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Abstract: An unmanned aerial vehicle (UAV) swarm is a fast-moving system where self-adaption is
necessary when conducting a mission. The major causative factors of mission failures are inevitable
disruptive events and uncertain threats. Given the unexpected disturbances of events and threats, it
is important to study how a UAV swarm responds and enable the swarm to enhance resilience and
alleviate negative influences. Cooperative adaptation must be established between the swarm’s struc-
ture and dynamics, such as communication links and UAV states. Thus, based on previous structural
adaptation and dynamic adaptation models, we provide a co-adaptation model for UAV swarms
that combines a swarm’s structural characteristics with its dynamic characteristics. The improved
model can deal with malicious events and contribute to a rebound in the swarm’s performance.
Based on the proposed co-adaptation model, an improved resilience metric revealing the discrepancy
between the minimum performance and the standard performance is proposed. The results from our
simulation experiments show that the surveillance performance of a UAV swarm bounces back to
its initial state after disruptions happen in co-adaptation cases. This metric demonstrates that our
model can contribute towards the swarm’s overall systemic resiliency by withstanding and resisting
unpredictable threats and disruptions. The model and metric proposed in this article can help identify
best practices in improving swarm resilience.

Keywords: UAV swarm; system resilience; metric; co-adaptation; communication links

1. Introduction

A UAV swarm comprises many UAVs equipped with specific autonomous capabilities
that enable them to successfully carry out assigned missions through real-time information
exchange and collaborative cooperation. A typical application scenario for a UAV swarm
is surveillance coverage, which includes tasks such as forest fire monitoring, search-and-
rescue operations, and military reconnaissance [1]. However, during surveillance tasks,
some UAVs may encounter disruptions coming from harsh environments or deliberate ad-
versaries. These disruptions can lead to a decrease in surveillance coverage and hinder the
overall completion of the assigned tasks. Highly reliable components, redundant designs,
and other traditional methods have proven ineffective in effectively and promptly dealing
with unpredictable threats and undesirable events [2]. However, it is anticipated that UAV
swarms could be able to withstand disruptive events, handle accidents, and restore their
intended performance through self-adaptation [3].

In a UAV swarm, resilience refers to the system’s ability to keep a desired performance
despite incidents that may disrupt its normal operation [4]. Resilience offers a new perspec-
tive on enhancing and improving systems’ ability to bear unforeseen events and recover
from disruptive threats. Therefore, resilience is a suitable evaluating concept for a UAV
swarm in situations where incidents inevitably occur. The evaluation of the resilience of a
swarm primarily focuses on two key aspects: developing an improved network model that
accurately describes disruption and recovery events and proposing an appropriate metric
for evaluating resilience.
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A well-designed topological structure for UAV swarms can greatly enhance their
surveillance capabilities [5]. However, most resilience studies published so far have only
focused on the recovery ability of UAV network structures for inevitable threats and
disruptive events [6,7]. Unfortunately, these studies have limited capability to determine
whether the swarm can effectively carry out its assigned surveillance task. To address this
gap, Dui et al. [8] demonstrated that the reliability of UAVs in different locations has varying
effects on swarm performance, and they discussed topology enhancements for UAV swarms
based on importance metrics. Additionally, Xu [9] identified node movement as a key factor
impacting network performance and developed a novel model for information exchange
networks in unmanned swarm systems. Furthermore, Bai et al. [10] investigated the
topology characteristics of UAV swarms, taking into consideration the influence of limited
communication range, and proposed an improved UAV swarm model. They also presented
an effective method to mitigate the adverse effects of unforeseen threats and disruptive
events through topology self-adaptation in UAV swarms. Those studies attempted to utilize
the structure self-adaptation method in UAV swarms, but self-adaptation was found to
inevitably cause structure and state dynamics problems.

Some studies have focused on the dynamic nature of swarms. For instance, Liu et al. [11]
examined multistate systems, wherein their network and component status follow their
probability distributions. Hu et al. [12] introduced an innovative form of UAV network
based on blockchain and a software-defined network architecture. This design enabled
the rapid construction of swarm networks while meeting application requirements and
communication circumstances. In [13], a centralized training and decentralized enforce-
ment mechanism was implemented. This approach utilized data gathered by all UAVs to
train shared control programs. Each UAV made decisions according to the observational
information it collected. Additionally, Wang et al. [14] proposed a dynamic and distributed
method for UAV control based on formation, specifically targeting the connectivity and
coverage of spatially dispersed users. They utilized flocking dynamics to develop detailed
plans for UAVs during mission execution. These studies have primarily focused on the
dynamic characteristics of swarms, which can partially but not comprehensively meet
resiliency requirements [15].

Recent studies have highlighted the significance of interdependent interactions be-
tween dynamic characteristics and network topology in UAV swarms [16]. There is a
growing trend towards incorporating resilience considerations into the study of UAVs,
particularly in relation to topology and dynamics. George et al. have put forward a
groundbreaking framework that adopts a comprehensive approach to resilience design.
This framework enables a system to effectively monitor both external and internal dis-
turbances, detect and anticipate threats, and take appropriate actions to counteract any
performance-related issues [15]. In a similar vein, Hu et al. decoupled the data plane
from the control plane of each UAV and proposed a practical approach [12]. Additionally,
Mou et al. developed a trajectory planning algorithm based on graph convolutional neural
networks that enables the rapid reconstruction of communication links during the self-
healing process [17]. A UAV swarm’s structure and dynamics are two sides of the same
coin; as such, it was found that structural self-adaptation and dynamic self-adaptation
could not meet the requirements for swarm resilience independently. Considering the
cooperation of structure adaptation and dynamic adaptation gives us a feasible direction.

The resilience metric has recently been proposed and applied to multi-UAV system-
of-systems (SoS) [18,19]. Tran defined the total received information in an information
exchange network at any given time as the system performance [2]. Based on Tran’s work,
Bai et al. [10] proposed an improved resilience metric, where the standard performance of
the swarm was calculated using different methods. The operation loop was described as the
working process of an unmanned weapon, representing a specific instance of the primary
operation loop. Sun et al. [20] used the quantity of operation loops as a comprehensive
metric to characterize the performance of unmanned weapon SoS. Based on information
traffic load balancing, Zhang et al. [21] proposed a resiliency evaluation framework for
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UAV swarms as well. Zhang et al. [22] utilized complex network theory to analyze
network topology, using topological metrics such as the clustering coefficient, average node
degree, and network efficiency as indicators of system performance. Li expanded on the
generalized baseline function of information exchange capacity in communication networks,
and also considered the heterogeneous communication network topology of UAV swarms.
Compared with Tran [2] and Bai [10,23] incorporated functional factors into the exchange
capacity model for network information. The majority of studies on surveillance missions
predominantly concentrate on achieving optimal coverage area [24,25], the recognition and
tracking of multiple targets [26], and the effective distribution of UAVs in a surveillance
area [27].

The above resilience and performance metric may not be suitable for the UAV swarm
performing surveillance task. In most cases, UAV swarms are required to carry out a
mission successfully, so the minimum performance should be capable of accomplishing
the designated surveillance mission [28,29]. The commander or administrator may wish to
grasp the differences between the real-time performance and the standard performance
of a UAV swarm after a disruption occurs. It should be noted that the total information
quantity metric of a swarm system received at time t, as a metric of swarm performance, is
unable to provide insights into the characteristics of a surveillance mission [30]. A signifi-
cant portion of the information transmitted in the swarm is irrelevant to conducting the
surveillance mission. The information metric cannot reflect the situation of overlapping
surveillance areas, which is common in surveillance missions [31,32]. The validity of using
the shortest path method [9,33] to calculate the total amount of information in the swarm
as a performance indicator requires further proof in practical scenarios [34].

It is imperative to propose a suitable performance and resilience metric to accurately
measure and evaluate a UAV swarm’s ability to perform a surveillance mission [35]. In or-
der to compensate for the shortcomings in the performance and resilience metric [9,33] of
the surveillance mission, we utilize the surveillance area of each individual UAV at time t
as a measure of its performance, and the total surveillance area is used as an indicator of the
swarm’s overall performance [32,36]. By employing this metric, we aim to accurately assess
the capacity of a UAV swarm to carry out surveillance missions. The main contributions of
our research are summarized as follows:

I. We improve the adaptation models of ecosystems and propose a static model, structural
adaptation model, dynamic adaptation model, and co-adaptation mode for UAV swarms
to resist disruptive events and uncertain threats and ensure performance recovery.

II. We propose a new performance metric for UAV swarms executing an surveillance
mission. Based on the surveillance mission, we also provide an algorithm to compute
this performance metric.

III. We develop an improved resilience metric for UAV swarms based on the reported
resilience metric.

The remainder of this paper is organized as follows. Section 2 presents four different
models of a UAV swarm. In Section 3, we investigate an improved resilience metric.
Section 4 verifies the proposed model through several illustrative experiments. In Section 5,
we give our conclusions and future work.

2. Adaptable Model of the UAV Swarm

Figure 1 depicts a sketch map of a UAV swarm, each UAV is characterized as a node
and distinguished by numbers. The nodes size denotes the surveillance scope of UAVs and
the black lines are communication links between UAVs.
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Figure 1. A sketch map of a UAV swarm.

The interaction weight of UAVs (i, j) is determined by the number of js connected
neighboring UAVs. The weight between (i, j) becomes weaker as the neighboring UAVs
number of j increases. UAV j contributes Mij/ ∑N

k=1 Mkj to i, where the denominator
is the total number of j’s neighbors. Mij represents the number of mutually connected
relationships between i and j. For each pair (i, j), the contribution of the interaction weight
Aij between i and j is calculated using the following expressions:

Aij =
Mkj

∑N
j=1 Mkj

(1)

Adaptation is important for ecosystems to avoid coextinctions when confronted with
natural disasters. Previous studies have assumed that link weight keeps unchanged, but this
unchanged assumption has recently been questioned. Then, a structure-based approach
has been proposed to compensate for the weight loss. Additionally, some studies suggested
mechanisms to adjust link weights, and taking into consideration the dynamics of the
systems. Recent studies emphasized the interactions importance between architecture
and dynamic behaviors. Zhang et al. have put forward a co-adaptation model between
structure and dynamics in mutualistic networks [37]. The UAV swarm is frequently run
in harsh conditions and vulnerable to various disruptions, such as severe weather or
opponents’ defense. The objective of this research is to examine how a UAV swarm
responds to disruptions and ensures its ability to withstand function loss or performance
decline. Taking inspiration from the adaptive characteristics of ecosystems, we proposed
four models: the static model, structural adaptation model, dynamic adaptation model,
and co-adaptation model for the UAV swarm to withstand various disruptions. These four
models are detailed presentation in Sections 2.1–2.4.

2.1. Static Model

In step 1 of static model, as depicted in Figure 2, we introduce a disruption to the
swarm by removing one UAV (Number 7) marked with a red cross, along with all the
links connected to this UAV (M47, M57), which are also marked with a red cross. In static
model, removing a node does not result in any change in the interaction weight between
the remaining nodes. And, the surveillance area of the remaining nodes remains stable.

Figure 2. Static model.

2.2. Structural Adaptation Model

The first two steps of structural adaptation model are the same as the static model,
as shown in Figure 3. After the attacked UAV is removed, in step 2, UAV 4 and 5 expand
their surveillance area to account for the loss coverage of UAV 7. To simplify the process,
when UAV i is removed, the lost area is distributed evenly among its neighbors. Conse-
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quently, for the remaining UAVs, the renewable surveillance area y′j is calculated using the
following equations:

y′j =

 yj

(
1 +

Mij

∑N
k=1 Mkj

)
, k is the neighbor o f j

yj , otherwise
(2)

Figure 3. Structural adaptation model.

We call this model the structural adaptation model, as it solely depends on the net-
work’s structural information for adjusting the surveillance area. The model is not con-
cerned with the dynamic nature of influence propagation. However, in real-world scenarios,
the information exchange among the remaining UAVs also plays a crucial role in the surveil-
lance mission, particularly during unexpected perturbations.

2.3. Dynamic Adaptation Model

Steps 0 and 1 of the dynamic adaptation model are still the same as static model.
After removing UAV 7, UAVs 4 and 5, which are the neighbors of UAV 7, will first expand
their surveillance areas to compensate for the loss surveillance areas. Then, UAVs 1, 2
and 6, the neighbors of UAVs 4 and 5 will narrow their surveillance areas to balance the
overall surveillance mission. Similarly, the surveillance areas of the remaining UAVs will
change based on their neighbors, showing a dynamic propagation of influence, as depicted
in Figure 4. We refer to this mechanism as the dynamic adaptation model because the
surveillance area is influenced by the dynamic propagation. We calculate the renewable
surveillance area of j using Equation (3).

y′j = yj + ∑N
i=1

y′i − yi

Nneighbori

(3)

yj is the initial surveillance area of j before disturbance occurs. i is one of the neighbors
of j, which was influenced by disturbance earlier than j; y′i is the surveillance area of i after
disturbance influence take effect on i; Nneighbori

is the number of i’s neighbors, which are
affected by the disturbance after i.

Figure 4. Dynamic adaptation model.

2.4. Co-Adaptation Model

In the co-adaptation model, we first repeat steps 0–2 of the structural adaptation model.
Then, we proceed to apply step 2 of the dynamic adaptation model. Finally, the remaining
UAVs have an equal surveillance area. We call this improved model as the co-adaptation
model because we prioritize the implementation of the structural adaptation model and
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then utilize dynamic adaptation, as shown in Figure 5. To calculate the renewable surveil-
lance area (yj) of UAV j with n UAVs removed, we employ the following equation.

y′j = yj
N

N − n
(4)

n denotes the quantity of removed UAVs; N denotes the total UAVs number.

Figure 5. Co-adaptation model.

The results of static model and co-adaptation model have a similar characteristics,
that the surveillance area of each remaining UAV is equivalent in each model. However,
the surveillance area of each remaining UAV between two model are different. The surveil-
lance area of each remaining UAV in static model method does not change during the
mission, which means a overall performance declining after perturbation occurrence. In
other words, under the static model, the swarm is not resilient. Conversely, the surveillance
area of each remaining UAV in co-adaptation model changes according to the structure
and the dynamic of neighbor UAVs, the overall performance of swarm maintains stability.
That is, under the proposed model, the resilient swarm can be achieved. Although the last
equivalent surveillance area characteristic is same, the response of two models is different.
The static model is passive and un-resilient, co-adaptation model is active and resilient,
which is helpful for withstanding disruptions and performance recovery.

3. Performance and Resilience Metric of Mission-Oriented UAV Swarm

In this section, we propose an improved resilience metric for mission-oriented UAV
swarms, based on the metrics in [4,33]. In Section 3.1, we introduce the surveillance mission
and choose the surveillance area as the system performance. Section 3.2 analyzes the
resilience metric provided in [4,33] along with its limitations. In Section 3.3, we propose an
improved resilience metric.

3.1. System Performance of Surveillance Missions

Consider the scenario of monitoring an unidentified battlefield zone using a UAV
swarm [34], UAV = [v1, v2, . . . , vn], (as depicted in Figure 6). vi performs surveillance
mission independently, ri represents the radius of the surveillance area [31,32]. The mission
performance reflects how effectively the swarm fulfills its mission [16]. In this study,
the surveillance area of the targeted battlefield serves as the performance metric for each
UAV. The system performance is the total surveillance area of the UAV swarm.
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Figure 6. A collaborative surveillance mission utilizing a UAV swarm.

Each UAV diligently oversees the target area without interruption, constantly exchang-
ing information with neighboring UAVs through communication links. The surveillance
area for vi at a given time t can be observed in Figure 7.

Figure 7. The overlap surveillance area of two adjacent UAVs.

In Figure 7, r represents the radius of the surveillance target area for each UAV; l
represents the half distance between two adjacent surveillance areas; i and j are the centers
of two surveillance areas; α denotes the included angle between r and l. The shade area
scanned by i and j occurs simultaneously.

In this paper, the system performance metric refers to the total surveillance area
covered by a swarm of UAVs in a battlefield at time t. The total area covered by the UAV
swarm during the surveillance mission is calculated by:

y(t) = ∑Nt
i=1

(
πri

2 − ∑Nt
j=1Suij

)
(5)

πr2 denotes the initial surveillance target area of each UAV before disruptions; Nt
denotes the total UAVs quantity at time t; Suij denotes half of the shaded area in Figure 7,
and is obtained through the following calculation:

Suij =
αij

180
πri

2 − lijr · sinαij (6)

lij =

√(
dix − djx

)2
+
(
dix − djx

)2

2
(7)

αij = arccos
lij
r

(8)
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dix, djx, diy, djy represent the position of i and j. In this study, we compute the raw y(t)
by averaging multiple simulations. We subsequently employ the smooth algorithm [38] to
derive the smooth performance values of y(t).

3.2. Reported Resilience Metric

In [4,9,33], the swarm performance is determined by the total received information
number at time t, which can be calculated by:

y(t) = ∑Nt
i=1∑

Ri(t)
j=1 ∆di

j (9)

di
j is the shortest path from j to i; ∆ is associated with the specific mission’s requirement,

with a value ranging from 0 to 1; Ri(t) refers to the received information number of i at
time t, and Nt denotes the total number of UAVs at time t.

In Figure 8, we present the performance value yt of a single UAV during a threat event
from t0 to t f inal ; the performance before the disruption is denoted as yD, the minimum
performance as ymin, and the performance after recovery as yR; the time at the disruption
occurs is tth, the time at the system performance reaches its minimum as tmin, and the
time at system recovery begins as tss; the values of yD, ymin and yR are calculated by

yD =
∑tth

t0
y(t)

t0−tth
, ymin =

∑tss
tmin

y(t)
tss−tmin

, yR =
∑

t f inal
tss

y(t)
t f inal−tss

.

Figure 8. Schematic of single UAV performance curve.

Based on yD, ymin, yR, tth, tmin and tss, Tran et al. introduce performance factor (α),
absorption factor (δ), recovery factor (ρ), recovery time factor (τ) , volatility factor (ς),

and give the calculation formulas as: σ =
∑

t f inal
t0

y(t)
yD(t f inal−t0)

, δ = ymin
yD

, τ = tss−t0
t f inal−t0

, ρ = yR
yD

,

ς = 1
1+exp[1−0.25(SNRdB−15)] .
Furthermore, Tran et al. propose a resilience metric for each disruption-recovery event.

Si =

{
δρ
[
δ + ς + 1 − τρ−δ

]
, δ < ρ

δρ[δ + ς] , otherwise
(10)

Finally, the resilience value of a system is calculated by [3]:

Stotal = ∑Nthreat
i=1

wSi

∑Nt
j=1 wSi

Si (11)

wSi = (1 − β)Nt−i represents the weight of the ith event; β represents the weight factor
of wSi ; Nthreat represents the number of disruption-recovery events; Nt represents the total
UAVs number at time t.

The assumption that each UAV is capable of autonomously selecting the shortest path
to their targeted node in the swarm is impractical. Furthermore, a significant portion of the
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information transmitted within a swarm is often redundant for conducting surveillance
missions. Using the shortest path to calculate the total amount of information in a UAV
swarm network as the system performance may not be suitable. Additionally, the metric of
total information received fails to provide insight into the occurrence of surveillance area
overlap, which is common in surveillance missions.

3.3. The Improved Resilience Metric

The goal of a resilience plan for a UAV swarm is to achieve the assigned task while
enhancing anti-interference capabilities and improving performance even after disrup-
tion. An optimal resilience metric should encompass the entire process, from pre-damage
preparation to post-recovery evaluation. Based on the resilience metric proposed in [4], we
present an improved strategy for measuring resilience.

We use the MATLAB to obtain performance data through Monte Carlo simulation.
The minimum performance is the most crucial factor in mission execution. However,
the decline stage is not taken into account in previous studies when discussing ymin [4,9,33],
which is an oversight. In this paper, we obtain the minimum performance (ymin) using the
following expressions

ymin =
∑tss

tth
y(t)

tss − tth
(12)

To assess the performance and resilience curve of each disruption-recovery event
accurately, it is more suitable to consider the time of disruption occurring rather than t0,
when discussing the recovery time factor. This is due to the fact that the timeframe [t0, tth]
has little impact on the performance of the disruption-recovery event.

τ =
tss − tth

t f inal − tth
(13)

Based on the ymin and yD, the absorption factor can be obtained by:

δ =
ymin
yD

(14)

Based on the renewal factors, the calculating formula for resilient value of each
disruption-recovery event is as follows:

Si =

{
δρ
[
δ + ς + 1 − (τ)ρ−δ

]
, δ < ρ

δρ
[
δ + ς

]
, otherwise

(15)

4. Results

In this section, we conduct some experiments involving a UAV swarm performing
a surveillance task in a battlefield. In Section 4.1, we provide a brief overview of the
simulation experiment settings. Then, we give the experiments results in Section 4.2 and
compare them with existing research to identify differences. Additionally, we discuss the
factors that may have contributed to these discrepancies.

4.1. Experiment Description

Our proposed method is designed for a scenario in which a UAV swarm conducts a
surveillance task over an unknown battlefield area (with a size of S = 1000 × 1000). UAVs
within the swarm are identical, physical characteristics like weight, size, and shape are
disregarded. During the mission, each UAV collaborates with other UAVs through multi-
hop wireless communication, continuously sharing information to successfully accomplish
the surveillance mission. It also considers the possibility of the UAVs being attacked by
the enemy with a probability [39]. To establish the initial topology of the swarm system,
a scale-free network with a preferential attachment algorithm is utilized [9,33], with m0 = 2
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and m = 2. The UAVs are initially scattered around the battlefield at the mission starting,
and subsequently move as a random walk pattern during the mission (as shown in Figure 9).

Figure 9. Surveillance mission over a specified battlefield.

The mission background is set and simulated using MATLAB R2022a. To mitigate the
stochastic influence of the simulation, each case is run for 10 repetitions. The stochastic
in the experiments is generated through the scale-free algorithm, message generation,
and UAVs removal. The surveillance area of the swarm is calculated using Equation (5).
The parameter settings for the surveillance mission are: N = 20, r = 5, v = 10.

4.2. Experiment Results

Firstly, we study the impact of communication links number (network density) on
system performance, measured by the total number of information received in swarm [33].
In this case, four UAVs and their links are removed at the 100th simulation step as a
disruption, followed by a recovery action at the 200th simulation step where two randomly
selected UAVs and their links are restored. Figure 10 shows the simulation results; it reveals
that the performance of 19 links exhibits a worse behavior, indicating a inferior ability to
resist disruptive events and uncertain threats. We repeated the experiments with 2, 6, 8,
10, 12, 14, 16, and 18 UAVs removing. The results were consistent with Figure 10. These
findings contradict the fact that the network density has little influence on surveillance
missions. Therefore, the performance metric of messages total number proposed by Tran is
inapplicable for UAV swarms when conducting surveillance missions.

Figure 10. y(t) as total messages under different communication links numbers.
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Then, we calculate the total surveillance area by Equation (5). Typically, administrators
expect y(t) to remain steady during mission, indicating that the surveillance capacity keeps
stable and the swarm is resilient. The simulation results for UAV numbers N = 20, N = 18,
N = 16, N = 14, and N = 12 are displayed in Figure 11. In Figure 11, y(t) maintains stability
during the mission. Evidently, the surveillance area y(t) decreases as the UAVs number
declines, implying a decline in the surveillance performance of the UAV swarm. The
N = 20 case denotes undamaged UAVs, and y(t) hovers around the theoretical value 1570,
aligning with the actual scenario. Thus, the simulation results depicted in Figure 11
validate our proposed model and performance metric are suitable for surveillance tasks
compared with reference [3,4,9,33,39]. In Figure 11, the N = 18 case is relatively closer to the
undisturbed event (N = 20). This is due to the fact that both 20 and 18 UAVs are sufficient
for the surveillance mission. As for the remaining three cases (N = 16, N = 14, N = 12), y(t)
remains lower. This can be explained by Equation (5) where it is evident that y(t) decreases
with decreasing values of Nt.

Figure 11. y(t) as surveillance area under different disturbance programs.

Furthermore, we compare the static model, structural adaptation model, dynamic
adaptation model and co-adaptation model in the context of varying numbers of UAVs
(2/4/6/8/10/12/14/16/18) and related links being removed at 200/400/600/800/100/
1200/1400/1600/1800 simulation steps, respectively. For comparison, we also depict the
non-disturbance results in Figure 12. In non-disturbance case, the performance remains
stable at around 1400. Contrarily, the performance of static case exhibits a continuous
decline trend. In other words, under the static model, the swarm is not resilient. The struc-
tural adaptation model and dynamic adaptation model can enhance the performance in a
limited manner compared with static model. As shown in Figure 12, the surveillance per-
formance of the UAV swarm with the co-adaptation method keeps a high level and closes
to non-disturbance case, which shows a satisfactory resilience character. When the number
of removed UAVs exceed 10, the performance experiences a downward slide. However,
the performance is still better than the three other models. This highlights the advantage of
the co-adaptation model in enabling the swarm to withstand certain disruptive events and
uncertain threats. In other words, under the co-adaptation model, a resilient swarm can
be achieved.
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Figure 12. y(t) as surveillance area under different models.

Secondly, we use Equation (10) to calculate the resilience value with Tran’s method,
and our proposed method for each individual disruption-recovery event across various
quantities of communication links. The comparison results are shown in Figure 13. As illus-
trated in Figure 13a, the resilience values obtain by Tran’s method display a subtle variance
with the number of UAV communication links, but exhibit a noticeable decrease as the
number of disruption-recovery events increases. Thus, Tran’s resilience metric shows the
tendency that the information exchange within the UAV swarm remains unaffected by
network density. Actually, with a rise in UAV communication links, the di

j calculated by a
shortest path algorithm (such as Dijkstra’s algorithm) should be shorter. It is worth noting
that an increased quantity of communication links only contributes to performance and not
to the resilience value, as demonstrated in Figures 10 and 13a. Hence, it can be concluded
that the approach proposed by Tran is not suitable for evaluating surveillance missions.

Contrarily, the resilience metrics in Figure 13b are obtained by our proposed method,
which show a notable consistency in the resilience values across different numbers of
communication links. This suggests that the network density has no impact on the re-
silience value in a series of disruption-recovery events. Additionally, the resilience value
decreases in line with the removal of UAVs and communication links, which aligns with
the surveillance performance trend illustrated in in Figure 11. So, our proposed resilience
metric is suitable for evaluating surveillance mission.

Finally, the total resilience value of the UAV swarm measured by Tran’s method
and our proposed method is calculated using Equation (11) based on the resilience value
obtained by Equations (10) and (15). The results are shown in Figure 14. As depicted
in Figure 14, there is a decreasing trend in the total resilience values calculated using
Tran’s method. This trend contradicts the fact that the number of communication links in
a UAV swarm has little influence on the system’s surveillance performance. In contrast,
the total resilience values calculated by our proposed method for different network densities
scatter around a fixed value, and do not exhibit such a trend. This validates the feasibility
of our proposed model in enabling a UAV swarm to efficiently carry out the assigned
surveillance mission in a targeted battlefield zone. So, compared with the method and
metric proposed in [3,4,9,33,39], our model and metrics are more suitable for a UAV swarm
during conducting a surveillance mission.
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Figure 13. Resilience value obtained via Tran et al. [4] (a) and our for proposed method (b) for
each event.

Figure 14. Contrast between total resilience value of our proposed method and Tran.

5. Conclusions

UAVs are expected to quickly respond to dynamic changes that may occur during
missions. Major causes of mission failures are inevitable disruptive events and uncertain
threats. To address this, we have developed an improved model for UAV swarms that
considers the impact of network structure and dynamic adaptation within the swarm. This
improved model enables the swarm to better cope with adverse events and restore its
performance. Based on the co-adaptation model, we also proposed a renewed resilience
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metric. This metric measures the disparity between the minimum performance observed
after a disruption event and the standard performance before the disruption. It provides
insights into the swarm’s ability to withstand disruptions, recover its desired performance,
and effectively accomplish its assigned task.

This model is particularly useful for simulating and evaluating the resilience of
mission-based UAV swarms. It focuses on system designs that include surveillance perfor-
mance and the ability to withstand uncertain threats, as well as adaptability to potential
recovery actions. The resilience of the system, measured by Si, provides a general under-
standing of its performance by assessing its ability to maintain and restore surveillance
capabilities. By analyzing Stotal , which considers stochasticity in simulated performance
and system adaptation over time, direct comparisons of system resilience can be made.
The results of this study indicate that co-adaptation improves both system performance
and resilience. However, it is important to note that the resilience gained by co-adaptation
is reduced when the surveillance area exceeds the capacity of the UAV swarm. These find-
ings can be valuable in guiding future investment decisions and research agendas in the
overall design process. For instance, when combined with capacity analysis, UAV swarm
designers can use these assessments to determine if co-adaptation in the surveillance area
is a worthwhile task for their system, based on knowledge of specific threat likelihoods.

In this study, we did not consider certain limitations, such as the surveillance capacity
of each UAV and the increasing probability of attacks with the surveillance area expands.
Furthermore, we recognize that communication distance and time delay can also impact
the co-adaptation capacity of our resilience enhancement model for UAV swarms. In future
research, we intend to study the influence of surveillance capacity, communication distance,
and time delay on our proposed model.
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