
Citation: Lizzio, F.F.; Bugaj, M.;

Rostáš, J.; Primatesta, S. Comparison

of Multiple Models in Decentralized

Target Estimation by a UAV Swarm.

Drones 2024, 8, 5. https://doi.org/

10.3390/drones8010005

Academic Editor: Emanuele Luigi de

Angelis

Received: 27 November 2023

Revised: 18 December 2023

Accepted: 21 December 2023

Published: 27 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Comparison of Multiple Models in Decentralized Target
Estimation by a UAV Swarm
Fausto Francesco Lizzio 1 , Martin Bugaj 2 , Ján Rostáš 2 and Stefano Primatesta 1,*

1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy; fausto.lizzio@polito.it

2 Air Transport Department, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia;
martin.bugaj@uniza.sk (M.B.); jan.rostas@uniza.sk (J.R.)

* Correspondence: stefano.primatesta@polito.it

Abstract: The decentralized estimation and tracking of a mobile target performed by a group of
unmanned aerial vehicles (UAVs) is studied in this work. A flocking protocol is used for maintaining
a collision-free formation, while a decentralized extended Kalman filter in the information form is
employed to provide an estimate of the target state. In the prediction step of the filter, we adopt and
compare three different models for the target motion with increasing levels of complexity, namely, a
constant velocity (CV), a constant turn (CT), and a full-state (FS) model. Software-in-the-loop (SITL)
simulations are conducted in ROS/Gazebo to compare the performance of the three models. The
coupling between the formation and estimation tasks is evaluated since the tracking task is affected
by the outcome of the estimation process.

Keywords: decentralized target tracking; flocking; extended Kalman filter; consensus; multi-UAV

1. Introduction

In recent years, the distributed control of unmanned aerial vehicles (UAVs) has gained
significant attention among researchers. Indeed, the scalability of modern control protocols,
alongside the price convenience of the platforms, allows for more accessible planning of
missions with multiple agents. This provides robustness against a single point of failure,
increased coverage, and greater time efficiency.

Formation [1] is a prominent issue to tackle when controlling a group of UAVs, as
drones commonly have to reach a safe relative distance during the execution of a mission. In
the literature, several strategies are exploited to achieve this in a distributed way. Formation
has been tackled through the use of artificial potential fields [2], treating each agent as
a charged particle in an electric field. The geometric properties of the agents have been
employed to deal with this problem [3]. Optimization methods [4–6] have also been
explored to minimize a cost function subject to several constraints.

The aim of creating a formation usually revolves around a single [7] or multiple [8,9]
targets to be chased by the swarm, to perform tasks such as bridge inspection, patrolling,
or surveillance. Unlike many case studies reported in the literature [10,11], in real-life
scenarios, the state of the target may not be accessible to the members of the swarm, as the
target may be non-collaborative. In this situation, its precise state variables are unknown
and must be estimated through certain estimation filters, as in [12]. Therefore, the agents
have to follow the target location as provided by some collaborative estimation process,
rather than by its exact position.

Hence, it is evident that the convergence of the estimation procedure is crucial for the
outcome of the formation task [13]. The purpose of this paper is to outline and analyze an
approach for a target estimation performed collaboratively onboard by a swarm of UAVs
in formation flight.
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A flocking consensus protocol, first established in [14], is adopted as a starting point
for the formation task. In particular, we implement a tailored version of the algorithm
in [14] presented by the authors in [15]. Indeed, the proposed version eliminates the errors
occurring at steady-state in the relative distance between agents. Moreover, it is able to
achieve smoother transient behavior with respect to the protocol in [14]. However, in [15],
the target states were straightforwardly sent to all members of the swarm, so that the
resulting topology behaved as a leader–followers one.

Therefore, in [16], the authors applied the formation protocol presented in [15] along-
side a collaborative estimation method. In particular, the information form of a decentral-
ized Kalman filter was used. The selection of this filter form was dictated by the many
advantages it yields in decentralized sensor networks [17]. With this configuration, every
drone acted as a mobile sensor whose measurements of the target state were affected by
some noise. Namely, a range-bearing sensor was considered. The information provided by
it was first employed locally and then integrated with the one coming from neighboring
agents. This resulted in a leaderless topology that brought the configuration closer to an
actual setup.

However, in [16], a linear process was selected to model the target dynamics during the
prediction step of the filter. That is, the target was assumed to be a non-maneuvering one.
When the estimation process was tested against a target covering a sinusoidal trajectory,
the algorithm provided satisfactory results only when the interaction topology between
UAVs was fully connected. Instead, when no information fusion was performed, the
linearity of the process model was not able to handle the non-linear path, resulting in
higher estimation errors.

That is why, in this work, we compare the performance of the linear process model,
which we will refer to as the constant velocity (CV) model, with two non-linear models,
i.e., a constant turn (CT) and a full-state (FS) model. The former assumes a constant turn
rate for the target motion, while the latter takes into account the inner-loop dynamics of
the target UAV. In this way, it is possible to evaluate the benefits of employing non-linear
models, even though this leads to increased complexity and a higher computational load.
Such an approach towards multiple model estimations has been applied in the literature
for a single observer in [18,19], or for a team of agents in [20] to the classic Kalman filter
formulation. Instead, this paper investigates the effects of different model estimations in
the information form of the filter.

A robot operating system (ROS) is used to provide the simulation results. In particular,
the software-in-the-loop (SITL) mode available through the PX4 autopilot stack [21] allows
it to run multiple vehicles simultaneously, through the Gazebo simulator. Also, it is possible
to exploit the navigation variables that would be accessible on-board actual UAVs, so that
the autopilot can be interfaced as in a real implementation.

Metrics such as the estimation root mean square error and the drones’ target distances
will be presented to analyze the influence of the process model selection on the outcome of
the process.

The remainder of this paper is organized as follows: Section 2 introduces the flocking
protocol, alongside the tailored version developed by the authors. In Section 3, the decen-
tralized estimation task is discussed and the difference between the three selected process
models is highlighted. Section 4 presents the features of the simulation and illustrates the
numerical examples. In Section 5, a general discussion of the results is given. Section 6
draws our conclusions and provides some comments on future work.

2. Tailored Flocking Algorithm

In this section, we discuss the formation protocol. In particular, we employ, as a
starting point, the popular flocking algorithm established in [14]. In this paper, we denote
it as the standard protocol. In [14], it is shown that this algorithm is able to provide, for
double-integrator agents, the three flocking rules introduced in [22]. Namely, these rules
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are: staying in the vicinity of the center of the swarm; avoiding collision with other agents;
and having a common velocity value.

Consider a group of N agents with double-integrator dynamics

q̇i = pi, ṗi = ui, for i = 1, ..., N,

where qi = [xi yi]
T ∈ R2 and pi = [ẋi ẏi]

T ∈ R2 indicate the position and velocity of
agent i, respectively. The input of the standard protocol consists of the summation of three
contributions, as

ui = ui,d︸︷︷︸
distance regulator

+ ui,v︸︷︷︸
velocity matching

+ ui,t︸︷︷︸
target following

. (1)

The first one, ui,d, regulates the inter-agent distances to a desired value d. It is given by
the gradient of a potential field acting between any two agents, whose minimum is located
in d. The gradient is defined as

ui,d = −Kd ∑
j∈Ni

aij · (qi − qj) ·
ϕ(∥qi − qj∥σ − ∥d∥σ)

1 + ϵ∥qi − qj∥σ
,

where Kd is a positive gain and Ni is the set of neighbors of agent i. The function ϕ(z) is
defined as

ϕ(z) =
z√

1 + z2
,

where ∥ · ∥σ indicates a map Rm → R+
0 differentiable everywhere given by ∥z∥σ =

1
ϵ [
√

1 + ϵ∥z∥2 − 1], with ϵ ∈ (0, 1). The parameter aij depends on the communication
range rcomm and the relative distance between agents. In particular, aij = aij(qi, qj) =

aij(
∥qi−qj∥σ

∥rcomm∥σ
) and

aij(z) =


1, if z ∈ [0, h)
1
2 [1 + cos(π z−h

1−h )], if z ∈ [h, 1]
0, otherwise.

In this way, the force repelling two agents that are dangerously close to each other is
stronger than the attractive one. Furthermore, agents that are further than rcomm do not
contribute to the control input.

The second term ui,v of Equation (1) is an average consensus step, expressed as

ui,v = −Kv ∑
j∈Ni

aij · (pi − pj),

where Kv is a positive gain. This term brings the agents to an agreement on their veloc-
ity values.

Finally, denoting qt = [xt yt] ∈ R2 and pt = [ẋt ẏt] ∈ R2 as the position and velocity
of a target, the contribution

ui,t = −Kd,t · (qi − qt)− Kv,t · (pi − pt) (2)

is a PD (proportional-derivative) controller driving the position and velocity of the agents
toward the target ones, where Kd,t and Kv,t are positive gains.

However, the standard protocol presents some issues when it is applied to non-linear
agents. First, a steady-state offset arises on the relative distance between agents, as found
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in [23]. Hence, in [15], the authors modified the standard protocol to overcome this issue.
Specifically, the error in the inter-agent distances

ei,int = ∑
j∈Ni

(qj − qi) ·
ϕ(∥qi − qj∥σ − ∥d∥σ)

1 + ϵ∥qi − qj∥σ
,

allows us to define the following integral action

ui,int = Kint

∫
ei,intdt,

where Kint is a positive gain. This term was included to eliminate the steady-state offset,
even though the transient phase started to display a larger overshoot and considerable
oscillations. Thus, the following integral action on the velocity mismatch between each
agent and the target

ui,v_int = −Kv_int

∫
(pi − pt)dt

was further employed to dampen the initial transient, where Kv_int is a positive gain. Finally,
a dynamic gain that multiplies the position error between the agents and the target was
used, as

Kd,t(qi, qt) = arctan(
∥qi − qt∥

Dd,t
). (3)

This was done to decrease the attractive force of the target in its vicinity, where Dd,t > 0 is
a parameter regulating the degree of this adjustment.

After these adaptations, the formation protocol could eliminate the steady-state off-
set while providing satisfactorily smooth transient behavior. A more thorough analysis
of the flocking protocol can be found in a previous work by the authors [15]. In this
study, the steps from the standard algorithm to the tailored one are showcased through
numerical simulations.

3. Decentralized Target Estimation

The estimation task is discussed in this section. In particular, we make use of a
decentralized variant of the extended Kalman filter in the information form, found in [17].
The Kalman filter is an iterative procedure designed to provide an estimate of the state
variables of a dynamic process. A filter iteration is composed of a prediction step, employing
a model of the process, and an update step, exploiting a sensor measurement. A centralized
version of the Kalman filter provides the optimal estimate. The extended version of the
Kalman filter is able to deal with non-linearities both in the process and in the sensor models.
However, the need for a central processing unit and the collection of a large number of
measurements hinder its scalability. This is why decentralized versions of the algorithm
have emerged in the literature [24–26]. In this way, several agents can independently
perform a measurement of the process and share some information to provide a cohesive
estimate of the state variable. In this sense, the information form of the Kalman filter is of
great advantage. Rather than the covariance matrix P(l|m) and the state estimate ξξξ(l|m)
of a dynamic process, this formulation handles the information matrix Γ(l|m) and the
information vector γγγ(l|m). These quantities are expressed as

Γ(l|m) = P−1(l|m), γγγ(l|m) = P−1(l|m) · ξξξ(l|m), (4)

where l and m are two generic time instants [27].
Although the formulation in [17] is algebraically equivalent to the classic filter, it

presents appealing features when dealing with multi-sensor networks. Indeed, the dimen-
sion of the largest matrix to be inverted is linked to the state estimate one, rather than to
the number of collective observations. In a UAV swarm, the number of measurements is
generally much higher than the observed states. Furthermore, the information can be fused
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through a trivial sum. Finally, assuming that no information about the process is known at
the beginning of the estimation, the initialization procedure can be performed easily by
assigning almost zero values to the information matrix. Given these considerations, we
focus on the estimation of a target’s position and velocity through an information filter,
which will be discussed in the following subsections.

3.1. Prediction

The first step of an estimation filter is the prediction, in which the next state of the
target is computed based on the previous estimate and on a selected dynamic model. Given
the relevance of the choice of the model for the outcome of the estimation process [20], we
employ three different models in the prediction step. In particular, we employ a constant
velocity (CV), a constant turn (CT) and a full-state (FS) model, as described below. Note
that, throughout the paper, all equations are expressed in their discrete-time formulation.

The CV model assumes a non-maneuvering target whose linear behavior is de-
scribed by

ξξξ i(k + 1) = F · ξξξ i(k) + w(k), (5)

where
ξξξ i(k) = [x̂t,i(k) ŷt,i(k) ˆ̇xt,i(k) ˆ̇yt,i(k)]T ∈ R4

is the state estimate performed by agent i. Vector w(k) ∈ R4 is an additive zero mean white
noise whose covariance matrix is Q(k) ∈ R4×4. The matrix F is simply defined as

F =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

,

where ∆T is the estimation time step. This is one of the simplest dynamic models found in
the literature. It assumes that the target is either still, or moves along a straight line. It can
provide mild performances in the case of low accelerations, but it is usually not suitable for
highly non-linear trajectories, especially during sudden accelerations or sharp turns.

The CT model assumes a nearly constant turn rate ωt of the target, so that its motion
displays an almost zero tangential acceleration and a nearly constant normal accelera-
tion [28]. If the turn rate is known, the model is linear and the corresponding prediction
step is still given by Equation (5), with

F =


1 0 sin(ωt∆T)

ωt
− 1−cos(ωt∆T)

ωt

0 1 1−cos(ωt∆T)
ωt

sin(ωt∆T)
ωt

0 0 cos(ωt∆T) − sin(ωt∆T)
0 0 sin(ωt∆T) cos(ωt∆T)

,

as in [28]. However, considering a non-collaborative target, it is unlikely that the rate ωt is
known. Hence, its value must be estimated, so that the state estimate is augmented as

ξξξ i(k) = [x̂t,i(k) ŷt,i(k) ˆ̇xt,i(k) ˆ̇yt,i(k) ω̂t,i]
T ∈ R5.

In this way, the process model becomes non-linear and the corresponding prediction
equation, as in [20], is given by

ξξξ i(k + 1) = f(ξξξ i(k)) =


x̂t,i(k) + ˆ̇xt,i(k)

sin(ω̂t,i(k)∆T)
ω̂t,i(k)

− ˆ̇yt,i(k)
1−cos(ω̂t,i(k)∆T)

ω̂t,i(k)

ŷt,i(k) + ˆ̇xt,i(k)
1−cos(ω̂t,i(k)∆T)

ω̂t,i(k)
+ ˆ̇yt,i(k)

sin(ω̂t,i(k)∆T)
ω̂t,i(k)

ˆ̇xt,i(k) cos(ω̂t,i(k)∆T)− ˆ̇yt,i(k) sin(ω̂t,i(k)∆T)
ˆ̇xt,i(k) sin(ω̂t,i(k)∆T) + ˆ̇yt,i(k) cos(ω̂t,i(k)∆T)

ω̂t,i(k)

+ w(k),
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where w(k) ∈ R5 is an additive zero mean white noise. This model works better than the
CV one when dealing with curvilinear motions, especially when the tangential acceleration
is very small with respect to the normal one. It can also provide a mild performance when
the target moves along linear trajectories, as an almost zero turn rate can be assumed.
However, its performance decreases when the tangential acceleration is comparable to the
normal one.

Finally, the FS model takes into account the inner loop dynamics of a quad-copter
UAV, considering the attitude angles and rates of the target along with its planar positions
and velocities, as in [29]. Moreover, in dealing with a non-collaborative target, the state
estimate has to include the unknown target control inputs. Since the analyzed motion is
planar, we do not consider the information regarding the altitude coordinate. Also, in the
target following problem, we treat the target as a point, so that its yaw-related states are
disregarded. Then, we obtain

ξξξ i(k) = [x̂t,i(k) ŷt,i(k) ˆ̇xt,i(k) ˆ̇yt,i(k) ˆ̇zt,i(k) ϕ̂t,i(k) θ̂t,i(k) ˆ̇ϕt,i(k) ˆ̇θt,i(k) Ûϕ,i(k) Ûθ,i(k) T̂i(k) ]T ∈ R12.

In addition to the planar position and velocity, the state estimate contains the roll and
pitch angles ϕ̂t,i(k) and θ̂t,i(k), their derivatives ˆ̇ϕt,i(k) and ˆ̇θt,i(k), the rolling and pitching
moments Ûϕ,i(k) and Ûθ,i(k), and the total thrust T̂i(k). The derivative of the altitude
coordinate ˆ̇zt,i(k) is needed to make the thrust converge to a reasonable value, as explained
later. The resulting prediction equations are non-linear, and are given by

ξξξ i(k + 1) = f(ξξξ i(k)) =



x̂t,i(k) + ∆T ˆ̇xt,i(k)
ŷt,i(k) + ∆T ˆ̇yt,i(k)

ˆ̇xt,i(k) + ∆T T̂i(k)
m sin(θ̂(k))

ˆ̇yt,i(k)− ∆T T̂i(k)
m sin(ϕ̂(k))cos(θ̂(k))

−g + cos(ϕ̂(k))cos(θ̂(k)) T̂i(k)
m

ϕ̂t,i(k) + ∆T ˆ̇ϕ(k)
θ̂t,i(k) + ∆T ˆ̇θ(k)

ˆ̇ϕ(k) + ∆TÛϕ,i(k) l
Ixx

ˆ̇θ(k) + ∆TÛθ,i(k) l
Iyy

Ûϕ,i(k)
Ûθ,i(k)
T̂i(k)



+ w(k),

where w(k) ∈ R12 is an additive zero mean white noise. The parameters m, l, Ixx, and Iyy
are the mass, the arm length, and the moments of inertia along the x- and y-axis, respectively.
Thus, the implementation of this model requires the knowledge of the physical parameters
mentioned of the target UAV. As briefly mentioned, the altitude coordinate derivative is
present in the state estimate, despite our motion of interest being planar. The term ˆ̇zt,i(k)
and its related dynamics are required to make the filter aware that a certain thrust level
is needed to keep the target flying at a fixed altitude. A way to force this behavior into
the filter is to augment the measurement model through a fake altitude rate measurement
constantly equal to zero.

Given the previous considerations, in the case of a linear process model, the prediction
step of the filter is expressed as{

Γi(k|k − 1) = (F · Γ−1
i (k − 1|k − 1) · FT + Q(k))−1

γγγi(k|k − 1) = Γi(k|k − 1) · F · Γ−1
i (k − 1|k − 1) ·γγγi(k − 1|k − 1).
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When a non-linear dynamic model is selected to represent the target motion, the
following prediction step must be adopted{

Γi(k|k − 1) = (∇f(ξξξ i(k − 1|k − 1)) · Γ−1
i (k − 1|k − 1) · ∇fT(ξξξ i(k − 1|k − 1)) + Q(k))−1

γγγi(k|k − 1) = Γi(k|k − 1)f(ξξξ i(k − 1|k − 1)),

where ∇f represents the gradient operator. In both cases, the variables Γi(k − 1|k − 1) and
γγγi(k − 1|k − 1) can have values close to zero at the beginning of the task, indicating that
there is almost no knowledge of the initial state of the process. This kind of initialization
avoids the need to guess the actual initial target state.

3.2. Observation

After the prediction step is performed, the filter needs to employ the sensors’ measure-
ments. The observations are taken by i = 1, . . . , N agents whose measurement model is
given by

zi(k) = hi(qt(k)) + vi(k),

with

hi(qt(k)) =

(√
(xt(k)− xi(k))2 + (yt(k)− yi(k))2

arctan( yt(k)−yi(k)
xt(k)−xi(k)

)

)
,

i.e., a range-bearing sensor affected by an additive zero mean white noise vi(k) ∈ R2 whose
covariance matrix is Ri(k) ∈ R2×2.

The measurement collected by sensor i allows to locally compute{
Ii(k) = ∇hT

i (q̂t,i(k|k − 1)) · R−1
i (k) · ∇hi(q̂t,i(k|k − 1))

ii(k) = ∇hT
i (q̂t,i(k|k − 1)) · R−1

i (k) · (zi(k)− hi(q̂t,i(k|k − 1)) +∇hi(q̂t,i(k|k − 1))ξξξ i(k|k − 1))
(6)

where q̂t,i(k|k − 1) indicates the prediction of the target position performed by UAV i.
The matrix Ii(k) and vector ii(k) denote the information obtained by the agent i after a
measurement is taken.

3.3. Update

Lastly, the update step is expressed as{
Γi(k|k) = Γi(k|k − 1) + Ii(k) + ∑j∈Ni

Ij(k)
γγγi(k|k) = γγγi(k|k − 1) + ii(k) + ∑j∈Ni

ij(k),
(7)

that is interpreted as the sum of three contributions. The first contribution comes from the
prediction step. The second one arises from agent i’s own measurement, while the last
contribution comes from the measurements performed by all of its neighbors. This step
clearly shows how convenient information fusion is with this filter formulation.

Through Γi(k|k) and γγγi(k|k) and the inverse of Equation (4), each agent can compute a
local estimate ξξξ i(k|k) of the target state. Then, the estimated planar positions and velocities
of the target can be employed by the target following term in Equation (2) of the flocking
protocol. By doing so, each agent tracks the estimated state of the target, rather than the
true one. According to [12], the estimation of this decentralized Kalman filter is capable of
producing the same estimates locally that a centralized filter would give, provided that all
agents communicate through a fully connected topology.

4. Results

In this section, we present numerical results to illustrate the described application and
compare the proposed dynamic models.

The flocking algorithm and the decentralized estimation using the three different
models are implemented in C++ exploiting the robot operating system (ROS). Thus, the
Gazebo simulator and the SITL mode available through the PX4 autopilot are used to
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carry out simulation experiments. Specifically, we simulate three Iris quadcopters through
three separate ROS nodes. Through the publisher/subscriber communication pattern, the
nodes share with each other the information described in the previous sections. Then, the
computed control input is published via Mavros to the PX4 Autopilot in the offboard mode.
The UAVs have to attain a flocking task whose desired inter-agent distance is d = 4 m
and whose communication radius is rcomm = 4.8 m. The previously discussed EKF is
employed to perform a decentralized estimate of the state of a target Iris platform. A global
reference system has to be shared among all the members of the swarm to yield coherent
information fusion.

To evaluate the performance of the three models, the target trajectory is split into three
phases. First, the target moves in a straight line, with a constant velocity of ẋt(t) = 0.5 m/s
along the x-axis, and a null velocity on the y-axis. We refer to this phase as the linear
one. Second, the target follows a sinusoidal path with a velocity on the y-axis equal to
ẏt(t) = 2 sin(0.1t) m/s, while keeping the previous constant velocity ẋt(t) = 0.5 m/s on
the x-axis. Finally, in the third phase, the target switches to a circular motion at a higher
frequency, while still proceeding along the x-axis. The velocity values in this phase are
ẋt(t) = (0.2 + 2 sin(0.25t))m / s and ẏt(t) = 2 cos(0.25t) m/s. The different types of
trajectories are chosen to challenge the capabilities of the selected models.

We assume that the process noise covariance matrix is constant, so that for the
CV model

Q = diag
(

0.052, 0.052, 0.052, 0.052
)

,

for the CT model
Q = diag

(
0.052, 0.052, 0.052, 0.052, 0.022

)
,

and for the FS model

Q = diag
(

0.052, 0.052, 0.052, 0.052, 0.052, 0.022, 0.022, 0.022, 0.022, 0.012, 0.012, 0.012
)

.

Instead, we assume that the measurement noise covariance matrix is expressed as

Ri(k) = ΛT
i

[
0.082 0

0 ρ2
i 0.022

]
Λi

where ρi =
√
(x̂t,i(k|k − 1)− xi(k))2 + (ŷt,i(k|k − 1)− yi(k))2 is the estimated distance

between UAV i and the target, and

Λi =

[
cos(β̂i) − sin(β̂i)
sin(β̂i) cos(β̂i)

]

is a rotation matrix with β̂i = arctan( ŷt,i(k|k−1)−yi(k)
x̂t,i(k|k−1)−xi(k)

) being the estimated relative bearing

angle, as in [30]. The term ρi in Ri(k) makes the covariance matrix coefficients shrink as
the relative distance between the agent and the target decreases. Hence, sensors provide
measurements with lower covariance matrices as they get closer to the target location [13].

The estimation task is performed at 20 Hz. Since no a priori information is assumed
to be known at the beginning of the mission, the initial estimate values are far from the
true target states, and the estimation process requires several observation steps before
converging to reasonable values. Thus, the drones only begin to chase the target after the
first 20 iterations, i.e., after 1 second, so that the initial estimates do not drift them away.

In this study, we carried out three rounds of simulations, one for each dynamic model
described previously. This was done to assess the advantages of using a more complex
dynamic model in the prediction step. Note that increasing the level of complexity of the
prediction model in an information filter comes with the price of inverting higher dimension
matrices. In our simulation scenario, each agent must perform the inversion of a 4× 4 matrix
for the CV model, of a 5 × 5 matrix for the CT model, and of a 12 × 12 matrix for the FS
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model. Instead, a classic Kalman filter would need each agent to invert a 6× 6 matrix, given
by the total number of observations (two measurements performed by three UAVs). Thus,
it is straightforward to notice that, in terms of computational complexity, it is convenient
to use the FS model only when the number of UAVs in the swarm is sufficiently large.
Similar reasoning can be applied with respect to the communication cost due to the filter
decentralization. Indeed, denote as n the dimension of the state estimate, and as |Ni| the
number of neighbors of agent i. Thus, at each filter iteration, agent i sends out a message
of size n(n + 1) and collects |Ni| messages of the same size. However, in this work, the
computational and communication costs are not the main issues, as the focus is establishing
how the performance of the filter changes with different dynamic models.

In all scenarios, each drone shares the measurement information computed in Equation (6)
according to the line interaction topology shown in Figure 1.

Figure 1. UAVs Interaction Topology.

In this way, only agent 2 can access the complete information contained in the graph.
This represents a middle way between a fully connected topology and a situation in which
no communication takes place. Refer to a previous work by the authors in [16] for numerical
simulations showcasing the effects of these two opposite configurations. In the first case,
all the information is available to each agent, so that the swarm mimics a centralized filter,
but a higher number of communication links is demanded. In the latter case, each agent
carries on the estimation process in an isolated manner. Thus, a line topology represents a
compromise between performance and communication cost.

The estimates provided by the three UAVs of the target positions and velocities on the
x- and y-axis are shown in Figure 2 for the CV, in Figure 3 for the CT, and in Figure 4 for
the FS.
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Figure 2. Estimated and true target state with CV model.
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Figure 3. Estimated and true target state with CT model.
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Figure 4. Estimated and true target state with FS model.

In particular, we report the true target states qt(t) and pt(t) in green, as well as the
estimates q̂t,i(k|k) and p̂t,i(k|k) provided by the UAVs i = 1, 2, 3. Note that the simulation
of the target UAV runs in a ROS node through the offboard mode, as described at the
beginning of the section for the three drones in the swarm. Hence, its trajectory is not ideal
and is affected by realistic noises and localization errors. This is why, in Figures 2–4, the
trajectories of the target do not appear to be exactly the same.

We also report, in Tables 1–3, the mean of the root mean square errors (RMSEs) over
the three UAVs for each model. It is clear that the performance of the estimation filter is
affected by the choice of the model.

Table 1. Estimates RMSE of CV model.

σx̂ [cm] σŷ [cm] σ ˆ̇x [cm/s] σ ˆ̇y [cm/s]

Linear 8.30 1.96 7.59 3.02
Sinusoidal 6.77 20.55 7.28 23.40

Circular 27.11 27.71 47.40 48.21
Total 20.77 23.25 35.54 37.67

Table 2. Estimates RMSE of CT model.

σx̂ [cm] σŷ [cm] σ ˆ̇x [cm/s] σ ˆ̇y [cm/s]

Linear 6.47 2.12 18.51 4.29
Sinusoidal 8.18 23.44 8.51 20.94

Circular 26.76 25.80 11.32 15.18
Total 20.53 22.54 12.59 15.52

Table 3. Estimates RMSE of FS model.

σx̂ [cm] σŷ [cm] σ ˆ̇x [cm/s] σ ˆ̇y [cm/s]

Linear 6.48 4.68 13.80 15.37
Sinusoidal 6.26 14.85 10.73 12.17

Circular 18.24 19.73 33.95 34.02
Total 14.22 16.70 26.49 27.04

The CV handles linear motion very well. Its related position and velocity estimates
provide low RMSE values, as seen in Table 1. Moving from the linear to the sinusoidal
phase, the RMSEs regarding the X coordinate remain comparable, due to the fact that
the velocity along this axis is still constant. However, it is possible to notice a substantial
increase in the RMSE provided by the estimates in the Y coordinates. Finally, the strong
non-linearity of the circular maneuver makes the CV model performance drop drastically,
especially in the velocity estimation. This shows the poor performance of the model when
dealing with highly maneuvered trajectories.

Regarding the CT model, the initial linear path challenges its capability in tracking the
constant non-zero velocity along the x-axis. Indeed, while the position estimates are still
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satisfactorily close to the real ones, the X velocity estimate is quite far from the actual value
in this phase. The CT performs similarly to the CV model during the sinusoidal phase.
Indeed, despite being curvilinear, this motion is not characterized by a constant turn rate.
Instead, the position and velocity estimates during the circular phase yield lower estimation
errors. A remarkable improvement can be noticed, especially in the velocity estimates
RMSE. As seen in Table 2, they are about four times smaller than the ones provided by the
CV model.

Lastly, the FS provides, in general, noisier estimates with respect to the previous two
models, as seen in Figure 4. However, the analysis of its RMSEs in Table 3 provides some
insights. The FS handles the first linear trajectory with average performances with respect
to the other two models, especially from the velocity RMSE point of view. However, it
performs quite well in the sinusoidal phase, providing lower estimation errors with respect
to the CV and CT models. Finally, in the circular motion, it yields again average RMSEs
with respect to the two other models. This may be due to the fact that, while the CV and
the CT are specifically designed for a linear and a circular path, the FS does not assume
anything about the target’s motion. Thus, it behaves worse than these models in the first
and last phases, while it outperforms them in the second one.

The different performances of the estimation process influence the flocking behavior.
Indeed, the two tasks are executed in cascade, and the target tracking term in Equation (2)
follows the estimates provided by the filter. In Figures 5–7, it is possible to analyze this
influence. In particular, in Figure 5, the actual trajectories of the target and the agents are
presented. For clarity of the pictures, only agent 1 is considered. Figure 6 displays the
relative distances between the target and the three UAVs in the swarm, while Figure 7
showcases the inter-agent distances between the three agents, for each described model.
Looking at the trajectory of agent 1 in Figure 5, it is possible to see that, overall, the three
models can make the UAVs correctly and timely follow the target. Some more in-depth
differences may be noticed in Figures 6 and 7. During the linear phase, the three models
provide more or less the same flocking behavior. The desired inter-agent distance of 4 m
is reached in all cases with a satisfactory transient and is kept almost constant. However,
when the sinusoidal part takes place, an oscillatory behavior emerges. This is because, in the
proximity of the target, the flocking protocol has an adaptive gain as in Equation (3), so that
the reduced attractive force makes the agents less prompt in following the target. However,
this distance is kept reasonably small and this behavior may be adjusted through parameter
Dd,t for a prompter formation. The FS provides the smoothest transient, while the CV
and CT models act similarly. This can be clearly seen in Figure 7, where the inter-agent
distances remain almost constant also in the sinusoidal phase. Finally, when the circular
motion starts, the CV model yields the highest oscillations both in Figures 6 and 7. Instead,
the CT provides lower oscillations, especially in terms of the target–agent distances. Finally,
the FS model results in the lowest oscillations in both metrics. The better performance
of the FS with respect to the CT is due to the noisier nature of the velocity estimates that
it provides. Indeed, the actual velocity tracked by the agents through (2) ends up being
smaller with the FS compared to the CT, resulting in lower oscillations.
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Figure 5. Target and agent 1 trajectories.
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Figure 6. Relative distance between target and UAVs.
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Figure 7. Inter-agent distances and communication range.

5. Discussion

The previous examples showed the performance of the EKFs with three different
process models. It is clear that, in the presence of a non-maneuvering target, the CV model
is the best choice, given its computational simplicity. However, its performance starts
to degrade and eventually provides large RMSE with highly non-linear trajectories. The
CT model represents a good choice when dealing with maneuvering targets, especially
considering the very slight increase in computational complexity with respect to the CV
model. Analyzing the RMSEs of the total trajectory in Tables 1–3, the FS appeared to be a
middle way between the two previously mentioned models. This may be due to the fact
that the FS model makes no assumption on any specific target motion, but rather it relies on
the UAV’s intrinsic characteristics. Also from the flocking and target tracking application
point of view, the FS provided average performance with respect to the other two models,
as seen in Figures 6 and 7. However, its computational complexity is considerably higher
with respect to the CV and CT, since the information filter on board every UAV has to
invert a 12 × 12 matrix. Moreover, it requires the knowledge of some physical properties of
the target UAV, such as its mass, moments of inertia, and arm length. This may not always
be the case in real missions, so these parameters should be added to the estimation vector,
thus further increasing the computational load. Hence, employing the FS model would
be convenient only when a very large swarm tracks a maneuvered UAV whose physical
parameters are known but whose motion is generic and can not be clearly categorized
either as CV or as CT.

Overall, the study shows that decentralized target tracking is feasible and can be
implemented with satisfactory results even using a simple model and a topology that is not
fully connected. This may be useful in the setup of a configuration for experimental tests.
Indeed, one may think of using a CT model for preliminary results on a static target, as
an Aruco marker on the ground. Then, the model complexity may be increased in further
tests with moving targets. From a communication point of view, a line topology could be
assigned beforehand in preliminary tests. Then, some more complex topologies can be
implemented to increase the performance of the estimation algorithm. Additionally, an
actual proximity graph may be adopted, so that agents only share their information with
closest neighbors. This could bring the experiments much closer to a real case study.
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6. Conclusions

In this paper, a decentralized version of the Kalman filter in the information form was
employed to generate a collaborative estimate of a target state by a UAV swarm. The target
moved along different kinds of paths, namely a straight, a sinusoidal, and a circular one.
Three models were adopted in the prediction step of the filter, and their performance was
compared in simulations using the ROS/Gazebo SITL framework. The numerical results
showed that the model selection influences the outcome of the estimation and tracking
tasks. As a next step, the models will be expanded to handle a target moving in a three-
dimensional environment, so that the altitude coordinate will also be considered through
the additional measurement of the relative elevation angle. Future research directions will
also explore the use of interacting models so that an agent can switch between different
process models while the estimation task is being executed. Moreover, the possibility of
merging the benefits of the multiple models through a consensus step in the filter will
be explored.
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