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Abstract: The evaluation of cracks and fissures in bridge structures is essential to ensure the long-term
safety, durability, and functionality of these infrastructures. In this sense, processing grayscale images
and adjusting brightness and contrast levels can improve the visibility of cracks and fissures in
bridge structures. These techniques, complemented by professional expertise and efficient inspection
tools such as Unmanned Aerial Vehicles (UAVs), allow for a comprehensive and accurate structural
integrity assessment. This study used the edge detection technique to analyze photographs obtained
with a low-cost UAV as a means of image capture. This tool was used to reach hard-to-reach areas
where there could be damage, thus making it easier to detect fissures or cracks. To capture the failures,
two case studies, a small bridge and a large bridge, were selected, both located in Concepción City
in southern Chile. During both inspections, cracks were detected that could affect the structure of
the bridges in the future. To analyze these findings, ImageJ software 1.54h was used, which allowed
the length and thickness of the cracks to be measured and evaluated. In addition, to validate the
procedure proposed, real values manually measured on-site were compared with those delivered
by the software analyses, where no statistically significant differences were found. With the method
presented in this study, it was possible to quantify the damage, following the bridge maintenance
standards established by the Ministry of Public Works of Chile, whose inspection criteria can be
applied to other projects worldwide.

Keywords: bridge; fissures; cracks; grayscale-based image processing; edge detection; Unmanned
Aerial Vehicle

1. Introduction

Maintenance can be defined as the necessary set of operations and works so that a
construction site maintains the functional, resistant, and even aesthetic characteristics for
which it was designed and built [1]. This process is divided into three stages: inspection,
evaluation, and maintenance. The inspection stage consists of information collection, visual
detection of the damage, and contrast of what is observed regarding technical references.
The inspection methodology that is currently used contemplates the use of different means
of transport to reach places of difficult access, such as trucks with inspection platforms,
reticulated cabins, and even equipped hanging workers when necessary.

In this sense, it is important to emphasize that although the use of aerial vehicles has
been decreasing in some industries, UAV technologies continue to bring positive impacts
on the government’s responsibilities in terms of infrastructure management, especially
in bridges whose serviceability and reliability are declining and consequently jeopardize
public safety [2]. From this perspective, government agencies in all countries can take
advantage of drones to perform regular inspections of bridges, providing up-to-date data
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for informed decisions and facilitating proactive maintenance planning, rapid emergency
response, risk management, and the development of transparent policies that promote
citizen participation in monitoring and understanding the status of bridges structures.

Among the damages detected in bridges are fissures and cracks, where thickness is
the most important indicator in bridge maintenance; therefore, it is necessary to quan-
tify it accurately [3]. Thickness is a determining factor since it defines the engineering
threshold between a fissure and a crack, which is 5 mm according to the criteria of the
Chilean Ministry of Public Works in its deterioration catalog [4]. To quantify the thickness
accurately, a card containing a thickness ruler in millimeters is used, which utilization
demands to be very close to the inspected element [5]. The evaluation stage requires the
participation of specialized engineers, who will define the causes of the fissures/cracks and
issue the technical specifications for their repair [4]. Finally, in the maintenance stage, the
maintenance team gets ready to repair the damage based on the specifications provided by
the specialists.

In addition, concrete structures under seismic loading consider stress cracking, confine-
ment effect in compression, and cyclic behavior. Constitutive laws of damage mechanics
are usually based on damage variables to describe the axial behavior of concrete in tension
and compression. These variables act as the memory of the material, being able to record
accumulated irreversible damage from which it cannot be recovered [6], where difficulties
in evaluating cracks and fissures in bridge structures are found. Jeong et al. [7] state that
one of the most difficult damages to quantify are cracks, especially under the deck and
in the beams, because these elements are located in places that are difficult to access. The
difficulty of taking measurements increases directly with the structural complexity of the
bridge, especially if its location is in inhospitable places where access by traditional means
is not possible, among other factors. Even though the current solutions partially solve the
access problem, they bring with them adverse effects; for example, the case of the inspection
truck brings issues of traffic cut-off for one of the bridge lanes, generating increased vehicu-
lar congestion while the inspection work is being carried out, lasting even several hours.
Another scenario is the use of equipped hanging workers, which puts those inspecting
under these conditions at risk, making the inspection process more time-consuming and
dangerous. In summary, the current alternatives bring increased operating costs, adverse
effects, and, depending on the bridge, long inspection times.

On the other hand, the advent of the Construction 4.0 concept in the last decade has
brought about a change in the perspective of inspection work, including technologies that
increase efficiency, innovation, and productivity. One of the technologies that make up
the Construction 4.0 concept is robotics [8]. Currently, robotics is being used to inspect
bridges [9] through Unmanned Aerial Vehicles (UAVs) that make aerial coordination, moni-
toring, and real-time inspection possible. Similarly, diverse research has been conducted on
the use of UAVs in the construction and infrastructure ambits, such as progress monitoring,
condition inspections, and safety inspections [10]. In this sense, the ability to capture
high-quality audiovisual material, complemented with damage analysis methods, makes
UAV a good alternative to access difficult-to-reach places, achieving to record damage
through images in a short time.

The inspection results are images that must be processed to improve their quality
and identify the damage they contain. For this task, there are grayscale-based techniques
focused on enhancing the visibility of the image by highlighting fissures through a mod-
ification of brightness and contrast [7]. In general terms, these procedures utilize RGB
images that—after applying some filtering techniques—allow the extraction of new images
in gray tones whose grey-level graphs provide information. On the other hand, to define
the contour of the damage, there is an edge detection technique that uses algorithms in
MATLAB or Python programming language. This technique is characterized by detecting
abrupt changes in image intensity and highlighting them [11]. In this research, the use
of UAVs as a means of transport and visual information channel combined with image
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processing was considered a good alternative for the evaluation of cracks and fissures
in bridges.

To evaluate the techniques mentioned above, two case studies were analyzed: a small
bridge called “Estero Nonguén Bridge” and a large bridge named “Llacolén Bridge”, both
located in Concepción City in southern Chile. The visual inspections were performed with
an unmanned aerial vehicle (UAV), model DJI Mavic 2 Pro. In addition, the ImageJ software
was used for image processing, which contained tools for enhancement using grayscale
and edge detection. Also, image scaling and measurement procedures were considered
based on a pixel-by-pixel basis.

With the measurements, the damages of both bridges were described and classified in
terms of whether they corresponded to fissures or cracks or whether they produced an effect
structurally, and consequently to define their severity according to the Chilean Ministry of
Public Works criteria [4], in addition to determining the possible causes of failure based
on a study of cracks conducted in other researches [12]. With the thickness measurements
along the failure (either a crack or a fissure), the average and maximum thickness were
identified, in addition to constructing Length vs. Thickness graphs to analyze the behavior
of each failure.

Thus, the main aim of this research is to evaluate cracks and fissures in bridges
by applying grayscale techniques and edge detection using UAVs. On the other hand,
the objectives can be classified as (a) to characterize the behavior of a UAV as a bridge
inspection tool concerning the current legal standards, environmental factors, and the
scenario surrounding each bridge to identify limitations in the operability of these aircraft;
(b) to apply grayscale and edge detection techniques for image processing to improve the
visibility and definition of the edges that enclose the cracks and fissures found through
visual inspections on bridges; (c) to identify the damage level of cracks and fissures along
with detailed analyses about their characteristics.

2. Literature Review
2.1. Structural Incidence and Severity of Cracks and Fissures

The severity scale considers minimum, medium, high, and very high categories. The
severity assignment will depend on the structural incidence of the damage and its thickness;
the greater the opening, the higher the severity. Table 1 shows the structural incidence of
fissures (opening less than 5 mm), considering the cause of damage within the bridge with
their general thickness ranges. In the case of cracks, the same classification is used, with
the difference that their opening is greater than 5 mm.

Table 1. Classification of cracks and fissures according to their impact on bridge structural behavior
(adapted from [4]).

Fissures (<5 mm) and Cracks (>5 mm)—Do They Affect Structural Behavior?

Yes Range No Range

At 45◦ in the web of beams or slabs, next to supports, or
due to stresses (compression, bending, or shear) <0.7 mm Due to the settlement of the

side wall of an abutment >0.7 mm

Due to incorrect dimensioning of the element >0.7 mm Due to a lack of coating <0.7 mm
Due to the pushing of one element on another >0.7 mm Due to hydraulic shrinkage <0.7 mm

Note: Range columns only apply in the case of fissures. The thickness of the cracks is greater than 5 mm.

It has to be mentioned that failures that also affect structural performance include
those caused by corrosion of reinforcements, freeze–thaw cycles, and poor construction
workmanship.

2.2. Crack Analysis in Structures

Some researchers have investigated cracks and fissures in concrete structures [12].
Cracks caused by compressive, flexural, or shear stresses are among the most relevant due
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to their structural incidence. They should be constantly inspected to identify when they
appear and take measures on time. This type of failure can be classified as (a) cracks in
a plastic state (caused by errors in construction methods or by a deficiency in the control
of water supplied to the concrete), (b) cracks in a hardened state (caused by volumet-
ric changes due to temperature and humidity or by oxidation of the reinforcing steel),
(c) stress-induced failures (compression, bending, shear or deflection). These failures are
expected to be inspected by UAVs instead of using traditional methods.

2.3. Photography within Damage Inspection

In the inspection stage, the most important type of information is imagery [13]. Pho-
tographs record the damage or environmental conditions in a structure, which can be
analyzed as many times as necessary, zoomed in, or drawn lines. Therefore, they are very
useful for identifying cracks or fissures in bridges, where a camera mounted on a drone
allows for detailed damage identification in difficult-to-access places, for example, under
the deck [14].

To capture a photograph that accurately records the damage in an inspection, the
following factors must be considered:

(a) Image resolution: it depends on the resolution of the camera used. The higher the
resolution, the greater the number of pixels, allowing a much better breakdown of
its content. However, it is important to emphasize that not only the resolution or the
high number of pixels are the relevant factors exclusively, but also the quality of the
camera, the size of the sensor (better APS-C or full frame formats), and indeed the
sensor resolution.

(b) Light presence: to detect damage, the inspection must be carried out with the neces-
sary amount of light since the perception of a camera is not the same as that of the
human eye, where the acquired light provides unique photographic capabilities, such
as the ability to digitally refocus the scene after exposure, extend the depth of field,
and alter the viewpoint and perspective [15].

(c) Camera-element distance: it defines the scale ratio in the image. The scale corre-
sponds to the number of pixels in a unit of length (m, cm, mm, etc.). In scientific
photography, one of the ways to define the scale is based on the known measurement
within the image [16], which can be obtained from plans, inspection sheets, or other
similar sources.

(d) Camera angle: the distortion of measurements is not only determined by the camera
angle but is also characterized by the radial and tangential distortion coefficients,
which define the distortion model of a camera.

Figure 1 shows the perspective distortion effect caused by camera position and how
it affects the perception of the actual measurements [14,16]. For this reason, photographs
aligned to the damage are required to decrease the perspective distortion effect.
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It is important to note that when there is an image with perspective distortion, scale
variations can be observed. Therefore, to avoid these perspective distortions, when taking
a photograph, the drone has to be positioned perpendicularly in front of the element
to be inspected. In this sense, one of the strengths of using drones in the inspection of
remote places (e.g., under a bridge in the middle of a river) is the versatility of this type of
equipment to reach these difficult-to-access places and, in this case, capture photographs by
positioning it completely orthogonal to the inspected element. However, there will always
be some exceptions where the drone cannot be located perpendicularly to the observed
element, in which case the use of photogrammetric processing can be a very valuable tool
to correct this problem.

2.4. Techniques to Improve the Quality of a Grayscale Image

When collecting images, some techniques related to grayscale use and edge detection
have to be considered, which are briefly summarized below.

Grayscale

The purpose of this technique is to convert color images to gray tones to adjust their
contrast [14]. In this sense, according to Jeong et al. [7], there are three ways to improve
the visibility of an image: (a) Image Intensity Adjustment, which allows for extending the
range of tones to the extremes to contrast those areas with an excess of gray; (b) Equalized
Histogram, which modifies the intensity values to achieve a tone histogram similar to the
uniformly distributed histogram or other user-specified distribution, and (c) Adaptative
Equalized Histogram—a mixture of the previous two techniques, which can be applied to
small regions of the image defined as mosaics, by improving the quality of each mosaic and
combining them through bilinear interpolation to eliminate artificially induced boundaries.

2.5. Edge Detection Technique

This technique uses grayscale conversion to detect and highlight sharp intensity
changes in the image [11]. It is based on mathematical sciences using convolution Kernels
composed of matrices to generate vertical and horizontal derivatives of a function f(x),
where the first derivative allows finding the maximum and minimum points, and the
second derivative finds the points where the functions become zero [17,18]. Edge detection
algorithms are divided into Gradient-based and Laplacian methods [19,20], where to detect
edges, the first one uses the first derivative, while the Laplacian method uses the second
derivative [21]. Figure 2 shows the edge changes identified in an image converted to
grayscale with the first and second derivatives.
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3. Research Method

This research aimed to evaluate the grayscale enhancement techniques and the edge
detection technique in the images captured by a UAV. To achieve this objective, the fol-
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lowing research method was used, which was divided into three stages: (1) case studies,
(2) UAV selection and flying, and (3) analysis and results.

3.1. Stage 1: Case Studies

Both bridges are located in Concepción City in southern Chile. The first corresponds
to a small bridge with a single span of 20 m. The second one is a large bridge, 2157 m in
length. These bridges were selected because their physical characteristics represent two
extremes of interest in their structural complexity, size, and traffic demand to which they
are subjected daily.

3.2. Stage 2: UAV Selection and Flying

After evaluating diverse UAVs, the UAV selected was a Mavic 2 Pro model of the DJI
line, frequently used because of its low cost, which has a built-in camera with a resolution
of 5472 × 3648 pixels, with a focal length of 28 mm and a shutter time of 1/8000 s. With
this equipment, the bridge inspection was carried out, capturing the damages and defects
with well-defined images. Before the inspection, a flight path was drawn, considering the
elements of each bridge and the existing obstacles. The flight time was evaluated based
on battery duration (31 min). It should also be mentioned that the flight was carried out
manually, based on the flight route planned according to the terrain conditions.

3.3. Stage 3: Analysis and Results

After completing the inspection and taking the photographic record, the images were
downloaded from the aircraft’s memory card. The photographs selected for each case
study were analyzed in ImageJ software [11]. This open-source software for processing
and analyzing scientific images was used in Version 1.53t. Its Java source code is freely
available, and in the public domain, no license is required. With the line tool, pixel-based
measurements of the thickness and length of the faults were taken.

Once the images were processed in the ImageJ software, the fissures and cracks were
delimited manually to differentiate them from other lines that exist within the image. To
do so, fissures and cracks were defined, creating paths that exceeded the image, using the
zoom and rule tools that the program has. In terms of dimensions, to measure the fissures
and cracks (in millimeters), a known measure within the image was used as a pattern, for
example, any known dimension of some structural element (coming from the structural
drawings), such as the height of a beam or the width of a column, and based on this
information then scale the complete image and thus obtain precise measures of fissures and
cracks. Consequently, Figure 3 describes graphically how these measurements were taken
after edge detection was applied to the image. The maximum thickness defined whether
the damage corresponded to a crack or a fissure, its structural incidence, the possible cause
of the damage, and its severity.
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In summary, Figure 4 shows a flow diagram of the methodology used to acquire the
information needed to evaluate the fissures and cracks in bridges by applying digital image
capture techniques with a UAV.

Drones 2024, 8, x FOR PEER REVIEW 8 of 22 
 

 
Figure 4. Flow diagram with the methodology used in this research. 

4. Analysis and Results 
4.1. Case 1: Estero Nonguén Bridge (Small Bridge) 
4.1.1. General Description 

It has a length of 20 m and a roadway width of 7 m. The deck has a roadway formed 
by a reinforced concrete slab with one lane in each direction and two 1.5 m wide pedes-
trian walkways. It has two abutments and, in the middle, a stock wall with a span width 
of approximately 8 m. 

  

Figure 4. Flow diagram with the methodology used in this research.

4. Analysis and Results
4.1. Case 1: Estero Nonguén Bridge (Small Bridge)
4.1.1. General Description

It has a length of 20 m and a roadway width of 7 m. The deck has a roadway formed
by a reinforced concrete slab with one lane in each direction and two 1.5 m wide pedestrian
walkways. It has two abutments and, in the middle, a stock wall with a span width of
approximately 8 m.

4.1.2. Flight Route

The flight route is detailed in Figure 5, consisting of a flight over the roadway starting at
the side of the bridge. The flight started upstream and flew over the bridge in a downstream
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direction, where the UAV was introduced in both spans to return to the starting point
upstream of the bridge. The height of the deck allowed the aircraft to stay stable during the
flight and away from the estuary channel. As the inspection progressed, some complexities
were encountered. In one of the spans, plant material was found obstructing the passage,
as well as facility cables and a pipe that crossed the stream at the height of the deck.

Drones 2024, 8, x FOR PEER REVIEW 9 of 22 
 

4.1.2. Flight Route 
The flight route is detailed in Figure 5, consisting of a flight over the roadway starting 

at the side of the bridge. The flight started upstream and flew over the bridge in a down-
stream direction, where the UAV was introduced in both spans to return to the starting 
point upstream of the bridge. The height of the deck allowed the aircraft to stay stable 
during the flight and away from the estuary channel. As the inspection progressed, some 
complexities were encountered. In one of the spans, plant material was found obstructing 
the passage, as well as facility cables and a pipe that crossed the stream at the height of 
the deck. 

 
Figure 5. Small bridge damage inspection flight path (the dash line shows the flight path of the 
drone, the numbers show the corresponding changes in the direction where the photographs were 
taken, and the red circle shows the exact location to be analyzed for cracks or fissures). 

4.1.3. Photographic Record and Image Selection 
The entire structure was inspected with a full battery charge in an estimated time of 

30 min, obtaining a total of 45 photographs. Figure 6 is a sketch of the bridge identifying 
the location of the potential cracks. 

 
Figure 6. Location in elevation of the analyzed crack in the small bridge (the red circle shows the 
exact location to be analyzed for cracks or fissures). 

4.1.4. Image Calibration 
A crack at abutment 1 of the bridge originated from the junction with a steel pipe that 

crosses the estuary was identified, which failure (crack or fissure) is shown in Figure 7. As 
only one failure was found, it was assigned with the number 1.1 (Figure 7). The measure-
ment of the wing wall’s top was used, corresponding to 20 cm, as shown in Figure 7. 
Within the photograph, 20 cm was equivalent to 272 pixels, resulting in a scale of 1.36 
pixels/mm. 

Figure 5. Small bridge damage inspection flight path (the dash line shows the flight path of the drone,
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4.1.3. Photographic Record and Image Selection

The entire structure was inspected with a full battery charge in an estimated time of
30 min, obtaining a total of 45 photographs. Figure 6 is a sketch of the bridge identifying
the location of the potential cracks.
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Figure 6. Location in elevation of the analyzed crack in the small bridge (the red circle shows the
exact location to be analyzed for cracks or fissures).

4.1.4. Image Calibration

A crack at abutment 1 of the bridge originated from the junction with a steel pipe that
crosses the estuary was identified, which failure (crack or fissure) is shown in Figure 7.
As only one failure was found, it was assigned with the number 1.1 (Figure 7). The
measurement of the wing wall’s top was used, corresponding to 20 cm, as shown in
Figure 7. Within the photograph, 20 cm was equivalent to 272 pixels, resulting in a scale of
1.36 pixels/mm.
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Figure 7. Identification of Crack 1.1 at the small bridge.

4.1.5. Grayscale Application

The image quality was improved by modifying the brightness and contrast levels in
ImageJ by applying the grayscale tool. Figure 8 shows the process that was carried out on
the image. In (a) and (b), the image is shown with grayscale applied with its respective
gray histogram, where the brightness and contrast have not yet been modified. Then, in (c)
and (d), the image is shown with the adjusted brightness and contrast.
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(b) Grayscale histogram, (c) Image quality enhancement, (d) Enhanced image histogram.

4.1.6. Application of Edge Detection Tool and Damage Description

The edge detection tool’s effect on this image was appropriate since it mostly defined
the limits of the crack concerning the reinforced concrete wall in which it was contained.
Figure 9 shows the application of this tool; (a) and (b) show the edges of the damage and
the crack highlighted with white pixels, and the areas without defects are complete with
black, which is why most of the pixels are at the extremes in the histogram. Thus, it was
possible to highlight the crack to perform measurements guided by the detected edge.
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Figure 9. Crack image 1.1 of the small bridge analyzed with ImageJ. (a) Application “find edges”,
(b) Histogram image with “find edges” applied (c) Application “invert” grayscale, (d) Histogram of
the image with “invert” applied.

In (c) and (d), the “invert” tool was applied to invert the histogram by changing the
pixels from black to white, standing out the crack. Having both images where the crack
could be seen without problems, the image from (c) was used to measure the thickness and
length of the crack.

Measurements were taken along the failure to obtain its length, maximum, and average
thickness. With the maximum thickness, the failure was defined as a crack or fissure.
Accordingly, Table 2 summarizes the description of the crack.

Table 2. Damage description of the crack 1.1 in the small bridge.

N◦ Location
(Element)

Length
(cm)

Maximum
Thickness

(mm)

Average
Thickness

(mm)
Damage Does It Affect

Structurally?
Possible

Cause
Estimated
Severity

1.1 Abutment 1 54.04 6.401 7.79 Crack Yes Shear stress Low

4.1.7. Length vs. Thickness Graph

The results of the measurements along the crack are shown in Figure 10. Measurements
started from the crack origin at the upper right end and progressed to the crack end at the
lower left end. A total of 257 measurements were taken at a distance of approximately
2.1 mm each.
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4.2. Case 2: Llacolén Bridge (Large Bridge)
4.2.1. General Description

This large bridge is divided into two sectors, one directly over the Bío-Bío River of
1782 m and a second sector outside the river of 375 m. The two bridge abutments are
founded on 317 concrete piles of 1.5 m in diameter and variable lengths of 16 and 29 m.
The piers are formed by 10 piles each except for the off-river extension at the north end,
which is formed by six piles, and the off-river section that connects with an important
avenue. Its deck has an 8 m dual carriageway with two lanes in each direction and two
pedestrian walkways.

4.2.2. Flight Route

Due to the large size of this structure and dense traffic, only the northern sector of the
bridge, covering four piers, was inspected. The flight path detailed in Figure 11 was traced
starting at Pier 2 and proceeding to Pier 4, where each span was inspected until arriving at
Pier 1, where the elevations were inspected too.
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4.2.3. Photographic Record and Image Selection 

Figure 11. Large bridge damage inspection flight path (the dash line shows the flight path of the
drone, the numbers show the corresponding changes in the direction where the photographs were
taken, and the red circle shows the exact location to be analyzed for cracks or fissures).

During the inspection, some complexities were faced. The river flow caused difficulty
in maneuvering the UAV, making it hard to keep a line of sight with the equipment, where,
for some routes, the pilot was only guided by the camera. The dense traffic did not allow
inspecting near or under the board in the area of a level crossing, and the presence of birds
flying very close to the aircraft increased the risk of an accident.
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4.2.3. Photographic Record and Image Selection

A full charge of the batteries was used to inspect the four piers of the bridge in
approximately 30 min, taking 38 photographs. To analyze the identified cracks, the images
shown in Figure 12 were selected. In section (a), the east view containing the crack network
is shown, and in section (b), the west view containing a crack is shown. On the other hand,
Figure 13 schematically shows the damage analyzed in ImageJ at the large bridge.
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4.2.4. Crack Numbering and Image Calibration

The crack numbering for the header east view was 1.1, 1.2, 1.3, 1.4, and 1.5, while for
the header west view, it was 2.1, as shown in Figure 14.
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Figure 14. Cracks resulting from shear stress in the head of pier 1. (a) East view, (b) West view.

4.2.5. Grayscale Application

Figures 15 and 16 show how the grayscale histogram was modified to highlight the
cracks in the east and west elevations of the header.
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Figure 15. Crack Network Analysis in the large bridge header east view with ImageJ.
(a) Grayscale Application, (b) Grayscale Histogram, (c) Image Quality Improvement, (d) Histogram
Enhanced Image.
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4.2.6. Application of Edge Detection Tool and Damage Description

Cracks were located in the headers of Pier 1. The header in the eastern sector has a
network of cracks that was divided into five cracks for individual analysis. The head in the
western sector has only one crack.

Edge detection was applied to each image, obtaining different results. Figure 17
shows that this tool does not provide a good view of the crack network; rather, the trace
is lost with the marks of the concrete. An attempt was made to simultaneously modify
the brightness and contrast using edge detection. Still, it was not possible to highlight the
cracks in the expected way, so only the image obtained in Figure 16c was considered for
the quantification of damage.
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Figure 17. Crack Network Analysis in the large bridge header east view with ImageJ. (a) “find
edges” application, (b) Histogram of the image with “find edges” applied, (c) Application of “invert”
grayscale, (d) Histogram of the image with “invert” applied.

In the west view, a combination of brightness and contrast was obtained that positively
supported the crack protrusion along with edge detection. As shown in Figure 18, the crack
is visible in both (a) and (c) when the grayscale distribution is inverted. For this view, the
image corresponding to Figure 18c was selected for damage quantification.
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Measurements were taken along the lengths, maximum thicknesses, and averages.
The maximum thickness showed that all the failures corresponded to cracks. Table 3
summarizes the description of the cracks of the large bridge based on the Ministry of Public
Works bridge maintenance criteria.

Table 3. Damage description of the large bridge failures.

N◦ Location
(Element)

Length
(cm)

Maximum
Thickness

(mm)

Average
Thickness

(mm)
Damage Does It Affect

Structurally?
Possible

Cause
Estimated
Severity

1.1 Header pier 1
East Sector 42.49 3.67 1.69 Fissure Yes Shear stress High

1.2 Header pier 1
East Sector 53.23 4.28 0.89 Fissure Yes Shear stress High

1.3 Header pier 1
East Sector 31.72 1.23 0.53 Fissure Yes Shear stress High

1.4 Header pier 1
East Sector 30.11 0.99 0.47 Fissure Yes Shear stress High

1.5 Header pier 1
East Sector 16.92 1.48 0.59 Fissure Yes Shear stress High

2.1 Header pier 1
West Sector 52.3 4.1 1.7 Fissure Yes Shear stress High

4.2.7. Length vs. Thickness Graph

The measurements obtained from ImageJ were exported to Excel to construct a “Length
v/s Thickness” graph to analyze the behavior of the failures. The fissures turned out to have
a little predictable behavior; the section losses produced the thickness in certain zones to be
greater than the trend, causing the graphs to have an irregular behavior. Figures 19 and 20
show the graphs of the five fissures in the east view, and Figure 21 shows the graph of the
fissures identified in the west view.

4.3. Validation of the Procedure Developed

According to Sarkar et al. [22], in crack detection and concrete property exploration,
the recording process of large volumes of structural imagery demands significant time and
effort, and the elaboration of these datasets can be financially onerous and require consider-
able human resources. Thus, because of the importance of saving time and resources, it is
adequate to work with no more than 30 data since the Central Limit Theorem allows stating
that a sampling distribution of sufficiently large size of samples (n ≥ 30) will be normally
distributed [23]. Despite the previous fact, as a confirmatory check, the Shapiro–Wilk test
was run for the present study. Consequently, after applying the procedure developed in the
two case studies, 30 new crack samples were randomly selected to validate the procedure,
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which is shown in Table 4. The first column of data shows the theoretical measurements
obtained from the ImageJ software, while the second column shows the field measure-
ments using a crack width ruler. Based on the verification whether the differences between
the theoretical and actual measurements followed a normal distribution, the statistical
comparison test to use was defined.
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Figure 21. Analysis of Crack 2.1 of the large bridge west view (a) Crack 2.1 processed in ImageJ (red
line); (b) Thickness v/s length graph of crack 2.1.

Table 4. Theoretical and real crack/fissures measurements.

Crack
Thickness (mm) Difference

(Theoretical–Actual)
Length (mm) Difference

(Theoretical–Actual)Theoretical Actual Theoretical Actual

1 3.053 3 0.053 331.032 330 1.032
2 1.973 2 −0.027 189.570 190 −0.430
3 2.993 3 −0.007 917.560 920 −2.440
4 1.949 2 −0.051 326.640 330 −3.360
5 1.017 1 0.017 201.318 200 1.318
6 1.984 2 −0.016 79.300 80 −0.700
7 3.139 3 0.139 940.600 920 20.600
8 2.015 2 0.015 758.000 730 28.400
9 2.982 3 −0.018 562.000 558 4.000

10 3.067 3 0.067 737.000 740 −3.000
11 3.984 4 −0.016 300.180 300 0.180
12 2.951 3 −0.049 232.340 230 2.340
13 3.892 4 −0.108 230.190 230 0.190
14 1.963 2 −0.037 277.900 280 −2.100
15 0.984 1 −0.016 448.500 450 −1.500
16 2.906 3 −0.094 121.500 120 1.500
17 1.033 1 0.033 360.700 360 0.700
18 2.012 2 0.012 995.700 1000 −4.300
19 0.984 1 −0.016 475.600 475 0.600
20 2.054 2 0.054 1211.800 1210 1.800
21 0.986 1 −0.014 453.900 450 3.900
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Table 4. Cont.

Crack
Thickness (mm) Difference

(Theoretical–Actual)
Length (mm) Difference

(Theoretical–Actual)Theoretical Actual Theoretical Actual

22 1.033 1 0.033 145.600 145 0.600
23 4.911 5 −0.089 604.770 604 0.770
24 4.994 5 −0.006 711.220 711 0.220
25 4.872 5 −0.128 525.120 525 0.120
26 10.29 10 0.290 362.260 360 2.260
27 9.760 10 −0.240 2796.640 2800 −3.360
28 4.959 5 −0.041 1899.680 2000 −100.320
29 4.910 5 −0.090 233.980 240 −6.020
30 4.094 4 0.094 484.290 485 −0.710

After running the Shapiro–Wilk test, it was not possible to confirm the normality
of the data [24,25]. Therefore, to verify if the measurements obtained by the ImageJ
software can be assimilated into the real measurements obtained in the field, the non-
parametric Wilcoxon test was used. This non-parametric statistical test is used to compare
two related samples, matched or repeated measurements in a single sample to assess
whether their population mean ranks differ [26], where the null hypothesis Ho = the
thicknesses and lengths of cracks and fissures obtained by the ImageJ software are equal to
the real measurements obtained on-site.

The results obtained are summarized in Table 5. The p-values were less than α = 0.05
(statistical significance), i.e., for the two case studies, there was not enough evidence to
reject the null hypothesis Ho, concluding that the theoretical and real measurements do not
have significant differences for the variables of thickness and length. In other words, it was
statistically verified that, for crack thicknesses and lengths, the measurements obtained by
the ImageJ software can be assimilated into the real measurements obtained in the field.

Table 5. Results of the Wilcoxon test for the theoretical and real crack/fissures measurements.

Sample Size (n) Significance (α) p-Values Result

Thickness 30 0.05 0.355 Not possible to reject Ho
Length 30 0.05 0.861 Not possible to reject Ho

5. Discussion

The results of the evaluation of cracks and fissures with the use of a UAV provided
length and thickness parameters that are useful to describe the damage. In addition, the
UAV technology used provided the tools for the bridge inspection, allowing access to hard-
to-reach places. This practice would allow for reducing the traditional field inspections,
leaving them only for specific cases.

By applying the evaluation techniques for images presented in this study, it was
possible to obtain a descriptive damage identification about the dimensions and severity
that would allow the specialist engineer to evaluate the damage remotely and make quick
decisions, thus creating more agile and direct information management, and avoiding the
field inspection to be prolonged.

Image analysis made it possible to reduce the number of images to be analyzed and to
keep track of the damage found by using a low-cost UAV such as the DJI Mavic 2 model,
which appropriately fulfilled the objective of recording cracks and fissures in the bridges.

In general, the use of UAV in bridge inspection provides a new vision of the structure
without the need to be physically close to it, raising the need for new jobs for inspector-
pilots that will require to be trained, where the procedure presented in this research could
be part of such training. In summary, based on the experience gained by implementing
the procedure presented in this research, Table 6 shows an analysis of the advantages and
disadvantages of using UAVs for bridge inspection tasks.
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Table 6. Advantages and disadvantages of using low-cost UAVs in bridge inspection.

Advantages Disadvantages

It prevents the worker from having to expose
himself to dangerous situations.

Regulatory standards limit the use of this
equipment.

It has a direct reading for sample collection
without a human presence on the

inspected element.

For greater efficiency of image analysis,
inspection tasks should be performed preferably

during the day or with sufficient light.
A low-cost UAV can establish a precise flight
path to access hard-to-reach places instead of
using expensive aerial or sea/river platforms

or other means of access.

It means a cost for the client due to the need to
hire a specialized service or train his employees.

Environmentally friendly due to less
pollution, avoiding the movement of heavy

equipment and workers.

The battery life in low-cost UAVs is limited for
inspecting large bridges, so extra batteries would

be required, which increases costs.

It reduces inspection times on
larger structures.

The inspection procedure is dependent on
weather conditions, which must be favorable

(e.g., low wind speed).

It reduces operating costs as no other
accessibility methods are required, and a
smaller number of workers are required.

The larger the audiovisual material collected, the
larger the information to transfer and manage,

which demands an appropriate
management system.

Finally, it is important to note that although the present study did not consider other
procedures to achieve greater precision in terms of orientation and georeferential infor-
mation, such as the implementation of ground control points (GCP) in the drone flight
areas, this would help minimize the problem of distortion of images. In fact, it could be
considered to place permanent points for future inspections and reduce measuring costs.
However, to reach the best possible image quality, the present study took advantage of
the versatility of the drone used, positioning it in front of the element to be inspected
orthogonally and, consequently, reducing perspective distortions significantly.

6. Conclusions

In this study, various image processing techniques were examined to detect cracks
and fissures in bridges, using UAV as a tool to perform a visual inspection inventory.
The technology used met expectations by reaching hard-to-reach areas where cracks are
common. Additionally, it facilitated faster and greener inspections by minimizing environ-
mental impact.

The images captured by the drone were suitable for analyzing cracks and fissures.
The severity of the failures depends on the structural incidence and the thickness of
the damage. The techniques evaluated for image processing were useful for improving
visibility, although edge detection yielded mixed results. It was observed that this technique
works best on individual cracks with regular bottoms, but in networks of cracks or failures
in porous elements, the edges can become discontinuous.

Although traditional bridge inspection procedures will continue to be used, it is likely
that in the near future, a fleet of UAV inspecting bridges can be implemented by government
agencies or private companies, creating new jobs in the field and the office. This will require
understanding and adapting inspection procedures such as the one presented in this study.

In terms of limitations, weather conditions (potential instability due to wind), battery
life (large bridges demand longer times to inspect), and camera quality (edge detection be-
comes difficult when the image resolution is not high) are aspects to take into account when
using low-cost UAVs. Another important aspect to consider is the possibility of working in
difficult-to-access places where the drone cannot be perpendicularly positioned in front
of the inspected element, which can cause perspective distortions in the captured image.
Finally, based on the inspection procedure presented in this study, future research could
consider using more sophisticated UAVs, increasing image quality and inspection times,
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and dealing with unfavorable weather conditions, along with the use of photogrammetric
processing to solve problems related to potential perspective distortions, while drones
capture the images.
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