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Abstract: This paper proposes a trajectory tracking control scheme consisting of a fast finite-time
super-twisting sliding mode control (FSTSMC) approach and an extended state higher-order sliding
mode observer (ESHSMO) for unmanned underwater vehicles (UUVs) with external disturbances
and model uncertainties. Firstly, an extended state higher-order sliding mode observer with the finite-
time convergence is designed based on the higher-order sliding mode technique and the extended
state observer technique. Next, on the basis of disturbances and model uncertainties observation,
a fast finite-time super-twisting sliding mode control approach is proposed, and the finite time
stabilization property of the tracking errors is proved by Lyapunov theory. Finally, through numerical
simulation and experiment in a water pool, it has been verified that the proposed control scheme has
achieved the high control precision, the smaller chattering, the disturbance compensation and the
fast finite-time convergence in UUV trajectory tracking.

Keywords: unmanned underwater vehicle; super-twisting sliding mode control; extended state
higher-order sliding mode observer; fast finite-time convergence

1. Introduction

UUVs have become important tools in a wide range of ocean observation and explo-
ration missions, including marine environment monitoring, mineral resources exploration,
and underwater rescue. The successful execution of these missions requires the UUVs
with accurate trajectory tracking control performance. However, unknown external distur-
bances such as ocean currents and model uncertainties hinder the traditional linear control
approaches from achieving the required tracking control performance.

A tremendous amount of research efforts has been spent on the development and test
of advanced control approaches for unmanned vehicles, such as sliding mode control [1–8],
model predictive control [9–12], backstepping control [13–17], active disturbance rejection
control [18–21], adaptive control [22–25] and fixed-time control [26–28]. Among them,
sliding mode control has shown excellent robustness to external disturbances and model
uncertainties, and it is convenient in the design and debugging of control parameters.
However, the output of traditional sliding mode approach contains discontinuous switching
items, which results in chattering phenomenon. The chattering is an inherent defect
of conventional sliding mode control, which increases energy consumption, damages
thrusters and stimulates unmodeled dynamics. The quasi-sliding mode control methods
use continuous functions such as saturation function, hyperbolic tangent function and
arctangent function instead of sign function to weaken chattering [29–31]. These quasi-
sliding mode control approaches are typically at the cost of losing the robustness or control
precision, which is harmful to the accurate trajectory tracking control of UUVs.
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Levant introduced the concept of higher-order sliding mode control, which overcomes
the inherent defects of conventional sliding mode control without degrading control perfor-
mance [32]. The output of the higher-order sliding mode control does not directly contain
the sign function but rather the integral of the sign function. In this way, the higher-order
sliding mode control is continuous, which can eliminate the chattering of control quantity
and can ensure good robustness. The high-order sliding mode control algorithm mainly
includes the twisting algorithm, the super-twisting algorithm, the prescribed convergence
law algorithm, the sub-optimal algorithm and so on. Among them, the super-twisting
algorithm plays an important role in the higher-order sliding mode control, because it does
not need to know the derivative information of sliding mode variables in advance, and it is
relatively easy to design Lyapunov functions to prove finite-time stability. Borlaug et al.
used the adaptive gain super-twisting control approach and the generalized super-twisting
control approach in an articulated intervention autonomous underwater vehicle to perform
trajectory tracking [33]. Experiment results showed that the adaptive gain super-twisting
control approach and the generalized super-twisting control approach have good tracking
performance compared with PID control approach in terms of convergence speed and
steady-state error. Manzanilla et al. combined integral sliding mode control technology
and super-twisting control technology to design a robust sliding mode control method for
the 3D trajectory tracking of underwater vehicle, which significantly attenuated chatter-
ing and verified its robustness against bounded disturbances [34]. González-García et al.
presented a model-free super-twisting control method with finite-time convergence for
AUV trajectory tracking, and compared it with PID control method and conventional
sliding mode control method [35]. The results showed that the model-free super-twisting
algorithm has obvious advantages in steady-state errors and the energy consumption
of actuators. This paper proposes a fast finite-time super-twisting sliding mode control
approach to inherit the advantages of high-order sliding mode, such as strong robustness,
finite time convergence, and weakening chattering. Moreover, compared with the refer-
ences mentioned above, the proposed fast finite-time super-twisting sliding mode control
approach has the following novel aspects. Firstly, a smooth sliding mode reaching law is
designed to effectively weaken chattering, and a fast term is introduced to make the sliding
mode variables converge quickly in finite time. Secondly, the control scheme in this paper
combines the extended observer with the sliding mode control approach. This scheme
not only fully considers the information from the nominal model of the UUV but also
effectively eliminates the uncertainty of the model and eliminate the dependence on the
exact model. The observer can effectively reduce the control gain and further improve
the control performance. Thirdly, the complete proof of fast finite-time convergence of
the control scheme is given. Finally, the control scheme is verified through simulation
and experiment.

In addition, it is generally known that the robustness of sliding mode control to
unknown external disturbances and model uncertainties depends on the control gain.
The increase of the control gain will improve the robustness but will also require a higher
energy consumption, even stimulate the unmodeled characteristics, and affect the control
performance. Therefore, the extended state observer (ESO) technique that can approximate
the unknown disturbances needs to be introduced into the trajectory tracking task to
reduce the control gain and to improve the control performance. Li et al. designed
the ESO to estimate parameter perturbations and external disturbances for the precise
trajectory tracking control problem of UUVs [36]. Wu et al. combined the iterative ESO
with the model-free adaptive control method, and the proposed controller could estimate
and compensate the unknown errors caused by external environmental disturbances [37].
Lamraoui et al. used the generalized ESO and the harmonic ESO to estimate the fast-
varying disturbances caused by waves and ocean currents [19]. Moreover, ESO increases
the bandwidth of the observer to reduce the observation error, speed up the convergence,
and enhance the robustness. However, an excessively high bandwidth will magnify the
effects of high-frequency noise and impair the control performance of the system. Kim
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proposed a sliding mode observer to accelerate convergence for large-amplitude external
disturbances and model uncertainties, and they verified the performance of the control
system through numerical simulation [38]. Nevertheless, a chattering phenomenon still
exists in the observer output and further damages the system stability when directly using
the sliding mode observer. In order to accelerate the observation convergence speed and
improve the observation precision while avoiding the introduction of high-frequency
disturbances and chattering, this paper proposes an extended state higher-order sliding
mode observer.

To sum up, this paper proposes a trajectory tracking control scheme consist of a fast
finite-time super-twisting sliding mode control approach (FSTSMC) and an extended state
higher-order sliding mode observer (ESHSMO) for UUVs with external disturbances and
model uncertainties. The main contributions of this paper are as follows:

(1) A fast finite-time super-twisting sliding mode control approach is proposed for the
UUV trajectory tracking to attenuate chattering and enhance robustness. A linear term is
added to accelerate the convergence when the sliding modulus is far from the sliding mode
surface. The finite-time stabilization property is proved through using Lyapunov function.

(2) By integrating the high-order sliding mode technique into the extended state
observer technique, the ESHSMO is designed to enhance the observation precision, to accel-
erate the convergence speed of observation errors, and to attenuate the observation output
chattering. The finite-time convergence property of the ESHSMO is proved.

(3) Numerical simulation and experiment in the water pool verify that the proposed
scheme shows good trajectory tracking control performance with higher control precision,
smaller chattering, stronger disturbance compensation and faster finite-time convergence.

2. Uuv Modeling and Problem Formulation

The notations and lemmas that will be used in the rest of the paper are listed in
Sections 2.1 and 2.2. The kinematics model, the dynamics model, and the thrust distribution
matrix of UUV are presented next, respectively, in Sections 2.3–2.5.

2.1. Notations

For vector, | f |g = diag
(
| f1|g, . . . , | fn|g

)
, sgn( f ) = [sgn( f1), . . . , sgn( fn)]

T ; where sgn
represents the standard sign function; ⌈ f ⌋g = | f |gsgn( f ). mini=1,...,n( fi) and maxi=1,...,n( fi)
represent the minimum and maximum elements in f , respectively, and ∥ f∥ represents the
Euclidean norm, which can be calculated by ∥ f∥ =

√
f T f . For matrix F, ∥F∥ represents

the Frobenius norm, which can be calculated by ∥F∥ =
√

tr(FT F), λmin(F) and λmax(F)
represent the minimum and maximum eigenvalues, respectively. In×n represents the
identity matrix of order n × n and 0m×n represents the zero matrix of order m × n.

2.2. Lemmas

This section presents the relevant lemmas used in the proof of ESHSMO and FSTSMC.

Lemma 1 (Lyapunov Matrix Equation). If all eigenvalues of matrix Ā have negative real parts,

then for any given symmetric positive definite matrix Λ =

[
Λ1 012×12

012×12 Λ2

]
, there exists a

symmetric positive definite matrix P such that ĀTP + PĀ = −Λ holds.

Lemma 2 ([39]). Consider the following nonlinear system:

ẋ = f (x) (1)

where f (0) = 0, x ∈ Rn, f : U0 → Rn is a continuous function in an open neighborhood U0
containing the origin. Suppose there is a continuous positive definite function V(x) : U0 → Rn,
and there are real numbers c, b > 0, 0 < a < 1 and κ ∈ (0, b), so that the following equation holds:

V̇ ≤ −bV + cVa < 0 (2)
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Then, the system (1) is fast finite time uniformly bounded stable with stability domain

Q =

{
x : V <

( c
κ

) 1
1−a

}
and the convergence time satisfies T(x0) ≤

1
b(1−a) ln

(
bV(x0)

−c
bc/κ−c

)
.

Lemma 3 ([40]). Considering the nonlinear system (1), it is assumed that there is a continuous
positive definite function V(x) : U0 → Rn with real numbers c, b > 0 and 0 < a < 1, and an open
neighborhood Û ⊆ U0 containing the origin, such that the following equation holds:

V̇ ≤ −bV − cVa, x ∈ Û\{0} (3)

Then, the origin of the system (1) is stable in finite time, and the stabilization time T depends on the

initial value x0, such that T(x0) ≤
ln
(

1+ b
c V(x0)

1−a
)

b(1−a) , and if Û = U0 = Rn, the origin of the system
(1) is globally stable in finite time.

Lemma 4 ([40]). Considering the nonlinear system (1), it is assumed that there is a continuous
positive definite function V(x) : U0 → Rn, and there are real numbers b, c, d > 0, 0 < a < 0.5
and κ1 ∈ (0, b), κ2 ∈ (0, c), so that the following equation holds:

V̇ ≤ −bVa − cV + dV
1
2 < 0 (4)

Then, the system (1) is fast finite time uniformly bounded stable with stability domain
Q =

{
x : κ1Va− 1

2 + κ2V
1
2 < d

}
and the convergence time of the system satisfies

T(x0) ≤
1

(c−κ2)1−a) ln

(
(c−κ2)V1−a

(x0)
+b−κ1

b−κ1

)
.

2.3. UUV Kinematics

In order to describe the 6-DOF spatial motion of UUV, the inertial coordinate system
I and the body coordinate system B as shown in Figure 1 are defined. The parameter
symbols in [41] are adopted in this paper, where η = [x, y,z,ϕ,θ,φ]T represents the position
and orientation of UUV in the inertial coordinate system and the body coordinate system;
v = [u, v, w, p, q, r]T represents the linear and angular velocity of UUV in the body coor-
dinate system. Under ideal conditions, the kinematic model of UUV is described by the
following equation:

η̇ = J(η)v (5)

The rotation matrix J(η) describes the velocity transformation between the inertial coor-
dinate system and the body coordinate system. However, when UUV performs its actual
tasks, the velocity of the ocean current fluid may not be negligible. After considering the
influence of ocean current flow field, Equation (6) is modified as:

η̇ = J(η)vr + v f (6)

where vr represents the velocity vector of UUV relative to the fluid motion in the body
coordinate system; v f represents the velocity vector of the ocean current in the inertial
coordinate system. The relationship between ocean current velocity v f , relative velocity vr
of UUV to ocean current and generalized velocity v is described as:

η̇ = J(η)vr + v f

v = vr + vc

v f = J(η)vc

(7)

where vc is the velocity of ocean current in the body coordinate system B. In general, only
the velocity vr of UUV relative to the current can be obtained, while the ocean current
velocity v f is unknown and needs to be compensated or estimated. According to the
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relevant studies on ocean flow [42], the moving velocity and velocity change rate of fluid
need to meet the law of energy conservation, and the moving velocity of fluid will not be
infinite nor will the change rate of velocity. Therefore, the following reasonable assumptions
are made for ocean flow velocity:

Assumption 1. The current velocity v f satisfies the bounded condition
∥∥∥v f

∥∥∥ ≤ k f and k f is a
certain constant.

Assumption 2. The derivative of current velocity v̇ f satisfies the bounded condition
∥∥∥v̇ f

∥∥∥ ≤ kd f

and kd f is a certain constant.

Figure 1. The inertial coordinate system I and the body coordinate system B.

2.4. UUV Dynamics

The dynamic equation of UUV can be expressed as:

Mv̇r + C(vr)vr + D(vr)vr + g(η) = τT + τE (8)

where M represents the inertia matrix, C represents the Coriolis force and centripetal force
matrix, D represents the damping matrix, g represents the restoring force vector, τE repre-
sents the unknown time-varying external disturbance force vector, and τT represents the
control force and torque vector. The above hydrodynamic parameters were calculated and
analyzed in the experiment. When UUV is operated in a real ocean environment, the hy-
drodynamic parameters obtained by the experimental analysis are deviated from the actual
hydrodynamic parameters. It can be seen from the above that it is not practical to establish
a complete and undifferentiated dynamic model at present, and the model uncertainties
need to be compensated. Therefore, the actual value X(·) of the hydrodynamic parameter
can be divided into the known nominal term X0(·) and the unknown uncertain term ∆X(·),
which is expressed as X(·) = X0(·) +∆X(·), X = M, C, D, g. That is, the model uncertainty
vector in UUV dynamics can be expressed as τM = ∆Mv̇r +∆C(vr)vr +∆D(vr)vr +∆g(η).
To sum up, Equation (4) can be rewritten as:

M0v̇r + C0(vr)vr + D0(vr)vr + g0(η) = τT + τD (9)

where τD = τE + τM represents the lumped disturbance vector of the dynamics, including
the model uncertainty term τM and the external disturbance term τE.

Assumption 3. The lumped disturbance τD satisfies the bounded condition ∥τD∥ ≤ kD and kD is
a certain constant.
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Assumption 4. The derivative of lumped disturbance τ̇D satisfies the bounded condition
∥τ̇D∥ ≤ kdD and kdD is a certain constant.

2.5. Thrust Forces Distribution

The power system of the UUV consists of four horizontal thrusters and four vertical
thrusters. The forces generated by the horizontal thrusters drive the UUV for longitudinal,
lateral and course control. The forces generated by the vertical thrusters drive the UUV to
control roll, pitch, and vertical motion. The relationship between the control force/torque
of each degree of freedom and thrust of each thruster is described as follows:

τT = Bu (10)

where u represents the thrust vector generated by each thruster, and B represents the
thrust distribution matrix. Because thrusters can only provide limited thrust, the saturation
nonlinear characteristics of thrusters should be considered in practical application.

2.6. Control Objectives

The first objective of the paper is to design a finite-time convergence observer to
estimate the model uncertainty τM and the external disturbance τD. The next objective is
to design a fast finite-time super-twisting sliding mode control approach to complete the
high-precision trajectory tracking task combined with the observer. The control scheme in
this paper consists of the control approach and the observer.

3. Extended State Higher-Order Sliding Mode Observer

In this section, the extended-state higher-order sliding mode observer is designed
based on the extended state observer technique and the higher-order sliding mode tech-
nique. Meanwhile, the finite time convergence of the extended state higher-order sliding
mode observer is proved.

3.1. Design of ESHSMO

Combined with UUV kinematics and the dynamics model described above, ocean
current velocity vector v f and lumped disturbance vector τD are taken as extended states,
and the extended state space expression of the system can be obtained:[

ẋ1
ẋ2

]
=

[
012×12 I12×12
012×12012×12

][
x1
x2

]
+

[
f1(x1)
012×1

]
+

[
012×1

ẋ2

]
+

[
hu(t)
012×1

]
(11)

In Equation (11), x =
[
xT

1 , xT
2
]T , where x1 =

[
ηT , vT

r
]T is the state vector of the system,

which is the known quantity in the system and can be obtained directly by the sensor. x2 =[
vT

f , τT
MD

]T
is the extended state vector of the system, which belongs to the unknown quan-

tity of the system and needs to be estimated by the observer,

τMD = M−1τD. f1(x1) =
[

J(η)vr,−M−1
0 f (vr, η)

]T
is the known vector of the system,

where f (vr, η) = C0(vr)vr + D0(vr)vr + g0(η).h =
[
06×6, M−1

0

]T
is the known matrix of

the system. u(t) = τT represents the system control input and y represents the system
state output.

Assumption 5. The elements inside the state vector x1, x2 and the matrix function f1(x1) are
bounded. The nonlinear elements in the matrix function f1(x1) all satisfy the Lipschitz condi-
tion, that is, any two independent variables a1 and a2 in the domain of definition must satisfy
∥ f1(a2)− f1(a1)∥ ≤ Lk∥a2 − a1∥, Lk is a constant greater than zero.
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For the uncertainties of ocean current velocity v f and the lumped disturbance τD in
the extended state Equation (11) of the system, the extended state higher-order sliding
mode observer is designed as:[ ˙̂x1

˙̂x2

]
=

[
012×12 I12×12
012×12012×12

][
x̂1
x̂2

]
+

[
f1(x̂1)
012×1

]
+

[
hu(t)
012×1

]
+ L[x1 − x̂1] + Ξ (12)

In Equation (12): x̂ =
[
x̂T

1 , x̂T
2
]T is the state vector of ESHSMO, which represents the es-

timated value of the system state vector x, where x̂1 is the estimated value of x1, and x̂2 is the

estimated value of x2. L =

[
l1 I12×12
l2 I12×12

]
is the observation error feedback gain matrix, where

l1, l2 are specific positive real numbers. Ξ =

[
β1sgn(x1 − x̂1)

β2sgn(x1 − x̂1) + β3
∫ t

0 sgn(x1 − x̂1)dτ

]
is

the observer higher-order sliding mode matrix, where β1, β2 and β3 are specific positive
real numbers.

3.2. Convergence Analysis of ESHSMO

Theorem 1. For the system (11) described above, ESHSMO designed in Equation (12) can realize
the estimation of x =

[
xT

1 , xT
2
]T within a finite time.

Proof. By combining the system extended state Equation (11) and ESHSMO Equation (12),
the estimated error state equation can be obtained:

[
ė1
ė2

]
=

[
−l1 I12×12 I12×12
−l2 I12×12012×12

][
e1
e2

]
+

[
fe1

012×1

]
+

[
012×1

ẋ2

]
−
[

β1sgn(e1)

β2sgn(e1) + β3
∫ t

0 sgn(e1)dτ

]
(13)

where fe1 = f1(x1)− f1(x̂1). For convenience, it can be rewritten as:

ė = Āe + F̄ + D̄ − B̄ (14)

where e =
[
eT

1 , eT
2
]T , Ā =

[
−l1 I12×12 I12×12
−l2 I12×12 012×12

]
, F̄ =

[
fe1

012×1

]
, D̄ =

[
012×1

ẋ2

]
,

B̄ =

[
β1sgn(e1)

β2sgn(e1) + β3
∫ t

0 sgn(e1)dτ

]
. Take l1, l2 so that Ā is the Hurwitz matrix.

The Lyapunov function is designed according to Lemma 1. Firstly, select a diagonal
matrix Λ whose elements are all greater than zero. Then, take the matrix Ā into Lemma 1
and calculate P that satisfies the condition.

P =

[
P11 P12
P21 P22

]
=

[ 1
2 l−1

1 Λ1 +
1
2 l−1

1 l2Λ2 − 1
2 Λ2

− 1
2 Λ2

1
2 l−1

1 l−1
2 Λ1 +

(
1
2 l−1

1 + 1
2 l1l−1

2

)
Λ2

]
(15)

Set the Lyapunov function V0 of ESHSMO as

V0 = eTPe (16)

Its time derivative is
V̇0 = eTPė + ėTPe (17)

Substituting Equation (15) into Equation (17), we can obtain

V̇o = eT
(

PĀ + ĀTP
)

e + 2eTPF̄ + 2eTPD̄ − 2eTPB̄

= −eTΛe + 2eTPF̄ + 2eTPD̄ − 2eTPB̄
(18)
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where
−eTΛe ≤ −λmin(Λ)∥e∥2 (19)

According to the basic inequality 2XTY ≤ 1
ε XTX + εYTY , where ε > 0, X and Y are

matrices of corresponding dimensions, it can be known that

2eTPF̄ ≤ 1
ε

eTPPe + εF̄T F̄ (20)

According to Assumption 5, it can be obtained

FT F = ∥ f1(x1)− f1(x̂1)∥2 ≤ Lk∥x1 − x̂1∥2 ≤ Lk∥e∥2 (21)

Substitute Equation (21) into Equation (20) and obtain

2eTPF̄ ≤
(

1
ε
∥P∥2 + εLk

)
∥e∥2 (22)

According to Assumptions 2 and 4, it can be known that
∥∥∥v̇ f

∥∥∥ ≤ kd f , ∥τ̇MD∥ ≤
∥∥∥M−1

0

∥∥∥
∥τ̇D∥ ≤ kdD

∥∥∥M−1
0

∥∥∥. Thus, ∥D̄∥ ≤
∥∥∥∥∥ kd f

kdD

∥∥∥M−1
0

∥∥∥
∥∥∥∥∥ = MD, then

2eTPD̄ ≤ 2MD∥P∥∥e∥ (23)

Meanwhile, Equation (24) can be obtained:

− 2eTPB̄

= −2
[
eT

1 eT
2
][P11 P12

P21 P22

][
β1sgn(e1)

β2sgn(e1) + β3
∫ t

0 sgn(e1)dτ

]
= −2eT

1 P11β1sgn(e1)− 2eT
2 P21β1sgn(e1)− 2eT

1 P12β2sgn(e1)

− 2eT
2 P22β2sgn(e1)− 2eT

1 P12β3

∫ t

0
sgn(e1)dτ − 2eT

2 P22β3

∫ t

0
sgn(e1)dτ

≤ −2eT
2 P21β1sgn(e1)− 2eT

1 P12β2sgn(e1)− 2eT
2 P22β2sgn(e1)

− 2eT
1 P12β3

∫ t

0
sgn(e1)dτ − 2eT

2 P22β3

∫ t

0
sgn(e1)dτ

=
[
eT

1 eT
2
][ −2P12β2sgn(e1)− 2P12β3

∫ t
0 sgn(e1)dτ

−2P21β1sgn(e1)− 2P22β2sgn(e1)− 2eT
2 P22β3

∫ t
0 sgn(e1)dτ

]

(24)

Define B̄1 =

[
−2P12β2sgn(e1)− 2P12β3

∫ t
0 sgn(e1)dτ

−2P21β1sgn(e1)− 2P22β2sgn(e1)− 2eT
2 P22β3

∫ t
0 sgn(e1)dτ

]
, then

−2eTPB̄ ≤ ∥B1∥∥e∥. To sum up the above, we can obtain the Equation (25)

V̇0 ≤ −λmin(Λ)∥e∥2 +

(
1
ε
∥P∥2 + εLk

)
∥e∥2 + 2MD∥P∥∥e∥+ ∥B1∥∥e∥

=

(
−λmin(Λ) +

1
ε
∥P∥2 + εLk

)
∥e∥2 + (2MD∥P∥+ ∥B1∥)∥e∥

(25)

According to Equation (25), Equation (26) can be obtained

V̇0 ≤ −

(
λmin(Λ)− 1

ε ∥P∥2 − εLk

)
λmax(P)

V0 +
(2MD∥P∥+ ∥B1∥)√

λmin(P)
V0

1
2

= −b0V0 + c0V
1
2

0

(26)
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where b0 =
(λmin(Λ)− 1

ε ∥P∥2−εLk)
λmax(P)

, c0 = (2MD∥P∥+∥B1∥)√
λmin(P)

. According to Lemma 2, it can be

known that the estimated error e converges in the region Q0 =

{
e : V0 <

(
c0
κ0

)2
}

in a

finite time, where κ0 ∈ (0, b0). The convergence time satisfies T0 ≤ 2
b0

ln
(

b0V0(e(0))−c0
b0c0 /κ0−c0

)
,

and e is defined as e(0) at the time t = 0. When V0 <
(

c0
κ0

)2
, the upper bound of error

∥e∥ < ē =
(

c0
κ0

)
/
√

λmin(p) can be obtained. On the basis of the error upper bound ē,
the finite time convergence properties of the error state vectors e1 and e2 are further proved.

For the error state vector e1, the Lyapunov function V1 is designed as:

V1 = eT
1 P11e1 (27)

Its time derivative is

V̇1 = eT
1 P11ė1 + ėT

1 P11e1

= −2l1eT
1 P11e1 + 2eT

1 P11e2 − 2β1eT
1 P11sgn(e1) + 2eT

1 P11 fe1

≤ −2l1λmin(P11)∥e1∥2 + 2ē∥P11∥∥e1∥ − 2β1λmin(P11)∥e1∥+
(

1
ε1
∥P11∥2 + ε1Lk

)
∥e1∥2

= −
(

2l1λmin(P11)−
1
ε1
∥P11∥2 − ε1Lk

)
∥e1∥2 − (2β1λmin(P11)− 2ē∥P11∥)∥e1∥

(28)

where according to Assumption 5, Lk > 0, ε > 0. Equation (28) can be rewritten as:

V̇1 ≤ −
(

2l1λmin(P11)−
1
ε1
∥P11∥2 − ε1Lk

)
∥e1∥2 − (2β1λmin(P11)− 2ē∥P11∥)∥e1∥

≤ −

(
2l1λmin(P11)− 1

ε1
∥P11∥2 − ε1Lk

)
λmax(P11)

V1 −
(2β1λmin(P11)− 2ē∥P11∥)√

λmax(P11)
V

1
2

1

= −b1V1 − c1V
1
2

1

(29)

where b1 =
2l1λmin(P11)− 1

ε1
∥P11∥2−ε1Lk

λmax(P11)
and c1 = 2β1λmin(P11)−2ē∥P11∥√

λmax(P11)
. By Lemma 3, the state er-

ror vector e1 converges to 0 in finite time. And the convergence time satisfies

T1 ≤ 2
b1

ln
(

1 + b1
c1

V1(e1(T0))
1
2
)

, where e1 at t = T0 is defined as e1(T0). The above proves
that ESHSMO can achieve finite time estimation of state vector x1 within t = T0 + T1.

According to the above, when t → (T0 + T1), then lim
t→(T0+T1)

e1 = lim
t→(T0+T1)

ė1 = 0.

The equation of state of the estimated error can be rewritten as:
e2 = β1sgn(e1)

ė2 = −β2sgn(e1)− β3

∫ t

0
sgn(e1)dτ + ẋ2

(30)

Equation (30) is modified as follows:{
ė2 = −µ1e2 + ẋ2 + e3

ė3 = −µ2e2
(31)

where e3 = −β3β−1
1

∫ t
0 e2dτ, µ1 = β2β−1

1 , µ2 = β3β−1
1 . Let e′ =

[
eT

2 eT
3
]T and design the

Lyapunov function as
V2 = e′TP′

1e′ (32)
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where P′
1 =

[(
1
2 µ2

1 + µ2

)
I6×6 − 1

2 µ1 I6×6

− 1
2 µ1 I6×6 I6×6

]
and it is easy to know that P′

1 is a positive

definite matrix. Taking the time derivative of Lyapunov function V2 and substituting it into
Equation (31), we can obtain

V̇2 = −e′TP′
2e′ + ẋT

2 M ′e′

≤ − λmin(P′
2)

λmax
(
P′

1
)V2 +

MD∥M ′∥√
λmin

(
P′

1
)V

1
2

2

= −b2V2 + c2V
1
2

2

(33)

where P′
2 =

[(
µ1µ2 + µ3

1
)

I6×6 −µ2
1 I6×6

−µ2
1 I6×6 µ1 I6×6

]
, M ′ =

[(
2µ2 + µ2

2
)

I6×6 − µ1 I6×6
]
,

b2 =
λmin(P′

2)
λmax(P′

1)
, c2 = MD∥M ′∥√

λmin(P′
1)

and it is easy to know that P′
2 is a positive definite matrix.

By Lemma 2, it can be known that e′ converges to region Q2 =

{
e′ : V2 <

(
c2
κ2

)2
}

in finite

time, where κ2 ∈ (0, b2). The convergence time satisfies T2 ≤ 2
b2

ln

(
b2V2(e′(T0+T1))−c2

b2c2/κ2
−c2

)
, e′

at time t = T0 + T1 is defined as e′(T0 + T1). When V2 <
(

c2
κ2

)2
, the error upper bound

∥e2∥ < ∥e′∥ =
(

c2
κ2

)
/
√

λmin
(
P′

1
)

can be obtained. The above proves that ESHSMO can
realize the finite-time estimation of the state vector x2 within the time t = T0 + T1 + T2; that
is, the estimation errors of the current velocity disturbance v f and the lumped disturbance
τD converge to a certain region. The above completes the proof of Theorem 1.

4. Fast Finite-Time Super-Twisting Sliding Mode Control

In this section, a fast finite-time super-twisting sliding mode control approach is de-
signed on the basis of disturbances and model uncertainties observation from the ESHSMO.
The FSTSMC approach ensures that the UUV can track the target trajectory in a fast manner
and with a high control precision. Meanwhile, the stability analysis of the FSTSMC is also
being conducted.

4.1. Design of FSTSMC

Define the UUV tracking error vector as:

eη = η− ηd (34)

where ηd is the target trajectory vector. The derivative estimate of the tracking error vector
is defined as:

ˆ̇eη = ˆ̇η− η̇d = J(η)vr + v̂ f − η̇d (35)

Design sliding mode vector s as:
s = ˆ̇eη + Ceη (36)

where C is the sliding mode surface parameter matrix, which is the positive definite
diagonal matrix. Substituting Equation (35) into Equation (36), the following can be
obtained

s = J(η)vr + v̂ f − η̇d + C(η− ηd) (37)

Take the time derivative of sliding mode vector s as:

ṡ = J̇(η)vr + J(η)v̇r + ˙̂v f − η̈d + Cη̇− Cη̇d (38)

Substitute Equation (9) into Equation (38) to obtain
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ṡ = J̇(η)vr + J(η)
(
−M−1

0 f (vr, η) + M−1
0 τT + τMD

)
+ ˙̂v f − η̈d + C

(
J(η)vr + v f

)
− Cη̇d (39)

In order to achieve rapid convergence of sliding mode variables and weaken the chatter-
ing phenomenon, the following smooth fast super-twisting sliding mode reaching law
is designed:

ṡ = −
(

K1s
m−1

m + K2s
)
−
∫ t

0

(
K3s

m−2
m + K4s

)
dτ (40)

Substituting Equation (39) into Equation (40), the fast finite-time super-twisting sliding
mode control law based on ESHSMO is designed as:

τT = f (vr, η)− M0τ̂MD − M0 J(η)−1
[

J̇(η)vr + ˙̂v f − η̈d

]
− M0 J(η)−1C

[
J(η)vr − η̇d + v̂ f

]
− M0 J(η)−1

[
K1⌈s⌋

m−1
m + K2s

]
− M0 J(η)−1

∫ t

0

[
K3⌈s⌋

m−2
m + K4s

]
dτ

(41)

where K1, K2 are the sliding mode approach matrix, and K3, K4 are the higher-order sliding
mode approach matrix. They are all the positive definite diagonal matrix. To satisfy the
following proof of stability, −

[
m3K3i
m−1 +

(
4m2 − 4m + 1

)
K2

1i

]
+ m2K3iK4i K2

2i > 0, i = 1, . . . , 6, m > 2.
Since Equation (41) does not directly contain a sign function alone, the control law

is continuous, which effectively weakens chattering of the control output and ensures
the robustness of the system. Meanwhile, when the sliding mode variable is far away
from the sliding mode surface, the convergence rate mainly depends on the linear term
in Equation (41); when the sliding mode variable is close to the sliding mode surface,
the convergence rate mainly depends on the nonlinear term in Equation (41). Therefore,
the control law has a fast convergence rate regardless of whether the sliding mode variable
is far away from the sliding mode surface.

4.2. Stability Analysis of FSTSMC

Theorem 2. For UUV with unknown ocean current and lumped disturbance described by
Equations (6) and (9), the trajectory tracking error will converge in finite time under the ESHSMO
based on Equation (12) and the FSTSMC based on Equation (41).

Proof. By substituting the fast finite-time super-twisting sliding mode control law (41) into
Equation (39),

ṡ = J(η)(τMD − τ̂MD) + C
(

v f − v̂ f

)
−
(

K1⌈s⌋
m−1

m + K2s
)
−
∫ t

0

(
K3⌈s⌋

m−2
m + K4s

)
dτ (42)

Let Γ = J(η)(τMD − τ̂MD) + C
(

v f − v̂ f

)
, according to the ESHSMO observation error

convergence property, it can be known that |Γi|max = max{|Γ1|, . . . , |Γ6|} ≤ Υ, where Υ is
a specific positive real number. Equation (42) can be written as

ṡ = −
(

K1⌈s⌋
m−1

m + K2s
)
−
∫ t

0

(
K3⌈s⌋

m−2
m + K4s

)
dτ + Γ (43)

Equation (43) can be modified as the following second-order nonlinear system:{
ṡ = −K1⌈s⌋

m−1
m − K2s + z

ż = −K3⌈s⌋
m−2

m − K4s + Γ̇
(44)

Let us define the Lyapunov function as

V = ξT ∏∏∏ ξ (45)
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where ξ =

[(
⌈s⌋

m−1
m
)T

, sT , zT
]T

, ∏∏∏ = 1
2

 2m
m−1 K3 + K2

1 K1K2 −K1
K1K2 2K4 + K2

2 −K2
−K1 −K2 2I6×6

, and ∏∏∏ is a

positive definite matrix. Taking the time derivative of the Lyapunov function (45), we can
obtain

V̇ = −ξTΩ∏∏∏1ξ − ξT∏∏∏2ξ + ΓTζξ (46)

where Ω =


|s|−

1
m

|s|−
1
m

|s|−
1
m

, ∏∏∏1 = 1
m

mK1K3 + (m − 1)K3
1 06×6 −(m − 1)K2

1
06×6 mK1K4 + (3m − 1)K1K2

2 −(2m − 1)K1K2
−(m − 1)K2

1 −(2m − 1)K1K2 (m − 1)K1

, ζ =
[
−K1 −K2 2I6×6

],

∏∏∏2 =


K2K3 + 3m−2

m K2
1 K2 06×6 06×6

06×6 K2K4 + K3
2 −K2

2
06×6 −K2

2 K2

. Since m2K3iK4i −
[

m3K3i
m−1 +

(
4m2 − 4m + 1

)
K2

1i

]
K2

2i > 0,

i = 1, . . . , 6 is established, it is easy to obtain ∏∏∏1, ∏∏∏2 as a positive definite matrix. It
can be deduced from the above

V̇ ≤ −λmin(Ω)λmin

(
∏∏∏

1

)
∥ξ∥2 − λmin

(
∏∏∏

2

)
∥ξ∥2 + Υ∥ζ∥∥ξ∥ (47)

From Equation (45), it can be known that

λmin
(
∏∏∏
)
∥ξ∥2 ≤ V ≤ λmax

(
∏∏∏
)
∥ξ∥2 (48)

then

∥ξ∥ ≤ V
1
2

/
λmin

(
∏∏∏
) 1

2 (49)

It can also be deduced that

∥ξ∥ ≥
∥∥∥⌈s⌋

m−1
m

∥∥∥ =
∥∥∥|s|m−1

m

∥∥∥ ≥
√

6[λmin(Ω)]−(m−1) (50)

Combining Equations (49) and (50), it can be deduced that

λmin(Ω) ≥
√

6
1

m−1

[
λmin

(
∏∏∏
) 1

2m−2

/
V

1
2m−2

]
(51)

Substitute Equation (51) into (47) to obtain

V̇ ≤ −
√

6
1

m−1

[
λmin

(
∏∏∏
) 1

2m−2

/
V

1
2m−2

]
λmin

(
∏∏∏

1

)
∥ξ∥2 − λmin

(
∏∏∏

2

)
∥ξ∥2 + Υ∥ζ∥∥ξ∥ (52)

Referring to Lemma 4, Equation (52) can be rewritten as

V ≤ −
√

6
1

m−1 λmin(∏∏∏)
1

2m−2 λmin(∏∏∏1)

λmax(∏∏∏)
V

2m−3
2m−2 − λmin(∏∏∏2)

λmax(∏∏∏)
V +

Υ∥ζ∥
λmin(∏∏∏)

1
2

V
1
2

= −b3Va3 − c3V + d3V
1
2

(53)

where a3 = 2m−3
2m−2 , b3 =

√
6

1
m−1 λmin(∏∏∏)

1
2m−2 λmin(∏∏∏1)

λmax(∏∏∏)
, c3 = λmin(∏∏∏2)

λmax(∏∏∏)
, d3 = Υ∥ζ∥

λmin(∏∏∏)
1
2

. According

to Lemma 4, when b3, c3, d3 > 0, 0 < a3 < 0.5, it can be known that eη converges to the
region Q3 =

{
eη : κ31Va3−

1
2 + κ32V

1
2 < d3

}
in finite time, where κ31 ∈ (0, b3) and κ32 ∈ (0, c3). Then,

the convergence time of the system satisfies T3 ≤ 1
(c3−κ32)(1−a3)

ln
(

(c3−κ32)V(ξ(0))1−a3+b3−κ31
b3−κ31

)
,

and ξ at time t = 0 is defined as ξ(0). It is proved that the control scheme proposed in
this paper can achieve fast finite time tracking of the UUV target trajectory with unknown
ocean currents and external disturbances. Theorem 2 is proved.
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5. Numerical Simulation and Experimental Verification

In this section, the UUV platform is first introduced in Section 5.1. In Sections 5.2
and 5.3, the numerical simulation and the experiment in a water pool were conducted to
compare and analyze the performance of the proposed trajectory tracking control scheme.

5.1. Uuv Platform
The UUV is 3100 mm × 2000 mm × 1800 mm in size and weighs 4187.5 kg. The dynamic

parameters of the UUV are as follows: the center of gravity coordinates rG = [0, 0, 0]T ,
the center of buoyancy coordinates rB = [0, 0,−0.493]T , the moment of inertia matrix
I = diag(2038, 3587,3587), the additional mass matrix MAM = −diag(3261.35, 4664.31,
7471.75, 1664.00, 4118.17, 3708.41), the linear term of damping matrix DL = −diag(3610.00,
2462.99, 4566.59, 9810.00, 5220.90, 5841.54) and the nonlinear term of damping matrix
DN = −diag(952.00|u|, 2442.78|v|, 530.46|w|, 890.00|p|, 1876.00|q|, 2085.52|r|). The structure
of the UUV is shown in Figure 2. It is equipped with four horizontal thrusters and four
vertical thrusters; the spatial distribution is shown in Table 1. The distribution matrix is

B =



c(35◦) c(−35◦) c(145◦)
s(35◦) s(−35◦) s(145◦)
0 0 0
0.185s(35◦) −0.185s(−35◦) 0.185s(145◦)
−0.185c(35◦) −0.185c(−35◦) 0.185c(145◦)
0.960c(35◦) + 1.250s(35◦) −(0.960c(−35◦) + 1.250s(−35◦)) −(0.960c(145◦) + 1.250s(145◦))

c(215◦) 0 0
s(215◦) −s(10◦) −s(−10◦)
0 c(10◦) c(−10◦)
−0.185s(215◦) −(0.875s(10◦) + 0.678c(10◦)) 0.875s(−10◦) + 0.678c(−10◦)
0.185c(215◦) −0.925c(10◦) −0.925c(−10◦)
0.960c(215◦) + 1.250s(215◦) −0.925s(10◦) 0.925s(−10◦)

0 0
−s(10◦) −s(−10◦)
c(10◦) c(−10◦)
−(0.875s(10◦) + 0.678c(10◦)) 0.875s(−10◦) + 0.678c(−10◦)
0.925c(10◦) 0.925c(−10◦)
0.925s(10◦) −0.925s(−10◦)

.

Among them, s represents sin and c represents cos. It is worth noting that the thrust output
range of the thrusters equipped with the UUV is [−3600 N, 3600 N]. The influence of the
saturation nonlinear characteristics has been considered in the simulation.

Figure 2. The structure of the platform. Front view (left), left view (middle) and rear view (right).
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Table 1. Spatial distribution of the UUV thrusters.

Serial Number of the Thrusters Description x y z Angle of Installation

Horizontal thrusters

1 Bow left horizontal thruster 1.250 −0.960 −0.185 35° to axis Ox

2 Bow right horizontal thruster 1.250 0.960 −0.185 −35° to axis Ox

3 Stern left horizontal thruster −1.250 −0.960 −0.185 145° to axis Ox

4 Stern right horizontal thruster −1.250 0.960 −0.185 215° to axis Ox

Vertical thrusters

5 Bow left vertical thruster 0.925 −0.678 −0.875 10° to axis Oz

6 Bow right vertical thruster 0.925 0.678 −0.875 −10° to axis Oz

7 Stern left vertical thruster −0.925 -0.678 −0.875 10° to axis Oz

8 Stern right vertical thruster −0.925 0.678 −0.875 −10° to axis Oz

5.2. Numerical Simulation

Numerical Simulation includes scenario 1 and scenario 2. Simulation scenario 1 is
to verify the performance of FSTSMC. The tracking trajectory in numerical simulation is
set as: 

xd = 5 sin(0.05t)
yd = 5 cos(0.05t)
zd = 0.05t

ϕd = 0

θd = 0

ψd = 0

(54)

The initial position and velocity of UUV are set as η(0) = [−5, 8, 0.5,−2, 2, 2],
v(0) = [0, 0, 0, 0, 0, 0]. The tuning parameters in FSTSMC include m, C, K1, K2, K3 and K4.
Here, m is the exponential power parameter vector of the sliding mode variable, which
mainly affects the approaching speed of the sliding mode variable which is close to the
sliding mode surface. C is the sliding mode surface parameter matrix, which mainly affects
the convergence speed of sliding mode variables on the sliding mode surface. The larger
the above two parameters, the faster the error convergence speed, and the chattering
phenomenon may be more obvious. K1 and K2 are the sliding mode approach matrix
values, which mainly affect the time and speed of sliding mode variables approaching
and moving to the sliding mode surface, and they determine the chattering of the con-
trol output. The larger the parameter, the stronger the system robustness; however, the
more serious the chattering phenomenon may be. K3 and K4 represent the higher-order
sliding mode approach matrix. It can not only ensure the high precision and strong ro-
bustness of sliding mode control but also attenuate the chattering phenomenon. But it
may cause a delay to the system. The parameter tuning procedure is as follows. First
of all, C is usually set as the unit array, and m is set according to the control perfor-
mance requirements. After that, K1 and K2 are tuned so that the sliding mode variables
can quickly move to the sliding mode surface and eventually converge to 0. Finally, in-
troduce K3 and K4, and appropriately reduce the elements in K1 and K2. This can not
only obtain good control performance but also attenuate the chattering phenomenon. Af-
ter comprehensive consideration and tuning, FSTSMC control parameters are tuned as:
m = 3, C = diag(1, 1, 1, 1, 1, 1), K1 = diag(0.5, 0.5, 0.5, 0.5, 0.5, 0.5), K2 = diag(0.01, 0.01, 0.01, 100, 100, 50),
K3 = diag(0.001, 0.001, 0.001, 0.001, 0.001, 0.001), K4 = diag(0.001, 0.001, 0.001, 0.001, 0.001, 0.001).

To further illustrate the trajectory tracking performance of FSTSMC, it will be com-
pared with the super-twisting integral sliding mode control (STISMC) proposed by Man-
zanilla [34]. The simulation results of UUV trajectory tracking based on FSTSMC and
STISMC are shown in Figures 3–5. Meanwhile, the root mean square error, convergence
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time and steady-state error performance indicators are introduced to quantitatively analyze
the trajectory tracking performance, as shown in Table 2.

Figure 3. Trajectory tracking results of FSTSMC and SITSMC. Desired trajectory (black line), FSTSMC
trajectory (red line) and SITSMC trajectory (blue line).

Figure 4. Trajectory tracking error under FSTSMC and SITSMC. FSTSMC trajectory error (red line)
and SITSMC trajectory error (blue line).
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Figure 5. Thruster thrust under FSTSMC and SITSMC. FSTSMC thrust (red line) and SITSMC thrust
(blue line).

Table 2. Quantitative comparison of FSTSMC and SITSMC trajectory tracking simulation results.

Performance Indicators Control Approach x y z ϕ θ ψ

Root mean square error
FSTSMC 0.6570 0.3468 0.0411 0.1013 0.1034 0.1001

STISMC 0.6633 0.3542 0.0429 0.1143 0.1082 0.0840

Convergence time
FSTSMC 8.54 7.36 4.52 2.20 2.38 3.06

STISMC 9.86 8.34 5.00 4.36 3.54 1.74

Steady-state error
FSTSMC 0.0012 −0.00084 −0.00028 2.7 × 10−5 1.6 × 10−6 −0.022

STISMC 0.0012 -0.00086 −0.00028 1.7 × 10−5 −4.5 × 10−5 −0.016

According to Figure 3, both FSTSMC and STISMC can accomplish the 3D trajectory
tracking task. As can be seen from Figure 4, the position error tracking based on FSTSMC
converges faster, the angular error converges more smoothly, and the overshoot is avoided.
This is due to the addition of fast term −M0 J(η)−1

[
K2s +

∫ t
0 K4sdτ

]
in FSTSMC, which

accelerates the convergence speed of sliding mode variables when they are far away from
the sliding mode surface. At the same time, this also makes the process of sliding mode vari-
ables approaching and crossing the sliding mode surface smoother. In addition, FSTSMC
has obtained better performance on attenuating chattering compared with STISMC, as
shown in Figure 5. It also demonstrates that the sliding mode variables in FSTSMC have
a smaller oscillation amplitude when moving along the sliding surface. It can be found
from Table 2 that FSTSMC has smaller root mean square error and shorter convergence
time in degree of freedom x, y, z, ϕ, θ, while STISMC has smaller root mean square error
and shorter convergence time in degree of freedom ψ, which is consistent with the results
described in Figure 4. The steady-state errors obtained by the two approaches have little
difference and are sufficient to meet the requirements of general trajectory tracking tasks.
According to the above simulation results, it can be seen that both FSTSMC and STISMC
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can achieve good trajectory tracking, while FSTSMC contributes better overall performance,
and STISMC performs better in directional control. Moreover, FSTSMC has advantages in
weakening chattering and fast convergence.

In order to further verify the robustness of the FSTSMC method to measurement noise,
Gaussian distribution noise with standard deviation of 0.01 m, 0.1°, 0.01 m/s and 0.1°/s
is added to position measurement and velocity measurement, respectively. The trajectory
tracking simulation with measurement noise is carried out.

As can be seen from Figure 6, FSTSMC shows good robustness and control perfor-
mance for measuring noise. Compared with the control effect of no measurement error,
FSTSMC keeps the trajectory tracking error in a small range and successfully executes the
trajectory tracking task.

Figure 6. Trajectory tracking error under FSTSMC without noise and FSTSMC with noise. The
FSTSMC without noise trajectory error (red line) and FSTSMC with noise trajectory error (black line).

In order to verify the performance of the ESHSMO proposed in this paper on the
external current disturbances and model uncertainties, as well as the control performance
of ESHSMO-FSTSMC, the ocean current velocity v f and the lumped disturbance τD in

simulation scenario 2 are set to v f =
[
0.3 sin(0.05t + π/3), 0.3 sin(0.05t + π/3), 0, 0, 0, 0

]T ,

τD =



1000 cos(0.05t + π/3) sin(0.05t)
1000 cos(0.05t + π/4) cos(0.05t)

1000 cos(0.05t + π/6) sin(0.05t + π/4)
1000 cos(0.05t + π/3) cos(0.05t + π/10)

1000 sin(0.05t) sin(0.05t + π/3)
1000 sin(0.05t + π/3) cos(0.05t)

, respectively. Meanwhile, UUV initial

conditions and control approach parameters remain unchanged from simulation scenario 1.
The tuning parameters in ESHSMO include l1, l2, β1, β2, β3. l1 and l2 are the observation
error feedback gain parameters, which determine the convergence of observation error.
The larger the parameter, the faster the convergence speed. But it is easy to introduce
high-frequency interference and even destroy the stability of the system. β1, β2, and β3
are observer higher-order sliding mode parameters, which can accelerate the convergence
of observation errors and improve the robustness of the observer. The parameter tuning
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procedure is as follows. Firstly, l1 and l2 are set to relatively large values so that the ob-
servation error can quickly and stably converge. After that, introducing β1, β2, and β3
and appropriately reducing l1 and l2 ensures good observation performance. After compre-
hensive consideration and tuning, ESHSMO parameters are set as: l1 = 10, l2 = 1, β1 = 2,
β2 = 20, β3 = 10.

The fast finite-time extended state observer (FFTESO) proposed by Ali [1] is intro-
duced and combined with FSTSMC with the same parameters to compare and verify the
observation performance of ESHSMO. Simulation results of trajectory tracking of UUV
based on ESHSMO-FSTSMC and FFTESO-FSTSMC are shown in Figures 7–11.

Figure 7. Trajectory tracking results of ESHSMO-FSTSMC and FFTESO-FSTSMC. Desired trajectory
(black line), ESHSMO-FSTSMC trajectory (red line) and ESHSMO-SITSMC trajectory (blue line).

Figure 8. Observation error of ocean current velocity under ESHSMO-FSTSMC and FFTESO-FSTSMC.
ESHSMO-FSTSMC observation error of ocean current velocity (red line) and FFTESO-FSTSMC
observation error of ocean current velocity (blue line). Moreover, note that the six degrees of
freedom for surge, sway, heave, roll, pitch, and yaw are represented by the letters X, Y, Z, K, M, and
N, respectively.



Drones 2024, 8, 41 19 of 27

Figure 9. Observation error of lumped disturbance under ESHSMO-FSTSMC and FFTESO-FSTSMC.
ESHSMO-FSTSMC observation error of lumped disturbance (red line) and FFTESO-FSTSMC observa-
tion error of lumped disturbance (blue line). Moreover, note that the six degrees of freedom for surge,
sway, heave, roll, pitch, and yaw are represented by the letters X, Y, Z, K, M, and N, respectively.

Figure 10. Trajectory tracking error under ESHSMO-FSTSMC and FFTESO-FSTSMC. ESHSMO-
FSTSMC trajectory error (red line) and FTESO-FSTSMC trajectory error (blue line).



Drones 2024, 8, 41 20 of 27

Figure 11. Thruster thrust under ESHSMO-FSTSMC and FFTESO-FSTSMC. ESHSMO-FSTSMC
thruster (red line) and FTESO-FSTSMC thruster (blue line).

In Table 3, performance indicators including the root mean square error of lumped
disturbance observation, root mean square error of ocean current velocity, root mean
square error of trajectory tracking, observation convergence time and steady-state error
are introduced to make a more detailed and accurate quantitative comparison between the
ESHSMO-FSTSMC and FFTESO-FSTSMC.

Table 3. Quantitative comparison of ESHSMO-FSTSMC and FFTESO-FSTSMC trajectory tracking
simulation results.

Performance Indicators Control Scheme x y z ϕ θ ψ

Root mean square error of
lumped disturbance observation

ESHSMO-FSTSMC 0.0066 0.0066 4.6 × 10−5 1.1 × 10−4 2.3 × 10−5 1.2 × 10−4

FFTESO-FSTSMC 0.0094 0.0093 1.5 × 10−4 6.0 × 10−4 6.2 × 10−5 5.3 × 10−4

Root mean square error of
ocean current velocity observation

ESHSMO-FSTSMC 7.9 × 10−4 0.0023 0.0014 0.0035 8.9 × 10−4 0.0031

FFTESO-FSTSMC 7.4 × 10−4 0.0026 0.0016 0.0042 5.4 × 10−4 0.0039

Root mean square error of
trajectory tracking

ESHSMO-FSTSMC 0.6417 0.4050 0.0440 0.0686 0.0926 0.0984

FFTESO-FSTSMC 0.6427 0.4075 0.0447 0.0958 0.1047 0.0975

Convergence time
ESHSMO-FSTSMC 8.76 8.22 5.34 4.78 4.82 4.32

FFTESO-FSTSMC 8.78 8.26 5.40 5.18 5.00 4.36

Steady-state error ESHSMO-FSTSMC 0.00112 −0.00091 −0.00027 0.00024 −7.2 × 10−5 −0.019

FFTESO-FSTSMC 0.00112 −0.00141 −0.00027 −0.00092 0.00073 −0.021



Drones 2024, 8, 41 21 of 27

The model mismatch caused by external disturbances and model uncertainties needs
to increase the control gain to improve the robustness of the controller. This is usually detri-
mental to the overall control effect, such as causing excessive energy consumption, reducing
stability margin, and even stimulating unmodeled characteristics. Therefore, the observer
becomes an important part of the control scheme in the model mismatched system. From
Figure 7, it is easy to know that both ESHSMO-FSTSMC and FFTESO-FSTSMC can suc-
cessfully achieve 3D trajectory tracking with good robustness in the presence of current
velocity disturbance and lumped disturbance. Figures 8 and 9 reflect that both ESHSMO
and FFTESO can accurately approximate the disturbance with ESHSMO having a smoother
observation effect and almost no chattering phenomenon due to the existence of higher-
order sliding mode term Ξ. It can be found from Figure 10 that both ESHSMO-FSTSMC and
FFTESO-FSTSMC have good trajectory tracking control performance, while a smaller oscil-
lation amplitude can be obtained using ESHSMO-FSTSMC. In the case of the same control
approach, this is because the observer has a more accurate and smooth observation curve.
In Figure 11, it is easy to find that the thrust curve of ESHSMO-FSTSMC is smoother in the
initial phase of trajectory tracking, while the chattering phenomenon is further suppressed
in the stable stage of trajectory tracking. These phenomena indicate that the introduction of
the sliding mode term can effectively enhance the robustness of the observer and suppress
the high-frequency interference caused by high bandwidth. The above results show that
ESHSMO-FSTSMC is more suitable with the output requirements of the thruster under
the practical conditions. Table 3 compares quantitatively the control effects of ESHSMO-
FSTSMC and FFTESO-FSTSMC, and ESHSMO-FSTSMC has a smaller root mean square
error of lumped disturbance observation and ocean current velocity observation in the
largest number of degrees of freedom. In general, ESHSMO-FSTSMC has a slight advantage
in the root mean square error of trajectory tracking, convergence time and steady-state error.
Based on the above simulation results, both ESHSMO-FSTSMC and FFTESO-FSTSMC
achieve good trajectory tracking control performance under ocean velocity disturbance and
lumped disturbance, and ESHSMO has achieved better results in chattering suppression,
observation accuracy and convergence time. It is worth mentioning that ESHSMO-FSTSMC
has a smoother thrust output, which is more suitable for the application requirements
of UUV.

5.3. Experimental Verification

In order to further verify the feasibility of the trajectory tracking control scheme
proposed in this paper, two sets of experiments have been conducted in a water pool:
namely, the directional control and depth control experiment without external disturbances
and the positioning control experiment with external disturbances. The UUV, the water
pool and the control panel of the current generation system are shown in Figure 12.

In the directional control and depth control experiment, the initial heading is 316°,
the target heading angle is set to 300°, the initial depth is 1.86 m, and the target depth
is set to 2.86 m. The experiment results are shown in Figure 13. It can be seen that the
steady-state error of directional control is less than 0.02°, and the steady-state error of
depth control is less than 0.025 m, which indicates that the control scheme proposed in this
paper can realize the high-precision control of UUV. In addition, the experiment verifies
that the higher-order sliding mode technique in the control scheme can effectively weaken
chattering and satisify the limitations of UUV thruster.
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(a)

(b)

Figure 12. The UUV, the water pool and the control panel of the current generation system. (a) The
UUV. (b) The water pool and the control panel of the current generation system.
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Figure 13. The directional control (upper) and depth control (bottom) experiment result.

In the positioning control experiment, the experiment pool is equipped with the
current generation system, which can form a horizontal uniform current field, as shown in
Figure 12. The current velocity can be adjusted by setting the system rotation frequency.
During the experiment, the rotation frequency of the system is set to 30 Hz, generating a
current of approximately 0.35 m/s. The detailed positioning experiment setup is shown in
Figure 14. A fixed QR code with a side length of 15 cm is placed in the pool as a set point
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for positioning control. At the same time, the inertial coordinate I is set at this point, where
the x direction of the inertial coordinate system I is the same as the direction of the current.
The UUV equipped with optical positioning equipment is set to move to the set point in
the horizontal plane and remain in this position for a certain time. The positioning control
results are shown in Figures 15 and 16. Due to the high-precision characteristics of the
super-twisting sliding mode, the proposed control scheme has achieved good positioning
performance with the steady-state error of the x direction and the steady-state error of the y
direction as 0.05 m and 0.048 m, respectively. The observation steady-state errors of x, u, y
and v in the system state vector x1 of Equation (11) can all converge accurately. According
to the proof of Equation (26), it can be found that as long as the observer can achieve
effective estimation of x1, it also can achieve effective estimation of current velocity and
lumped disturbance. Among them, the current velocity observation û f in the x direction
basically fluctuates between 0.25 and 0.4 m/s, with a mean of 0.3133 m/s, and the mean
of the lumped disturbance observation τ̂D is 270.5 N. The mean of the current velocity
disturbance v̂ f in the y direction is −0.1151 m/s, and the mean of the lumped disturbance
observation τ̂D is −12.38 N. The relative error between the current velocity observation û f
and the velocity of the generated current in the x direction is 10.49%. This indicates that
ESHSMO has achieved good observation results in practical applications. In summary, the
ESHSMO-FSTSMC control scheme proposed in this paper can effectively deal with external
disturbances in the real scene, and it has good control performance and strong robustness.

UUV

Y

X

  Fixed QR Code

Current

Figure 14. The positioning experiment setup.
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Figure 15. The x direction positioning control experiment result. Position, position observation
and position observation error (upper), velocity, velocity observation and velocity observation error
(middle), current velocity observation and lumped disturbance observation (bottom).

Figure 16. The y direction positioning control experiment result. Position, position observation
and position observation error (upper), velocity, velocity observation and velocity observation error
(middle), current velocity observation and lumped disturbance observation (bottom).
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6. Conclusions

In this paper, a trajectory tracking control scheme including a fast finite-time super-
twisting sliding mode control approach and an extended state higher-order sliding mode
observer for UUVs is proposed and proven in detail. The numerical simulation and ex-
periment verify that the proposed control scheme can effectively compensate the external
disturbances and the model uncertainties, and it can attenuate the chattering of the control
output and successfully control the UUV to perform the high-precision trajectory tracking
task. Compared with STISMC, the addition of the fast term in FSTSMC provides advan-
tages in tracking performance, chattering suppression and convergence speed. By using the
higher-order sliding mode term, ESHSMO can further attenuate chattering compared with
FFTESO, and more quickly and accurately estimate external disturbances and model un-
certainties. In general, ESHSMO-FSTSMC successfully achieves the high control precision,
the smaller chattering, the disturbance compensation and the fast finite-time convergence
in UUV trajectory tracking. The future research and validation will focus on the adap-
tive tuning of control parameters and ocean experimental verification of the proposed
control scheme.
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