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Abstract: The open nature of the wireless channel makes the drone communication vulnerable to
adverse spoofing attacks, and the radio frequency fingerprint (RFF) identification is promising in
effectively safeguarding the access security for drones. Since drones are constantly flying in the three
dimensional aerial space, the unique RFF identification problem emerges in drone communication
that the effective extraction and identification of RFF suffer from the time-varying channel effects and
unavoidable jitterings due to the constant flight. To tackle this issue, we propose augmenting the
training RFF dataset by regenerating the drone channel characteristics and compensate the fractional
frequency offset. The proposed method estimates the Rician K value of the channel and curve-fits the
statistical distribution, the Rician channels are regenerated using the sinusoidal superposition method.
Then, a probabilistic switching channel is also set up to introduce the Rayleigh channel effects into
the training dataset. The proposed method effectively addresses the unilateral channel effects in
the training dataset and achieves the balanced channel effect distribution. Consequently, the pre-
trained model can extract channel-robust RFF features in drone air-ground channels. In addition, by
compensating the fractional frequency offset, the proposed method removes the unstable frequency
components and retains the stable integer frequency offset. Then, the stable frequency offset features
that are robust to environmental changes can be extracted. The proposed method achieves an average
classification accuracy of 97% under spatial and temporal varying conditions.

Keywords: drone communications; physical-layer security; radio frequency fingerprint

1. Introduction

In recent years, the civilian drone market has experienced rapid growth, making
effective drone identity authentication processes crucial for drone regulation. Compared
to more mature wireless solutions for other traditional internet of things (IoT) devices,
such as Wi-Fi, Bluetooth, and ZigBee, drone wireless network communication typically
provides fewer built-in security modules due to platform energy constraints. This makes
their wireless air interfaces highly susceptible to malicious attacks from third parties. As a
result, the effective authentication of drones from the ground stations plays key roles in
drone communications.

1.1. Physical-Layer Radio Frequency Fingerprinting

The traditional high-layer identity authentication is based on the ciphers for identifying
the legacy of unknown nodes. This process often assumes a trusted initial key distribution
phase and typically only guarantees computational security, which requires a certain
amount of computing power and time to crack the ciphers, and both parties’ keys need
to be updated regularly. However, drone platforms have the common characteristic of
extremely scarce energy and computing resources in mobile embedded systems, and their
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limited energy is mainly allocated to motors, Micro Controller Units (MCU), and radio
frequency units. MCU is generally responsible for real-time processing tasks, such as image
recognition and route planning, and it is difficult to bear the additional computational
overhead brought by high-layer security protocols. Limited by the openness and flexibility
of wireless networks, traditional high-layer security protocols are relatively vulnerable [1].

For the vulnerability of identity authentication in high-layer network protocols,
physical-layer security has received considerable attentions in recent years. As an al-
ternative to the vulnerability of identity authentication processes in higher-layer network
protocols to man-in-the-middle attacks, Radio Frequency fingerprinting (RFF) technology
has recently gained popularity as a physical layer identity authentication technique. RFF,
derived from the inherent tolerances of internal components within the transmitter, is
difficult to clone. Identity authentication technology based on RFF can provide enhanced
security during the access phase of drone communications. RFF is advantageous in re-
source constrained platforms such as drones, reducing reliance on computing resources and
providing stronger wireless security. Considering the unique operational environments
and market demands of drones, promoting the application of RFF technology on drone
platforms is of significant practical importance.

As a novel physical layer identity authentication method, RFF was first proposed by
Canadian scholars Hall et al. [2]. The core of this technology is to extract unique hardware
features generated by manufacturing errors or aging factors within the transmitter, includ-
ing frequency offset and phase noise of crystal oscillators, DC offset of digital to analog
converters, IQ offset of mixers, the nonlinear characteristics of power amplifiers and the
frequency response errors of various filters. RFF technology aims to extract these stable
features from the transmitter hardware circuit at the receiving end. The hardware features
of the receiver will also affect the wireless signal, and the extracted RFF features are the
combination of hardware features of the transmitter and receiver. Generally, candidate
features that can be used as RFF should have the following properties:

(1) Uniqueness. Uniqueness is the most fundamental property that ensures the use of
RFF for identity authentication. Different manufacturers usually extract RFF with
high discriminability due to differences in manufacturing processes or procedures.
Equipments from the same manufacturer are of small hardware differences, but
generally have distinguishability [3].

(2) Universality. Although there are various hardware and signal modulation meth-
ods available in the current market, signals emitted from all devices should have
extractable RFF features.

(3) Robustness. Factors including temperature, humidity, voltage, channel environment,
distance between transmitting and receiving devices, and signal polarization can
affect the effectiveness of RFF. The RFF system must remain stable under various
factors and have robustness.

(4) Short term invariance. Hardware aging can cause changes in hardware tolerances,
resulting in RFF extracted each time in the database have certain differences, and it is
necessary to ensure that the extracted RFF remain unchanged for a period of time.

1.2. Literature Review

The unpermitted flying of drones may pose a significant threat to military battlefields
or social infrastructure. Therefore, ground stations pose great importance to the identifica-
tion and early warning of illegal drones in sensitive airspace. For the above application
scenarios, some researchers have attempted to use image or audio data to achieve the goal
of detecting and recognizing drones. Chalmers et al. [4] proposed that within the restricted
airspace of civil airports, high-resolution panoramic cameras can be installed to achieve
global perception of the area and detect and identify micro air vehicles, including drones.
This method mainly targets at the unpermitted flying events of small or micro aircraft.
Researchers have constructed a drone video dataset captured from a special perspective and
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combined it with convolutional neural networks and optical flow localization technology
to analyze object motion patterns.

Yoo et al. [5] attempted to extract features from the sound waves generated by the
high-frequency rotation of motors on quadcopters. Researchers constructed audio sample
datasets for over ten unmanned institutions and used LeNet neural network models for
classification. The classification accuracy of over ten types of drones reached 95% in the
experimental environment. Similar to image classification, achieving drone classification by
analyzing the audio information generated by the high-frequency rotation of motors also
faces many difficulties in real-world applications. First, there is a strong attenuation in the
propagation of sound waves, and some environmental background sounds can mask the
sound emitted by the drone itself. Second, such methods will also face the same challenges
as drone image classification, namely poor classification performance for the same model
of drone.

The above two methods of using drone image and sound features to classify drones
will face great instability in practical applications and cannot meet the requirements of high
accuracy and reliability for classifying drones of the same model. The uniqueness of RFF
makes it possible to distinguish devices of the same model, and classifying drones through
RFF has broad prospects. Ground station can extract device RFF and compare them with
the stored RFF in the backend database, achieving identification and early warning of
illegal intrusion of drones.

In addition, the Micro Air Vehicle Link (MAVLink) is currently the most commonly
used protocol for communication between drones and ground stations, as well as between
drones. Kunze et al. [6] have demonstrated that the security of the MAVLink protocol is
currently at a low level, indicating that the high real-time and lightweight characteristics of
the MAVLink protocol are achieved by sacrificing communication security. Researchers
used universal software radio peripheral as a third-party ground station, and through
reverse analysis of the application layer MAVLink protocol and physical layer frame format,
ultimately achieved eavesdropping and drone hijacking of the MAVLink communication
link between drones and ground station at a lower cost.

1.3. Contributions and Novelty

Current research on RFF primarily focuses on low-mobility IoT devices, with experi-
ments typically conducted in indoor stationary or low-speed scenarios. Few studies have
addressed RFF extraction on high-speed platforms such as drones. In RFF identification,
channel fading and device frequency offset are critical factors affecting identification and
authentication accuracy. The RFF identification for drone platforms faces more severe
challenges due to the time-varying channel fadings. The overall frequency offset of drones
is also more complex, typically involving additional Doppler shifts and frequency fluctu-
ations caused by factors such as body vibrations, as well as oscillator frequency offsets.
Therefore, designing robust RFF extraction methods that can avoid wireless channel fadings
and accurately compensate drone frequency offsets is crucial for RFF in drone communica-
tions. Different from the existing studies that mainly focus on RFF on indoor stationary or
low-speed nodes, this work studies the drone RFF technology taking high mobility into
account. To avoid the adverse strong time-varying channel effects, a data augmentation
method based on air-ground channel reconstruction is proposed, enhancing the robustness
on drone flight state datasets by improving the distribution of channel effects in the training
dataset. To mitigate the adverse impacts of drone frequency offset on RFF extraction, a
fractional frequency offset compensation method is proposed, effectively suppressing the
fractional frequency offset while reasonably preserving the integer frequency offset. To the
best of the authors’ knowledge, this is the first work that studies the drone RFF by propos-
ing channel regeneration data augmentation and fractional frequency offset compensation.
The main contributions of this work are as follows:

(1) Proposed a Data Augmentation Method Based on Drone Air-Ground Channel Gener-
ation: This method first measures the Rician fading factor in the target deployment
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environment using the method of moments and fits a probability density curve to the
distribution obtained. This curve is then used to randomly generate Rician factors in
the data augmentation process, simulating Rician channels based on the sinusoidal
superposition method. A probabilistic switching channel is also set up to introduce
some Rayleigh channel effects into the training set. This method effectively addresses
the overly uniform channel effects in the training set, achieving a balanced channel
effect distribution. Consequently, the pre-trained model can extract channel-robust
RFF features in drone air-ground channels. This data augmentation method simplifies
the registration process for drones in the RFF system, completing registration in about
two minutes in an indoor experimental environment.

(2) Proposed a Fractional Frequency Offset Compensation Method for Drones: This paper
analyzes the composition of the overall frequency offset in drones, which includes
oscillator frequency offset, flight Doppler shift, and frequency fluctuations caused by
airframe vibrations. By compensating for the fractional frequency offset, the method
removes the easily affected part of the frequency offset while retaining the stable
integer frequency offset over long periods. This allows the neural network’s feature
extraction layer to learn stable frequency offset features that are robust to environmen-
tal changes. Compared to traditional methods that either retain or completely remove
frequency offset features, this method achieved an average classification accuracy of
97% in stationary state tests under varying spatiotemporal conditions.

(3) Experimental Design Incorporating Drone Mobility: The experiments in this thesis
consider not only the stationary state, as in traditional IoT RFF extraction research,
but also the hovering and moving states of drones. The data collection for these test
environments spans significant temporal and spatial dimensions, effectively assessing
the stability and reliability of the proposed methods. A deep neural network model
incorporating residual blocks and channel attention mechanisms is designed for fea-
ture extraction and classification of drone signals. The use of residual blocks alleviates
the problems of gradient vanishing and explosion during training, while the channel
attention mechanism enhances the model’s focus on transmitter hardware characteris-
tics. Additionally, to verify the importance of the K-factor generation strategy in the
proposed data augmentation method, comparisons with the typical uniform distribu-
tion K-factor generation strategy were conducted. For the proposed frequency offset
handling method, comparisons with two common traditional methods—complete
retention and complete removal of frequency offset—were also made. Experimental
results show that the proposed RFF extraction method for drone platforms improves
classification accuracy by up to 33% in drone flight states (speed 8–12 m/s) compared
to noise-only augmentation methods.

2. System Model

The Sikradio radio frequency (RF) module, as a low-power communication module,
uses a communication protocol belonging to IEEE 802.15.4 g. The detailed physical layer
signal format is shown in Figure 1. The preamble field used for frame synchronization
is the part used for RFF extraction. The preamble field provides a good prerequisite for
subsequent RFF extraction due to the transmission of fixed and regular data bits.

Drones 2024, 8, x FOR PEER REVIEW 4 of 20 
 

(1) Proposed a Data Augmentation Method Based on Drone Air-Ground Channel Genera-
tion: This method first measures the Rician fading factor in the target deployment envi-
ronment using the method of moments and fits a probability density curve to the distri-
bution obtained. This curve is then used to randomly generate Rician factors in the data 
augmentation process, simulating Rician channels based on the sinusoidal superposition 
method. A probabilistic switching channel is also set up to introduce some Rayleigh 
channel effects into the training set. This method effectively addresses the overly uniform 
channel effects in the training set, achieving a balanced channel effect distribution. Con-
sequently, the pre-trained model can extract channel-robust RFF features in drone air-
ground channels. This data augmentation method simplifies the registration process for 
drones in the RFF system, completing registration in about two minutes in an indoor 
experimental environment. 

(2) Proposed a Fractional Frequency Offset Compensation Method for Drones: This paper 
analyzes the composition of the overall frequency offset in drones, which includes oscil-
lator frequency offset, flight Doppler shift, and frequency fluctuations caused by airframe 
vibrations. By compensating for the fractional frequency offset, the method removes the 
easily affected part of the frequency offset while retaining the stable integer frequency 
offset over long periods. This allows the neural network’s feature extraction layer to learn 
stable frequency offset features that are robust to environmental changes. Compared to 
traditional methods that either retain or completely remove frequency offset features, this 
method achieved an average classification accuracy of 97% in stationary state tests under 
varying spatiotemporal conditions.  

(3) Experimental Design Incorporating Drone Mobility: The experiments in this thesis con-
sider not only the stationary state, as in traditional IoT RFF extraction research, but also 
the hovering and moving states of drones. The data collection for these test environments 
spans significant temporal and spatial dimensions, effectively assessing the stability and 
reliability of the proposed methods. A deep neural network model incorporating resid-
ual blocks and channel attention mechanisms is designed for feature extraction and clas-
sification of drone signals. The use of residual blocks alleviates the problems of gradient 
vanishing and explosion during training, while the channel attention mechanism en-
hances the model’s focus on transmitter hardware characteristics. Additionally, to verify 
the importance of the K-factor generation strategy in the proposed data augmentation 
method, comparisons with the typical uniform distribution K-factor generation strategy 
were conducted. For the proposed frequency offset handling method, comparisons with 
two common traditional methods—complete retention and complete removal of fre-
quency offset—were also made. Experimental results show that the proposed RFF ex-
traction method for drone platforms improves classification accuracy by up to 33% in 
drone flight states (speed 8–12 m/s) compared to noise-only augmentation methods. 

2. System Model 
The Sikradio radio frequency (RF) module, as a low-power communication module, uses 

a communication protocol belonging to IEEE 802.15.4 g. The detailed physical layer signal for-
mat is shown in Figure 1. The preamble field used for frame synchronization is the part used 
for RFF extraction. The preamble field provides a good prerequisite for subsequent RFF ex-
traction due to the transmission of fixed and regular data bits. 

 
Figure 1. The physical-layer signal format of drones. Figure 1. The physical-layer signal format of drones.

The extraction of the preamble sequence serves as the subsequent RFF extraction.
The goal of the preprocessing stage is to extract the preamble, including the steps of signal
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frame detection, synchronization, and amplitude normalization. For the detection of the
starting point of a single frame signal from a drone, a sliding window variance calculation
method is adopted while considering time complexity. This method generates two variance
peaks at the beginning and end of a single frame signal, and the tail variance peak needs
to be discarded. Completing this step is equivalent to distinguishing the effective signal
segment from the noise segment and marking the starting position of each frame’s effective
signal. Then, it is necessary to use the repeated structure of the preamble sequence from
the starting position to search for the precise offset of the preamble sequence starting point
compared to the signal frame starting point.

Due to the cross-correlation synchronization operation between the received signal
and the local sequence, it is usually subject to interference from frequency offset and
noise. The preamble sequence specified for PX4 drone 802.15.4 g has a good repetitive
structure, thus the timing synchronization of data frames can adopt an autocorrelation
synchronization strategy that is insensitive to noise and frequency offset [7]. The following
introduces the principle of autocorrelation synchronization. Autocorrelation operation
can be considered as the cross-correlation operation of a signal sequence at two different
time observation points. The more similar the signal sequences at these two time points,
the greater the correlation value. Denote the correlation between two adjacent symbols of
length L, i.e., L samples, in the n-th block as R(n, L, δ), and δ is the offset used to search for
the peak, we have

R(n, L, δ) =
L−1

∑
i=0

x(δ + nL + i)x∗(δ + L + nL + i) (1)

where x denotes the samples.
Denoting the number of symbol repetitions as m in the leading sequence, calculate the

autocorrelation sum of adjacent sampling blocks and search for the peak offset δ. Then, the
autocorrelation peak is calculated as

Rpeak(δ) =
m−1

∑
n=0

R(n, L, δ) (2)

If the peak is successfully found, it will be denoted as 1, representing the starting point
of the leading sequence. After successfully capturing the starting point of the preamble
sequence, it is necessary to normalize the amplitude of the preamble sequence to facilitate
subsequent processing. For each complex sampling point pi = a + bj, I = 1, 2, ..., n in the
leading sequence, using the maximum amplitude normalization method, the normalized
leading sequence p′i is

p′i = pi/max(
∣∣pi
∣∣), i = 1, 2, · · · , n (3)

3. The Proposed Scheme
3.1. Estimating Rician K Factor for Drone Channel

The estimation of the Rician K factor of the received signal is performed using the
second-order moment estimation method [8]. This method is mainly based on the math-
ematical relationship between various order distances. First, the parameter expressions
of second-order and fourth-order distances are derived using probability distribution
functions. Then, the expression of K factor with respect to the order distance is obtained
by solving the two equations simultaneously. Then, the estimated value of K factor can
be obtained by calculating the second-order and fourth-order distances of the received
signal envelope.
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Based on the probability density function (PDF) pξ(x) of the received signal enve-
lope during the Rayleigh fading process, the expressions for each order distance can be
obtained as:

µn = E[xn] =
∫ +∞

0 xn pξ(x)dx

= (σ2)

n
2 e−KΓ

(n
2
+ 1
)

1F1

(n
2
+ 1; 1; K

) (4)

where 1F1(·; ·; ·) is a convergent hypergeometric function, and Γ(·) is a gamma function.
According to (4), it is evident that each step distance is related to the unknown parameters
K and σ. Thus, to solve the parameter K, at least two different order values need to be
calculated. Considering computational complexity, we will use second-order and fourth-
order moments to estimate the value of K. The specific second and fourth order distances are

µ2 = E[x2] = 2σ2 + α2 = 2α2(1 + K)

µ4 = E[x4] = 8σ4 + 8σ2α2 + α4 = 4α4(2 + 4K + K2)
(5)

Define fn,m(K) =
µm

n
µn

m
, and based on (5), we have

f2,4(K) =

(
µ2

2
µ4

)2

=

(
(1 + K)2

(2 + 4K + K2)

)2

(6)

based on which we have

⌢
K =

−2
⌢
µ

2
2 +

⌢
µ 4 −

⌢
µ 2

√
2
⌢
µ

2
2 −

⌢
µ 4

⌢
µ

2
2 −

⌢
µ 4

(7)

The estimated values of the second and fourth order distances obtained from (7) can
be directly estimated from the received signal envelope, that is

µ̂2 = E
[
x2] = 1

N

N−1
∑

i=0
x2

i

µ̂4 = E
[
x4] = 1

N

N−1
∑

i=0
x4

i

(8)

The specific K value estimation process is formulated as shown in Algorithm 1. Finally,
it is necessary to fit the distribution of K obtained during the aforementioned drone uniform
flight to obtain the final probability density curve, and use this curve to drive the random
generation of the Rayleigh channel in the data augmentation module.

Algorithm 1. Estimating Rician factor based on the second and fourth order moments.

Input: The preamble matrix Pb[N], which is the preamble sequence of length N.
Output:K
whilei=1:N do
sum1= Pb[i]2+ sum1
sum2= Pb[i]4+ sum2
end while
⌢
µ 2 = sum1

N
⌢
µ 4 = sum2

N

Calculate
⌢
K according to (7).

Calculate K=10log10
⌢
K .

3.2. Training Dataset Augmentation

The drone training set enhancement module is shown in Figure 2. This module
“Switch 1” is used to select whether to perform this enhancement and retain a certain
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proportion of static state samples in the final enhanced training set. “Switch 2” is used to
select different fading effect models. The different switching branches are mainly used to
ensure that the signal samples of each category in the final enhanced training dataset are
relatively uniform.
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Both Rayleigh and Rician models require at least two colored Gaussian random
processes I(t) and Q(t), which can be generated using filtering or sine wave superposition
methods. The filtering method requires Doppler filtering in the frequency domain and then
converts back to the time domain using the inverse fast Fourier transform. The sine wave
superposition method is used to obtain a finite number of deterministic sine waves, and
the computational complexity of this simulation method is relatively small. Therefore, the
data augmentation module uses the sine wave superposition method to generate colored
Gaussian random processes. Then, we have

hNLOS(t) = I(t) + jQ(t)

I(t) =
1√
N

N
∑

n=1
cos(wdt cos αn + ϕn)

Q(t) =
1√
N

N
∑

n=1
sin(wdt cos αn + ϕn)

αn =
2πn + ϕn

N

(9)

where n = 1, 2, ..., N, and N is the number of sine waves, wd is the arc extension caused by
the maximum Doppler frequency spread, and αn and ϕn are statistically independent and
satisfy a uniform distribution on [−π,π). Adding LOS path component, we have

hRician(t) = I′(t) + jQ′(t)

I′(t) =
√

K
K+1 cos(wdt cos α0 + ϕ0) +

√
1

K+1 I(t)

Q′(t) =
√

K
K+1 sin(wdt cos α0 + ϕ0) +

√
1

K+1 Q(t)

(10)

The final hRician(t) and hNLOS(t) respectively form the Rician and Rayleigh model in
the enhancement module shown in Figure 2, and the stationary drone signal samples
are enhanced.

3.3. Drone Fractional Frequency Offset Compensation

In practical RF transceiver systems, the carrier frequency offset estimation is divided
into two parts: fractional and integer components. This part estimates and compensates
the fractional component. The performance of frequency offset estimation is generally
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represented by mean square error (MSE). If the actual frequency offset is ∆f and the
estimated frequency offset is ∆ f̂ , then MSE is expressed as

MSE =
1
N

N−1

∑
i=0

(
∆ f − ∆ f̂i

)2
(11)

For ease of use, the fractional multiple of the oscillator frequency offset is denoted
as ∆ fc f and the integer multiple is denoted as ∆ fci . Then, the overall frequency offset can
be represented as shown in Figure 3, where fd(t) and fv(t) are the frequency shifts induced
by the Doppler effects and the drone body vibration. If the estimated range of fractional
frequency offset is greater than the maximum variation range of device frequency offset,
compensation for the overall frequency offset variation can be achieved, while leaving a
stable integer frequency offset.
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We first use two consecutive repeated symbols in the time domain for correlation
operation to achieve rough estimation of fractional frequency deviation. After frequency
compensation, we propose to use two repeated blocks with longer time intervals to perform
frequency fine synchronization. When there is a frequency offset ∆f and a phase offset θ,
the two symbol intervals used for frequency offset estimation in the time domain are N
sampling points, which can be expressed as

r1(n) = r(n) = x1(n)ej(2π∆ f nTs+θ) n = 1, 2, . . . , L
r2(n) = r(n + N) = x2(n)ej(2π∆ f (n+N)Ts+θ) n = 1, 2, . . . , L

(12)

The correlation between two symbol sampling blocks in the time domain is calculated as

R(N, L) =
L−1
∑

n=0
r2(n)r∗1(n)

=
L−1
∑

n=0
r(n + N)r∗(n)

=
L−1
∑

n=0
x2(n)ej(2π∆ f (n+N)Ts+θ)x∗1(n)e

−j(2π∆ f nTs+θ)

= ej2π∆ f KTs
L−1
∑

n=0
x2(n)x∗1(n)

= ej2π∆ f NTs
L−1
∑

n=0

∣∣∣∣x1(n)
∣∣∣∣2

(13)

where * represents conjugation operation, and the phase change caused by frequency offset
is angle(R(N,L)) = 2π∆fNTs. Therefore, a rough estimate of the fractional harmonic offset
∆f 1 can be obtained as.

∆ f1 =
angle(R(N, L))

2πNTs
(14)

and where angle(·) is used for angle calculation, which can maximize the range of fractional
frequency offset estimation when the time interval distance between repeated sampling
blocks is minimized. Figure 4 shows the range of fractional frequency offset estimation
at different time intervals, where S1, S2, ..., SN are the leading repeated symbols. When
using S1 and S2 for fractional multiplication bias estimation, due to the shortest interval
between them, it is obvious that they have the largest estimation range. When estimating
the sampling blocks composed of S3 and S4, as well as the sampling blocks composed of S5
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and S6, the distance between them becomes twice that of the adjacent symbol sampling
blocks, resulting in a reduction of the final estimation range to half of the original range.
Due to the range of the phase symbol angle(·) of [−π,π), if adjacent symbol sampling blocks
are used for estimation, the maximum range of fractional frequency offset estimation is
|∆f 1| ≤ 1/2NTs.
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For the compensation of ∆f 1 obtained from the coarse frequency offset estimation, we
use an upward compensation strategy. The compensation process is shown in Figure 5,
which compensates for the fractional multiple bias upwards to align the overall frequency
bias of drones to the nearest integer multiple. Denoting the sampling rate as f s, satisfying
f s = 1/Ts, N is the estimation interval, which is the number of sampling points between the
two symbols in the time domain. Compensating for fractional frequency deviation upwards
means rounding up the integer frequency deviation, the final ∆f’1 to be compensated is

∆ f ′1 =

{
∆ f1 − 1

N fs
, ∆ f1 > 0

∆ f1, ∆ f1 < 0

∆ f ′1 =

{ angle(R(N,L))−2π
2πNTs

, R(N, L) > 0
angle(R(N,L))

2πNTs 1
, R(N, L) < 0

(15)
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Therefore, the compensated preamble sequence is

r′(n) = r(n)e−j2π
1
∆ f ′1

n
fs

= r(n)e−j2π∆ f ′1nTs

= x(n)ej2π(∆ f−∆ f1′ )nTs

(16)

Based on the coarse frequency offset compensation, the residual fractional frequency
offset is already very small. Then, it is necessary to select a larger estimation interval N′

and a larger repeated sampling block length L′ for more accurate fine frequency offset
estimation and compensation, which can be expressed as

f2 =
angle(R(N′, L′))

2πN′Ts
(17)

Similarly, compensating r’(n) yields

r′′(n) = r′(n)e−j2π∆ f2nTs

= x(n)ej2π(∆ f−∆ f ′1−∆ f2)nTs
(18)
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Due to the large time interval selected for the second fine multiple estimation and
the fact that the leading sequence with coarse frequency offset compensation already has
a very small fractional multiple offset, the accuracy of this estimation is relatively high.
Using the method in [9] to analyze the variance of frequency offset estimation, we have

var(∆ f2) =

(
L

2πNB

)2

(
L−1
∑

k=0
n′(k)(r′(k + L))∗

)2

(
L−1
∑

k=0
r′(k)r′(k + L)∗

)2

+

(
L−1
∑

k=0
r′(k)(n′(k + L))∗

)2

(
L−1
∑

k=0
r′(k)r′(k + L)

)2

+

(
L−1
∑

k=0
n′(k)(n′(k + L))∗

)2

(
L−1
∑

k=0
r′(k)r′(k + L)∗

)2

=

[
N

2πL

]2 (1/2σ2
s
)
σ2

n + BKσ2
s
(
1/2σ2

n
)
+ BKσ2

n
(
1/2σ2

n
)

(Lσ2
s )

2

≈ 2
π2 · L · SNR

+
1

π2 · L · (SNR)2

(19)

where n’(k) is the additive noise, and where E
[
|x′(k)|2

]
= σ2

s , E
[
|n′(k)|2

]
= σ2

n ,

SNR = σ2
s /
(
2σ2

n
)
.

4. Experimental Results and Discussions

To verify the effectiveness of the proposed method, indoor drone stationary scenarios,
outdoor drone hovering scenarios, and outdoor drone flight scenarios were evaluated.
The indoor drone stationary scene includes five different spatiotemporal environmen-
tal datasets, mainly examining the effectiveness and reliability of the proposed method
for processing fractional multiples of drones. The outdoor scene includes four different
spatiotemporal environmental datasets, including drone hovering, takeoff and landing,
low-speed flight (2~4 m/s), and high-speed flight (8~12 m/s). The main focus is to examine
the effectiveness of the proposed data augmentation method. In addition, the sampling
rate used for drone signal reception is 1.6 MHz. The total length of the preamble sequence
is 1600 sampling points.

4.1. Experimental Settings

The specific collection locations of each dataset are shown in Figure 6. There are five
sets of signal frames in a stationary state. Among them, the indoor stationary datasets S1, S2,
and S3 were collected in Office 1, and S4 is located in the hallway at the entrance of Office 1,
S5 is collected in Office 2. The number of data frames for each device in S1, S2, S3, and S4
datasets is equal, while the number of data frames for each device in S5 is approximately
equal. Generally, the sending rate of PX4 drones to ground stations is about 700 per minute,
the longest collection process for these stationary datasets is about 7–8 min. Then, the
collection dates of these five datasets span over several months, which can effectively
examine the stability and reliability of the extracted RFF. The specific information regarding
the number of data frames, collection date, and transceiver distance is shown in Table 1.
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Table 1. The dataset obtained under indoor static drone settings.

Dataset Location Distance (m) Dates Frames

S1 Office 1-site 1 0.8 9 March 2023 21,950
S2 Office 1-site 2 1 22 March 2023 18,000
S3 Office 1-site 3 4.5 7 March 2023 30,000
S4 Office 1-site 4 6 2 June 2023 4274
S5 Office 2-site 5 1 8 November 2022 24,000

There are a total of four sets of drone flight state datasets. The dataset M1 was collected
while the drone was hovering at a fixed height of 10 m in the air. It should be noted that the
position of the drone during hovering is not strictly fixed and may be slightly disturbed
due to wind and other factors, resulting in position deviations. As shown in Figure 7, to
test the performance of RFF in vertical or horizontal motion scenarios of drones, an outdoor
square area M2 was used. The dataset M2-1 is collected from the drone taking off from a
stationary state and staying at a fixed height of 10 m for 10 s before landing, during which
the vertical climbing and landing speed is about 1 m/s. The dataset M2-2 was collected
by drone in an irregular flight state at a height of 10 m in the area, with a flight speed of
approximately 2~4 m/s. During this period, the remote control was used to control the
drone flight in the area. Unlike the data link frequency, the control link frequency is set as
2.4 GHz, which will not cause interference to RFF. The dataset M2-3 uses ground stations
for flight route planning, allowing drones to fly in circles within the area at a speed of
approximately 8~12m/s. The number of signal frame samples for each device in datasets
M1 and M2-2 is equal, and the number of samples for each device in datasets M2-1 and
M2-3 is approximately equal. The specific information regarding the number of data frames,
collection date, and transceiver distance is shown in Table 2.

Drones 2024, 8, x FOR PEER REVIEW 12 of 20 
 

Table 1. The dataset obtained under indoor static drone settings. 

Dataset Location Distance (m)  Dates Frames 
S1 Office 1-site 1 0.8 9 March 2023 21,950 
S2 Office 1-site 2 1 22 March 2023 18,000 
S3 Office 1-site 3 4.5 7 March 2023 30,000 
S4 Office 1-site 4 6 2 June 2023 4274 
S5 Office 2-site 5 1 8 November 2022 24,000 

S1

S4

S2
S3

S5

Office 1 Office 2

  
Figure 6. Illustration of indoor experimental setups. 

There are a total of four sets of drone flight state datasets. The dataset M1 was col-
lected while the drone was hovering at a fixed height of 10 m in the air. It should be noted 
that the position of the drone during hovering is not strictly fixed and may be slightly 
disturbed due to wind and other factors, resulting in position deviations. As shown in 
Figure 7, to test the performance of RFF in vertical or horizontal motion scenarios of 
drones, an outdoor square area M2 was used. The dataset M2-1 is collected from the drone 
taking off from a stationary state and staying at a fixed height of 10 m for 10 s before 
landing, during which the vertical climbing and landing speed is about 1 m/s. The dataset 
M2-2 was collected by drone in an irregular flight state at a height of 10 m in the area, with 
a flight speed of approximately 2~4 m/s. During this period, the remote control was used 
to control the drone flight in the area. Unlike the data link frequency, the control link fre-
quency is set as 2.4 GHz, which will not cause interference to RFF. The dataset M2-3 uses 
ground stations for flight route planning, allowing drones to fly in circles within the area at a 
speed of approximately 8~12m/s. The number of signal frame samples for each device in da-
tasets M1 and M2-2 is equal, and the number of samples for each device in datasets M2-1 and 
M2-3 is approximately equal. The specific information regarding the number of data frames, 
collection date, and transceiver distance is shown in Table 2. 

Area M2

USRP

50m

50m

M2-1

M1

 
Figure 7. Illustration of outdoor experimental setups. Figure 7. Illustration of outdoor experimental setups.



Drones 2024, 8, 569 12 of 18

Table 2. The dataset obtained under outdoor hovering and flying drone settings.

Dataset Working States Location Distance (m) Date Frames

M1 10 m hovering M1 14 8 March 2023 3000
M2-1 10 m & landing (1 m/s) M2 30 6 May 2023 1875
M2-2 10 m & flying (2~4 m/s) M2 - 9 May 2023 3000
M2-3 10 m & flying (8~12 m/s) M2 - 11 May 2023 763

The above testing scenarios involve multiple drone flight states. The drone hovering
state test scenario can provide reference for studying the adverse effects caused by the
fluctuation frequency f v(t) caused by drone body vibrations. The reliability of RFF in the
presence of both f v(t) and fd(t) can be studied in the scenarios of vertical and horizontal
motions of drones. In addition, to test the robustness of the proposed RFF method for
drones in time-varying air ground channels, in the horizontal motion scenario, low speed
(2~4 m/s) and high speed (8~12 m/s) were set up. With the above testing scenarios,
rigorous reliability verification can be conducted on the data augmentation method and
fractional frequency offset processing method.

The structure of the neural network model designed is shown in Figure 8. The model
is implemented based on residual blocks and channel attention mechanisms, and uses
LayerNorm regularization in the model. The input of this model is a 3 × 800 I-branch, Q-
branch and phase sequence. The input signal data is processed through a feature extraction
layer, and the output feature vector is input into a fully connected layer for classification.
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Figure 8. The neural network model used for RFF extraction. Figure 8. The neural network model used for RFF extraction.

The model training phase during the experiment was completed on a laptop hardware
platform equipped with RTX 2060 GPU (Nvidia HongKong Holding. Ltd., Hong Kong,
China) and Intel Core i7 9750H CPU (Intel Corporation, Santa Clara, CA, USA). At the same
time, the training uses an Adam optimizer with an initial learning rate of 0.001, and the loss
function uses a cross entropy function. In order to better assist the model in converging
to the optimal solution, a weight decreasing strategy with a value of 0.0001 was adopted
during the training process, and the training set was divided into batches of every 64 signal
frames. After completing training, we use an early stop strategy. When the loss value
remains unchanged for 20 consecutive epochs, terminate the training process and save the
model to prevent overfitting.
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4.2. Experimental Results

In the experiment, the indoor stationary state dataset S1 was used as the benchmark
training set for the model. By adding Gaussian white noise, the training set S1 is subjected
to noise enhancement. It should be noted that if it involves generative channel enhancement
or fractional frequency offset processing, noise enhancement is performed in the final stage
to prevent noise interference with the proposed method. Noise enhancement uses a random
parameter enhancement method with SNR uniformly distributed, and U (10, 50) is set in
the experiment. Finally, the models used are all based on the benchmark training set S1,
and each method will process the benchmark training set S1 accordingly.

4.2.1. Drone Training Dataset Augmentation

In this section, for the sake of convenience, only noise enhancement is referred to as
method 1, the combination of noise enhancement and fractional frequency offset process-
ing is referred to as method 2, and the combination of generative channel enhancement,
fractional frequency offset processing, and noise enhancement is referred to as the RFF
method. In the experiment, the probability of channel switching 1 in the generative channel
data augmentation module is set to 0.2, and the probability of switching 2 is set to 0.1.
Each sample has a probability of 0.2 to skip the channel enhancement channel, and if it
enters the enhancement channel, there is a probability of 0.1 to use the Rayleigh model.
Considering the computational complexity, the number of sine waves in the experimental
sine wave superposition method is set as N = 50.

To compare the proposed K factor generation strategy, a K factor generation method
based on uniform distribution was selected for comparative experiments with the proposed
environmental measurement method, i.e., K∼U(min, max), where min and max are the max-
imum and minimum K values in the deployment environments, respectively. This method
has a low implementation cost and only requires estimation of the maximum and minimum
K factors of the deployment environment.

Figure 9 compares two sets of random parameter generation methods, including the
uniform distribution method and the environmental measurement method. The figure
shows that the generative channel enhancement using uniformly distributed K values
results in slightly weaker average classification performance of the model. In deep learning,
it is required that the distribution pattern of the training set samples be consistent with
that of the test set [10]. This principle ensures that the data samples encountered by the
model during training and testing have the same statistical characteristics, allowing the
model to leverage the experience learned during the training phase. First, using uniformly
distributed K values in the generative channel enhancement method will ultimately result
in the dataset containing a large number of rare samples from real-world environments.
At the same time, there are many severe fading signal samples in the dataset, which in-
creases the complexity of the dataset and makes it difficult for the model to converge [11].
On the contrary, in data augmentation, K values generated based on environmental mea-
surement methods are used to make the channel distribution of the training set more in
line with the actual distribution in the environment, i.e., the training set and the test set
have better consistency in distribution, further enabling the model to demonstrate better
classification performance. Therefore, in this experiment, a K value generation strategy
based on environmental measurement methods was adopted.

As shown in Figure 10, the results on drone hovering state test set M1 indicate that
there is no significant difference in performance among the three methods. This is mainly
because the hovering state of the drone is in a static state, which introduces body vibration
compared to the true static state. But due to the speed of the drone is close to zero, it
will not be affected by the fast fading effect caused by the Doppler effect. Therefore,
the use of data augmentation methods on M1 has limited improvements. On the drone
horizontal motion test sets M2-2 and M2-3, the fast fading channel generated by drone
motion becomes the main problem of RFF, and relying solely on noise enhancement or
fractional frequency offset compensation cannot solve the problem in this scenario. Thus,
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the intervention of the generative channel enhancement method effectively alleviates the
performance degradation problem of the model in fast fading scenarios. Compared to
Method 1, the RFF method improves by 16.5% and 33% on the test sets M2-2 and M2-3,
respectively. Similarly, in the takeoff and landing test set M2-1 for vertical drone movement,
the proposed RFF method improves the performance by 18.26% compared to method 1.
Therefore, the proposed data augmentation method based on the fast fading channel of
drone can make the pre-trained neural network model more robust to the time-varying
channel effects caused by the movement of drones.
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Figure 10. Performance comparisons of different methods for drone flight states.

To demonstrate the improvements of the model’s generalization ability by the data
augmentation module, Figure 11 compares the RFF extraction capabilities of the feature
extraction layers of model Mod1 based on Method 1 and model Mod2 based on the RFF
method for drone, and visualize their ability to extract RFF in dataset M2-1. The sample
length of the drone preamble sequence is 800 sampling points. The feature extraction
layer of this model takes a 3 × 800 matrix composed of I-branch, Q-branch, and phase
information as inputs, and finally outputs a 192 dimensional feature vector. Due to the high
dimensionality of the feature vectors, which is not conducive to visualization operations,
principal component analysis (PCA) is used to reduce the dimensionality of the feature
vectors to three dimensions. Obviously, model Mod1 based on method 1 in Figure 11a is
no longer able to distinguish between drone data transmissions h1, h2, h3, and v2 in the
scenario of drone air ground channels. The RFF of these four devices are highly confused
in the feature space. However, Mod2 based on the RFF method for drone, as shown in
Figure 11b, is still able to perform well in this case and can distinguish RFF of all devices,
achieving a classification accuracy of 95.6%.
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Figure 11. The fingerprint distribution of each device in the feature space of (a) Mod1 with classifica-
tion accuracy of 77.3%, and (b) Mod2 with classification accuracy of 95.6%.

For test set M2-3, due to the fast drone movement speed (8–2 m/s) in the horizontal
flight scenario, the air ground channel effect is the most severe among all test scenarios.
Visualize the relationship between the recognition accuracy of device h2 in the test set and
the K factor. Figure 12 shows the test results of Method 2 and the proposed RFF method,
respectively. “True” is the correct classification, and “False” is the incorrect classification.
Figure 12a shows that when K < 20 dB, Method 2 has a high model misjudgment rate
and cannot reliably extract RFF. On the other hand in Figure 12b, the generative channel
enhancement in the RFF method enables the model to have reliable RFF extraction capability
in low K value scenarios. This is mainly because the generative channel enhancement step
effectively improves the relatively single channel environment in the original training set.
By introducing low K value Rician channels and a small portion of Rayleigh channels,
the model exhibits high generalization ability in the actual drone low K value air ground
channel scenarios.
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In addition, the convergence time of the neural network models on the training dataset
processed by each method is shown in Table 3. Due to the fact that data augmentation
methods essentially increase the diversity and complexity of data samples in the training
dataset, the model requires more training time to achieve convergence and learn RFF
features derived from the transmitter hardware from these complex patterns. In the
experimental environment, a channel unbiased training set for RFF is created, and the
drone can be left indoors for two minutes to complete. The use of the generative channel
enhancement method avoids the endurance limitation problem and the channel distribution
problem of the dataset caused by directly collecting samples from drone flight states.
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Table 3. The convergence time of the training model under different methods.

Methods Training Time

Method 1 5 min 20 s
Method 2 9 min 13 s

Proposed method 22 min 47 s

4.2.2. Drone Fractional Frequency Offset Compensation

In order to test the effectiveness of the proposed fractional frequency offset com-
pensation method, separate tests were conducted on datasets in various static indoor
environments. The static indoor scenario is considered due to evaluating purpose. Due to
the absence of fast fading effects caused by drone mobility in indoor stationary environ-
ments, it can be considered that the environmental channel has a weak impact, and there
are no frequency fluctuations caused by Doppler frequency shift, drone body vibration,
motor rotation, and other factors. The typical relative frequency offset numerical values for
Doppler shift, motor rotation, structural vibrations, temperature are roughly several hun-
dred Hz to several thousand Hz. Therefore, there is no need to perform data augmentation
on the training set S1. In a stationary state, the main influencing factors of RFF recognition
are the frequency deviation changes of the crystal oscillator caused by environmental
temperature or device startup time. To this end, we compare two common traditional
approaches: the traditional method of preserving the complete frequency offset without
processing and the traditional method of removing the complete frequency offset features.
Note that the frequency offset can be estimated including the integer part and the fractional
part. Without any frequency compensation, the signals are referred to as preserving the
complete frequency offset, while the case that removing the complete frequency offset
features refers to removing both the integer part and the fractional part. The experimental
results are shown in Figure 13.
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It can be seen that the traditional methods occasionally achieve the best performance
in the testing environment (dataset S3), but overall they exhibit an unstable phenomenon
and have poorer average performance compared to other methods that deal with frequency
offset. As shown in Figure 14a, the frequency offsets of all devices between dataset S1
and S3 match well, and the frequency offset features can be considered as usable RFF
features between training set S1 and testing set S3. Then, the frequency offset features can
be directly used for classification, the traditional Method 1 theoretically achieves better
performance. As shown in Figure 14b, there is a significant difference in the frequency
offset features between datasets S1 and S4 after power on. The frequency offset feature
components contained in the feature space extracted by traditional Method 1 are considered
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unstable and do not possess the property of becoming RFF features’ short-term invariance.
Although the traditional Method 2 avoids the negative impact of frequency offset caused
by the environment, it also has a classification performance bottleneck due to the lack of
frequency offset features. The proposed method only retains stable integer multiples in
frequency offset to compensate for unstable fractional multiples caused by environmental
factors, leaving behind integer multiples that often symbolize differences between models.
Ultimately, by effectively utilizing frequency offset features, the classification performance
surpasses the upper limit of traditional methods, while the method has stable and reliable
average classification performance.
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Figure 14. The frequency offsets for (a) dataset S1 and dataset S3, (b) dataset S1 and dataset S4.

To demonstrate the effective utilization of frequency offset features by the proposed
fractional frequency offset processing method, Figure 15 compares the RFF extraction
capabilities of the Mod3 model based on traditional Method 1 and the Mod4 model based
on the proposed fractional frequency offset processing method, and visualize their ability to
extract RFF in dataset S4. In Figure 15a, it can be observed that the RFF extracted by devices
h1, h2, and h3 have been confused in the feature space. This is because the frequency offset
characteristics of S4 devices are significantly different from those of S1 devices, which in
turn affects the RFF containing the frequency offset characteristics of drones, causing drift
or even overlap of the RFF of each device in the feature space. In Figure 15b, Mod4 with
fractional frequency offset is suppressed, as it is no longer affected by the interference of
unstable frequency offset factors on RFF, ultimately achieving a classification accuracy
of 97.2%.
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5. Conclusions

We proposed dataset augmentation and fractional frequency offset compensation
based radio frequency fingerprint identification for drone communications in this work.
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The training RFF dataset was augmented by regenerating the drone channel characteristics
and compensate the fractional frequency offset. The proposed method estimates the Rician
K value of the channel and curve-fits the statistical distribution, the Rician channels were
regenerated using the sinusoidal superposition method. Experimental results show that
the proposed method achieves an average classification accuracy of 97% under spatial
and temporal varying conditions. Future research directions include optimization for
complex attack scenarios, real-time improvement of algorithms, and integration with other
security mechanisms.
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