two paths or links
and exchange a portion of them to generate a new solution. This strategy helps to
escape from local optima and increases the exploration capability of the search space.

5.3. Parameters and Indicators

The proposed method is influenced by random initial values, and even with mul-
tiple experiments conducted on the same dataset, there may be slight deviations in the
results. To mitigate these biases and obtain more accurate results, all experimental out-
comes are averaged from three repetitions conducted under the same dataset, parameters,
and environment. The parameters involved in the experiments are shown in Table 2.

Table 2. List of Parameters.

Parameters Range Description

N 48/66/108 The number of satellites.
W 1/0 The edges are weighted or unweighted.
S [1, 100] Number of time slices to be processed.

Maxedge [N − 1, N (N−1)
2 ] Restriction of sum of links.

Maxdegree [3, 5] Restriction of degree for each satellite.
ρ Depends on the distribution of the data Exit threshold for simulated annealing.

In the practical implementation, we set Maxedge = 1.8N and MaxDegree = 4. Time
slices are divided every 60 s for sampling, and the total number of time slices is set to 100.
ρ is set to different values based on data to control the expected optimization rate of the
program. Consider the optimization ratio Φ = τL

τmin
as the optimized scale relative to the

theoretical lower bound. τL denotes the average delay sum of each time slice, τmin refers
to the average delay sum without restrictions. Consider K to denote the total number of
iterations in simulated annealing and Trun to denote the running time.

5.4. Performance Evaluation

Optimization—Iteration Curve. In order to analyze the superiority of the initial
solution of GPSA and subsequent iterations compared with the other two algorithms,
a single time slice was taken to plot the optimization indicator Φ curve with respect to the
number of iterations t, as shown in the following Figure 6.

From the graph, it can be seen that the initial solution of GPSA is far superior to the
other two algorithms, equivalent to approximately 300 iterations of MIX-SA and more
iterations of DLS-SA to obtain the solution. At the same time, the initial solution of
GPSA is not inferior in convergence speed to the other two algorithms, indicating that
the initial solution obtained through GPSA has better guidance for convergence to a more
optimal solution.

Efficiency Comparison. In order to compare the actual efficiency of the algorithm
operation, the results of testing each algorithm under different data are shown in Tables 3–6.
It can be seen that GPSA has a huge impact on optimizing runtime. In the borderless
weight model, the optimization rate of GPSA exceeds 92%, and the number of iterations
also decreases to less than 10%. This verifies that GPSA outperforms other algorithms in
terms of performance.
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(a) (b)

(c) (d)

Figure 6. Curve of optimization indicator. (a) Φ − t curve of unweighted iridium. (b) Φ − t curve of
weighted iridium. (c) Φ − t curve of unweighted Globalstar. (d) Φ − t curve of weighted Globalstar.

Table 3. Efficiency Comparison with unweighted Iridium ρ = 1.5 (Sum in 100 Time Slices).

Algorithm GPSA MIX-SA DLS-SA

Iterations Count KSA 105 11,119 34,044
Runtime Trun 0.524 7.570 12.474

Optimization Indicator Φ 1.4545 1.4947 1.4924

Table 4. Efficiency Comparison with weighted Iridium ρ = 1.03 (Sum in 100 Time Slices).

Algorithm GPSA MIX-SA DLS-SA

Iterations Count KSA 5998 6953 17,605
Runtime Trun 2.436 2.562 4.164

Optimization Indicator Φ 1.0282 1.0299 1.0298

Table 5. Efficiency Comparison with unweighted Globalstar ρ = 1.7 (Sum in 100 Time Slices).

Algorithm GPSA MIX-SA DLS-SA

Iterations Count KSA 2498 82,952 44,369
Runtime Trun 0.508 7.034 6.925

Optimization Indicator Φ 1.6897 1.6995 1.6963

Table 6. Efficiency Comparison with weighted Globalstar ρ = 1.16 (Sum in 100 Time Slices).

Algorithm GPSA MIX-SA DLS-SA

Iterations Count KSA 51,370 73,645 199,869
Runtime Trun 4.997 11.673 19.164

Optimization Indicator Φ 1.1384 1.1458 1.1616
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6. Conclusions

In recent years, space IoT systems represented by satellite–UAV collaborative networks
have been developing rapidly. These networks are highly dynamic, with changing dis-
tances and visibility among satellites over time. To optimize their topology more efficiently
and reliably, a secure algorithm combining graph partitioning and simulated annealing has
been proposed. The innovation of this work is that a new optimization path is provided.
Instead of opting for neighborhood solution generation and estimation function compu-
tation to optimize the problem solution, the number of subsequent iterations is reduced,
and the algorithm’s efficiency is improved by constructing a smart initial solution. Intro-
ducing time slices to account for the network’s dynamic nature speeds up problem-solving.
This algorithm offers improved convergence and performance compared with traditional
methods. In addition to serving as a solution for topology optimization, the proposed
algorithm introduces a new way of thinking, enabling the handling of larger satellite–UAV
collaborative IoT systems.
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