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Abstract: Dedicated to meeting the growing demand for multi-agent collaboration in complex
scenarios, this paper introduces a parameter-sharing off-policy multi-agent path planning and the
following approach. Current multi-agent path planning predominantly relies on grid-based maps,
whereas our proposed approach utilizes laser scan data as input, providing a closer simulation of
real-world applications. In this approach, the unmanned aerial vehicle (UAV) uses the soft actor–
critic (SAC) algorithm as a planner and trains its policy to converge. This policy enables end-to-end
processing of laser scan data, guiding the UAV to avoid obstacles and reach the goal. At the same
time, the planner incorporates paths generated by a sampling-based method as following points. The
following points are continuously updated as the UAV progresses. Multi-UAV path planning tasks
are facilitated, and policy convergence is accelerated through sharing experiences among agents.
To address the challenge of UAVs that are initially stationary and overly cautious near the goal, a
reward function is designed to encourage UAV movement. Additionally, a multi-UAV simulation
environment is established to simulate real-world UAV scenarios to support training and validation of
the proposed approach. The simulation results highlight the effectiveness of the presented approach
in both the training process and task performance. The presented algorithm achieves an 80% success
rate to guarantee that three UAVs reach the goal points.

Keywords: path planning; path follow; deep reinforcement learning; multi-UAV; parameter share

1. Introduction

The autonomous capabilities of unmanned aerial vehicles (UAVs) have been improved
dramatically in recent years, because of the fast development of sensor technology, com-
munication and control technique [1]. At present, UAVs are widely used in many fields,
including industry, agriculture, search and rescue, environmental monitoring and trans-
portation [2]. However, a single UAV can only accomplish some restricted missions, the
reason being that a single UAV has limited endurance, payload capacity and working range.
For the problems in complex scenarios, it is necessary for multiple UAVs to work together.
Multiple UAVs can cooperate with each other, in order to provide strong robustness, fault
tolerance and flexibility.

To realize the autonomous operation of multiple UAVs, many related technologies
need to be developed, including collaborative navigation, planning and control. Multi-UAV
path planning and the following techniques are very important, and ensure that multiple
UAVs do not collide with obstacles while moving within the work area. A great multi-
UAV path planning and the following algorithm enable each UAV to safely and efficiently
navigate from its starting position to its destination. Other related applications, such as
multi-robot cooperation, also require multi-agent path planning and following technique [3].
Path planning is an NP-hard problem [4]. Multi-UAV path planning builds upon the
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foundations laid by single-UAV path planning. Numerous research efforts have addressed
the challenges of single UAV path planning, employing classical techniques, heuristics, and
machine learning approaches. Mechali et al. [5] proposed an enhanced rapidly exploring
random tree (RRT) algorithm for UAV, incorporating a technique to smooth and rectify
the resultant path. This refinement aims to minimize energy consumption during the
flight. Chen et al. [6] applied the A* algorithm to UAV path planning under the constraints
of bearing the least danger and consuming the least fuel. Wu et al. [7] introduced an
enhanced deep Q-network model by integrating the lazy training method to optimize UAV
path planning.

Multi-agent path planning and the following problem have attracted the attention
of many researchers [8–10]. In [11], a randomized search method with hill climbing was
proposed, which minimizes the overall path lengths of the multi-robot system. In [12],
a guided iterative prioritized planning algorithm providing the shortest time cost was
derived for addressing the path planning problem of the multiple mobile agents. Based
on traditional RRT, a decentralized multi-agent RRT algorithm was developed in [13],
and the complex environmental constraint was considered at the same time. Intelligent
optimization algorithms have also been applied to the multi-agent path planning and the
following problem. In [14], an innovative artificial potential field algorithm was applied to
get all feasible paths in a discrete gridded environment; then, an enhanced genetic algorithm
was developed to find the optimal path. In [15], the unknown obstacle-rich scenes were
considered, and a decentralized algorithm for multi-robot autonomous navigation was
derived. The path planning and formation control problem for multi-UAV systems was
studied in [16], and an improved artificial potential function-based path planning approach
was proposed. In [17], based on distributed model predictive control, a distributed real-
time search path planning method for a multi-UAV system was proposed. The avoiding
collision requirement was considered in [18], and the multi-agent path planning problem
in a road network was investigated. To deal with the multi-robot transporting problem, an
integrated task assignment and path planning algorithm was proposed in [19]. In [20], a
multi-strategy fusion differential evolution algorithm was proposed for the path planning
problem of UAVs in a complex environment. In [21], a novel multi-UAV distributed
online cooperation coverage path planning method was proposed, which was utilized
to minimize task completion time. The multi-agent pathfinding problem was addressed
in [22], and a prioritized safe interval path planning method with continuous time conflicts
was proposed.

In recent years, the deep reinforcement learning (DRL) method and multi-agent
deep reinforcement learning method [23] have been applied to deal with task allocation,
link selection or path planning problems of the multi-agent system and autonomous
vehicles [24]. In [25], the optimal links discovery and selection problem of the multi-
UAV system was addressed through DRL, in which the continuous action spaces were
sliced into a number of tractable fractions. A multi-agent mutual sampling method was
proposed in [25], in order to stabilize and expedite the training procedure. The multi-
UAV path planning problem can be modeled as a multi-agent reinforcement learning
problem. However, independent Q-learning introduces the non-stationarity problem.
In [26], a multi-agent variant of importance sampling was developed, in order to solve
the non-stationarity problem to some extent. To realize coordinated control of the multi-
UAV system, a distributed reinforcement learning approach was proposed in [27], which
showed robust communication channel impairments. In [28], in order to deal with complex
interaction and time-varying communication topology problems, an attention-enhanced
reinforcement learning method was proposed for multi-agent cooperation. In [29], a virtual
learning objective was introduced, and a cooperative reinforcement learning method with
two layers was proposed for multi-agent systems. Deep reinforcement learning was
applied in [30] to address the decentralized multi-agent pursuing issue. The multi-agent
active search problem was considered in [31], and a Poisson point process formulation
was introduced; then, the active search problem was turned into a reinforcement learning
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problem. In [32], reinforcement and imitation learning methods were combined, and a novel
framework for multi-agent path finding was proposed. The safe multi-agent reinforcement
learning method for multi-robot control was investigated in [33], where the neighbor’s
safety constraints were considered to guarantee safe team behaviors.

Previous studies have primarily based their research on grid-based maps, while our
approach innovates by using laser scan data as input. This choice enables a more accurate
simulation of real-world applications. Unlike previous algorithms, our approach is more
lightweight and does not include a communication mechanism. This design choice is
deliberate, as our experiment is situated in a setting with continuous actions, and agents
rely solely on laser scan data for observations. In this realistic scenario, sharing laser
scan data among agents does not contribute to policy convergence or decision making.
Consequently, our approach avoids integrating a communication mechanism to avoid
additional computational costs. In this paper, we present a multi-UAV path planning and
following approach based on multi-agent reinforcement learning. The UAV employs the
SAC algorithm as a planner, training the policy to converge. The policy enables end-to-
end processing of laser scan data, guiding the UAV to avoid obstacles and reach the goal.
Other approaches often rely on traditional numerical optimization techniques that require
the UAV’s environment to be first constructed using SLAM before path planning can be
performed. Simultaneously, the planner utilizes paths generated through a sampling-
based method as following points. As the UAV progresses, the following points are
continually updated. Multi-UAV path planning tasks are facilitated, and policy convergence
is accelerated through shared experiences among agents. The effectiveness of this approach
is verified in a randomized map environment. The main contributions of this paper include:

1. Establishing a multi-UAV simulation environment to train and validate the proposed
approach. It involves individual interactions between agents and the environment,
avoiding joint action and state spaces. This prevents exponential parameter growth
with an increasing number of agents and maintains linearity.

2. Proposing a parameter-sharing off-policy multi-agent path planning and following
an approach that leverages interaction data from all agents. Experimental simulation
results validate its effectiveness.

3. Designing a reward function that encourages UAV movement, addressing the problem
of UAVs remaining stationary in the initial phase and exhibiting overly cautious and
minimal actions when approaching the goal.

The structure of this paper is as follows: Section 2 provides a detailed explanation of
the parameter-sharing multi-agent path planning and the following approach. Section 3
provides details on simulation experiments and performance analysis. Finally, conclusions
are summarized and future research is also noted in Section 4.

Part of the material has been used in our conference paper [34], which proposed a path
planning and following method for a single quadrotor UAV. We believe that this paper is
a sufficient extension of our previous work [34]. We extended our previous algorithm to
a multi-UAV scenario based on multi-agent reinforcement learning, and completely new
training and simulation results are shown in this paper.

2. Approach

In this chapter, we combine the SAC algorithm with a sampling-based path planning
algorithm adaptively informed trees (AIT*) [35] to generate a path for the following. The
path is partitioned into the following points, which are incorporated into the design of
the state and reward functions, guiding the UAV to reach the goal more efficiently and
effectively. Additionally, we extend the application to multiple agents, enabling multi-UAV
path planning in task scenarios. Inspired by shared experience actor–critic (SEAC) [36]
for multi-agent reinforcement learning, we expedite exploration, learning, and policy
convergence by sharing experiences among agents.
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2.1. Soft Actor–Critic

DRL is a critical machine learning tool primarily focusing on addressing sequential
decision-making problems. Its learning process can be described as Markov decision
process (MDP) [37]. The agent’s behavior is determined by the policy π(·|s), which is
stochastic and generates a vector consisting of the probabilities associated with selecting
each possible action. At each time step t, the agent is in a given state st. at is performed
by the agent at time step t, which obeys the output distribution of policy π in state st.
Subsequently the agent is given a new state st+1 and receives an reward signal r(st, at).
During interactions, the agent receives immediate rewards, using them to evaluate its
actions. In [38], Yang compared the SAC algorithm with deep deterministic policy gradients
(DDPG) [39] and twin-delayed deep deterministic (TD3) [40] algorithms in the quadrotor
obstacle avoidance task. Simulation results show that SAC outperforms DDPG and TD3 in
terms of stability and performance. Thus, we choose SAC to optimize the policy network π.
SAC is an off-policy actor–critic algorithm based on the maximum entropy RL framework.
The learning goal is to maximize the following objective function:

J(π) =
T

∑
t=0

E(st ,at)∼ρπ [r(st, at) + αH(π(·|st))], (1)

where ρπ denotes state-action marginals of the trajectory distribution induced by a policy
π(s, a), and the temperature parameter α controls the importance of entropy relative to
the reward. Choosing the optimal α is non-trivial and must be tuned for each task. Rather
than manually setting the α, we automate the process by formulating different maximum
entropy reinforcement learning goals, where entropy is considered a constraint [41]. We
set the initial value of α to 0.2, which tends to decrease toward 0 as training progresses,
as shown in Figure 1. H(π(·|s)) is the policy entropy, which measures the dispersion
of the output action distribution under a policy π in the state s, and is computed as
H(π(·|s)) = Ea∼π(·|s)[− log π(a|s)].

Figure 1. Trends in the temperature parameter α as training progresses.

The maximum entropy term is a critical component [42]. The primary purpose is
not to discard any useful action. It promotes exploration, prevents local optima, and
enhances robustness in the agent’s behavior. It is well-suited for addressing the problems of
model-free DRL, including high sample complexity and unstable convergence properties.

The state-value function V(st) and the action-value function Q(st, at) are used to
evaluate the quality of the policy π. In the continuous state setting, we can consider a
parameterized state value function Vψ(st), soft Q-function Qθ(st, at), and a tractable policy
πϕ(st, at). The parameters of these networks are ψ, θ and ϕ , respectively. For instance,
the value functions can be modeled as expressive neural networks, and the policy as a



Drones 2024, 8, 18 5 of 18

Gaussian with mean and covariance given by neural networks [43]. In practice, including a
distinct function approximator Vψ̄(st) for the soft value has the dual benefit of enhancing
training stability and facilitating concurrent training alongside the other networks.

The soft state-value function is trained to minimize the objective function [43]:

JV(ψ) = Est∼D

[
1
2
(Vψ(st)−Eat∼πϕ [Qθ(st, at)− log πϕ(at|st)])

2
]

, (2)

where D is a replay buffer. The gradient of Equation (2) is estimated with an unbiased
estimator and used for optimizing itself,

∇̂ψ JV(ψ) = ∇ψVψ(st)(Vψ(st)−Qθ(st, at) + log πϕ(a|s)). (3)

The soft Q-function is trained to minimize the objective function [43]:

JQ(θ) = E(st ,at)∼D

[
1
2
(Qθ(st, at)− Q̂(st, at))

2
]

, (4)

with
Q̂(st, at) = r(st, at) + γEst+1∼p[Vψ̄(st+1)]. (5)

Again, the gradient of Equation (4) is :

∇̂θ JQ(θ) = ∇θQθ(st, at)(Qθ(st, at)− r(st, at)− γVψ̄(st+1)). (6)

SAC algorithm employs the Kullback–Leibler (KL) divergence [44] to measure the
policy’s similarity before and after parameter updates. The actor updates the policy network
by minimizing the following objective function:

Jπ(ϕ) = Est∼D

[
DKL

(
πϕ(·|st) |

exp(Qθ(st, ·))
Zθ(st)

)]
. (7)

The partition function Zθ(·) serves to normalize the distribution. While it is usually
intractable, it has no impact on the gradient concerning the new policy and can, therefore,
be disregarded [43].

Finally, multiple consecutive updates of all the networks can be performed within
a single step of environmental sampling. λ is a learning rate and can be set to different
values according to different network parameters. These learning rates and the weighting
factor τ used for updating the target soft state-value network are hyperparameters that
need to be tuned. A simplified pseudo-code for SAC is illustrated in Algorithm 1.

Algorithm 1 Soft actor–critic

1: Initialize parameters vectors ψ, ψ̄, θ, ϕ;
2: for each iteration do
3: for each environment step do
4: at ∼ πϕ(at|st)
5: st+1 ∼ p(st+1|st, at)
6: D ← D ∪ {(st, at, r(st, at), st+1) }
7: end for
8: for each gradient step do
9: ψ← ψ− λ∇̂ψ JV(ψ)

10: θi ← θi − λ∇̂θi JQ(θi) for i ∈ 1, 2
11: ϕ̂← ϕ− λ∇̂ϕ Jπ(ϕ)
12: ψ̄← τψ + (1− τ)ψ̄
13: end for
14: end for
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2.2. Network Structure

The network structure of the hybrid path planning and the following algorithm is
shown in Figure 2. The neural network architecture for the SAC algorithm consists of both
actor and critic networks. The actor network comprises two fully connected(FC) layers
with 256 units each, responsible for action generation. The critic network, represented by
the Q-net, features two identical Q-networks, Q1 and Q2. These Q-networks are multi-
layered, with 256 units in the first two FC layers and an output layer for Q-value estimation.
These networks work together to evaluate actions generated by the actor for reinforcement
learning tasks.

40

2

2

Lidar data

Position relative to goal point

UAV’s velocity 2

… …

2

2

Action
Tanh

Sample

Mean & Deviation(SAC)

State
Dense | 256

ReLU
Dense | 256

ReLU

1… …

2
Action

Dense | 256
ReLU

Dense | 256
ReLU

Q-value

State + Action

Following point
2

Figure 2. Network architecture of soft actor–critic. It consists of actor and critic networks. The state is
displayed in brownish-yellow, the action in green, the neural network structure in purple, and the
Q-value in blue.

The state space consists of laser data, the UAV’s velocity, position relative to the
goal, and a following point. For safety and practical physical reasons [45,46], we limit
the absolute values of the UAV’s forward and angular velocities to within 1 m/s. At the
same time, we aim to minimize acceleration to ensure that the UAV can smoothly adjust
its orientation and perform maneuvers. Note that in our approach we mainly consider
kinematic aspects to control the motion of the UAV. Compared to [38], we incorporate
the following point into the state. As mentioned earlier, sampling-based path planning
algorithms are well suited for obtaining a predefined path that the DRL-based planner can
follow. AIT* [35] outperforms existing sampling-based algorithms when addressing the
tested abstract problems. It finds an initial solution quickly and converges to the optimum
in an anytime manner. Therefore, AIT* is chosen for generating the predefined path. We
present an innovative hybrid approach for path planning and following, integrating SAC-
based path planning with path-following techniques. Initially, a path is generated using
AIT*, which then serves as the following points for the planner. This approach guides the
agent to move more efficiently toward the goal, with the following points continuously
updated in real time.

2.3. Multi-Agent Framework

Due to the homogeneity of tasks that multiple agents need to perform, we can extend
this algorithm to multi-agent scenarios. A straightforward approach, such as independent
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Q-learning (IQL) [47], is to treat the other agents as part of the environment and allow each
agent to learn its policy independently. However, this approach leads to uncooperative
behavior among agents, and the interference between different agents’ policies introduces
uncertainty regarding the convergence of their policies during training.

Introducing a communication mechanism can enhance IQL and foster cooperation
among agents [48,49]. In scenarios with grid-based maps and discrete action spaces,
agents can communicate to exchange locally observed state maps, leading to a better
understanding of the environment and decision making. In contrast, our experiment
involves a more realistic setting with continuous actions, where agents’ observations
consist only of laser scan data. Sharing these data among agents provides no assistance
in policy convergence and decision-making. Therefore, our algorithm does not introduce
a communication mechanism to avoid additional computational costs. Agents treat each
other as part of the environment. When another agent enters the laser range of a given agent,
it can immediately perceive this through laser data. By avoiding explicit communication
mechanisms, our algorithm presents a more computationally efficient and lightweight
solution, providing practical insights for real-world multi-agent systems.

To facilitate the convergence of different agent policies, we enable efficient learning via
experience sharing. Unlike IQL, we introduce an experience replay mechanism to train and
promote the convergence of agent policies. A step transition (st, at, rt, st+1, done) is stored
in the replay buffer, serving as experience. Here, done is a boolean value indicating whether
the current step signifies the end of an episode. The replay buffer, a key component, is
designed to store the experiences of individual agents. This experience-sharing mechanism
assumes an environment where local policy gradients of agents provide valuable learning
directions for all agents. Essentially, this implies that agents can benefit from the experiences
of their peers, even in scenarios where their targets and behavior policies are different. This
collaborative learning approach fosters a collective intelligence among agents, promoting
adaptability and efficiency in navigating complex environments. Previous research [49]
suggests that utilizing the shortest path distances from all agents to each agent’s goal signif-
icantly enhances goal-oriented learning in partially observable environments. We leverage
changes in the shortest distances and constraints on path-following points to guide not only
the achievement of single-agent goals but also to improve collision avoidance cooperation
between agents. The experience replay mechanism effectively utilizes training data from
all agents, providing useful policy gradients for all. Additionally, we perform importance
sampling, allowing agents to selectively choose samples from previous experiences rather
than uniformly random sampling. One of the benefits of this mechanism is breaking the
temporal correlation among data, enabling the model to adapt better to different situations.
We define the sampling probability for the i-th transition as follows [38]:

Pi =
pβ

i

∑k pβ
k

, (8)

where the parameter β serves as a factor regulating the impact of priority on sampling,
β ∈ [0, 1]. A larger β tends to favor sampling based on priority, while a smaller β leans
toward uniform sampling. Specifically, Tom et al. suggest prioritizing the replay of
transitions with higher expected learning progress, determined by the magnitude of their
temporal difference (TD) error [50]. The priority pi of the i-th transition is calculated by:

pi = δ2
i + η, (9)

where δ denotes the TD error of the Q-function network and η represents a small positive
number, ensuring that all transitions have a non-zero probability of being sampled. In
summary, we illustrate the model architecture of our proposed algorithm based on the
multi-agent soft actor–critic framework in Figure 3.
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Environment
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…
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store experience
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action
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Policy

Figure 3. Model architecture of the path planning and following algorithm based on the multi-agent
soft actor–critic framework.

2.4. Reward Function Design

A reward function rtotal has been designed to facilitate path following. rtotal is com-
posed of the following elements:

rtotal = rdis + r f ollow + rcrash + r f ree + rstep + rmove, (10)

where rdis denotes the distance reward, r f ollow denotes the following reward, rcrash denotes
the collision reward, r f ree denotes the free space reward, and rstep denotes the step reward.
rmove denotes the move reward. In the current setup, the reward function includes multiple
sub-functions without explicit weights, incorporating a form of intelligence that avoids
manual tuning of weight parameters. While the experiments show good results without
explicit weights, users can customize the weights according to specific preferences. The
expression for the distance reward rdis is:

rdis =

{
rarrival if dg < dgmin
∆dg otherwise,

(11)

where dg represents the distance between the UAV and the goal. When dg is less than the
threshold dgmin, it is considered as reaching the goal, and a reward value rarrival is obtained.
Otherwise, a reward value related to the distance change within this time step is obtained.
The formula for following reward r f ollow is:

r f ollow = −dPf ollow , (12)

where dPf ollow is the distance from the UAV to Pf ollow, which is the following point closest to
the UAV along the predefined path. Note that rdis depends on the changing value of the
distance, while r f ollow depends directly on the distance itself. This approach helps maintain
the UAV’s proximity to the path and focuses its interaction with the environment in the
vicinity of the path. Consequently, this strategy yields a greater number of high-quality
interaction sequences, ultimately enhancing the policy’s performance. The formula for the
collision reward rcrash is:

rcrash = − exp(−dro

r̃
), (13)

where dro is the distance between the UAV and the nearest obstacle. r̃ is a hyperparameter,
and r̃ ∈ R+. As a UAV approaches obstacles, its laser scan detects shorter distances,
resulting in reduced feedback rewards from environmental interactions. This mechanism
guides the UAV to maintain a distance from obstacles, effectively avoiding collisions. To
enhance the UAV’s avoidance of obstacles, the free space reward r f ree is defined as:
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r f ree = −∑
i

exp(− (di − dmin)

(dmax − dmin)r̄
), (14)

where di represents the i-th data of the LiDAR, and dmax and dmin represent its maximum
and minimum values, respectively. r̄ is a hyperparameter, and r̄ ∈ R+. The value of r f ree
diminishes only when the UAV is in close proximity to an obstacle, and it approaches zero
rapidly as the UAV moves far from the obstacle. This motivates the UAV to explore narrow
spaces. To further promote swift target attainment, we introduce a step reward rstep = −T.
As time T increases, rstep becomes more punitive. During the experimental process, we
observed that the UAVs tended to remain stationary in the initial stages and exhibited
cautious behavior with minimal movement when approaching the goal. To address these
issues, a reward function was designed to encourage UAV mobility. The move reward rmove
is defined as:

rmove = dmove, (15)

where dmove represents the distance moved from the old state to the new state. Introduc-
ing a move reward can incentivize the agent to advance, thereby further reducing the
episode time.

3. Experiment and Result

In this section, a simulation environment is established based on the robot operating
system (ROS) and Rviz (a visualization tool). We use it to simulate multiple quadrotor
UAVs performing a multi-agent path planning task. The proposed path planning and
the following algorithm are trained and tested in the simulation environment. We will
compare the proposed method with traditional methods and analyze the performance of
the proposed method. In all the simulation results in this section, ‘baseline’ represents
the SAC-based path planning method proposed in [38]. The ‘hybrid’ method denotes the
path planning algorithm which is extended from our previous work by adding the path
following point. The complete path planning and following approach proposed in this
paper is represented as ‘hybrid-move’.

3.1. Simulation Environment

Based on ROS and Rviz, the simulation environment is established, as Figure 4 shows.
In this simulation environment, the kinetic model is based on ROS, and the visualization
tool is Rviz. The density of obstacles in the environment can be set arbitrarily. The obstacle
is a cylinder with a preset radius. Obstacles can overlap with each other to form different
shapes, in order to better simulate the complex obstacles in the real world.

In the simulation environment, the number of multiple UAVs is linearly expanded.
Every UAV interacts with its surroundings through LiDAR one by one, and every UAV
treats other UAVs as part of the environment. In this way, joint action space and state
space are not used, so the related parameters increase linearly instead of exponentially
when the number of UAVs increases. This feature is beneficial to the scalability and overall
performance of the algorithm. The UAV characteristics in the simulation environment are
shown in Table 1. It describes UAV velocity limits, LiDAR-related information, and flight
height. This velocity limit is considered appropriate for the effective demonstration of
simulation experiments and is also practical for potential real-world applications.
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Figure 4. The simulation environment based on ROS and Rviz. Gray cylinders symbolize obstacles
and the yellow curve represents the predefined path. The three UAVs are distinguished by the colors
red, green and blue, while spherical markers at the ends of the path indicate the start and goal points
of each UAV. In addition, the green sphere along the path represents the following point.

Table 1. The UAV characteristics in the simulation environment.

Parameter Value

Maximum Linear Velocity 1.0 m/s

Maximum Angular Velocity 1.0 rad/s

LiDAR Angular Range 2.094 rad to −2.094 rad

Maximum Range of Laser 3.0 m

Minimum Range of Laser 0.15 m

Number of Laser Beams 40

Flight Height 0.5 m

In our simulations, the experiment space is set to 20 m× 20 m, and the distance from
the start to the end is 12 m. The number of UAVs is three, and the density of the obstacle is
set between 5% and 15%.

3.2. Results and Discussion

In the training process, Figure 5 and Figure 6 show the episode reward and episode
time, respectively. We also present crucial data in a tabular format depicting episode time
of Figure 6, as shown in Table 2.

Table 2. Episode time (seconds) of the three methods in different episodes.

Episode Baseline (s) Hybrid (s) Hybrid-Move (s)

1 65.33 61.98 55.80

200 53.62 45.59 40.21

400 47.37 36.73 35.49

600 40.13 36.40 35.36

800 41.91 35.34 32.68

1000 37.83 35.57 32.74

As shown in Figure 5, all three methods complete the learning quickly and converge
through 200 episodes. The episode reward rose quickly and then stabilized. As the agents
interact with the environment, the policy is continuously updated and eventually converges.
From Figure 5, we can also conclude that the episode reward of ‘baseline’ method is larger
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than that of ‘hybrid’ and ‘hybrid-move’ methods in the final training results. This is due to
the fact that r f ollow is set to negative. The final episode reward of ‘hybrid-move’ method is
larger than that of ‘hybrid’ method, because that a ‘move’ reward function with positive
value is added in the proposed algorithm. The ‘move’ reward function encourages the
movement of the UAV, which prevents task failure due to trapping in the local optimal
solution or a long task duration.
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Figure 5. Simulation result: Comparison of the three methods in episode rewards.

Figure 6 and Table 2 illustrate the progression of episode times during training, which
gradually decreased and finally stabilized. At the beginning of training, all of the three
learning methods have not converged, and the UAVs might crash or fly randomly to
explore. As long as there is a UAV that has not crashed or reached its goal point, the
episode time keeps growing, so at the beginning of training, the episode time is very
long. With the convergence of agent policy, UAVs can get to the goal point better and
faster, and the episode time also decreases. From Figure 6, we can conclude that the
proposed method ‘hybrid-move’ has the minimum episode time compared with ‘baseline’
and ‘hybrid’ methods, and the proposed method has the best performance.
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Figure 6. Simulation result: Comparison of the three methods in episode time.

A typical simulated flight process is shown in Figures 7–12. The yellow curve rep-
resents the predefined path. The dotted line with blue, green, and red colors denote the
detection range of LiDAR mounted on different UAVs. The UAV senses surrounding
obstacles and other UAVs through laser scan data. The DRL-based planner takes the state
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composed of laser scan data, the UAV’s velocity and reference path information as input,
and outputs velocity information to guide the UAV to the goal point. Obstacle avoidance
among UAVs is demonstrated in another scenario, as shown in Figure 13. The UAVs
adeptly detect obstacles in their vicinity using LiDAR data, concurrently being attuned to
the presence of other UAVs.

Figure 7. Simulation scenario: 3 UAVs flying to goals through LiDAR for obstacle avoidance at 0 s.
Gray cylinders symbolize obstacles and the yellow curve represents the predefined path. The three
UAVs are distinguished by the colors red, green and blue, while spherical markers at the ends of
the path indicate the start and goal points of each UAV. In addition, the green sphere along the path
represents the following point. Dotted lines in red, green and blue indicate the range of the LiDAR
mounted on each UAV.

Figure 8. Simulation scenario: 3 UAVs flying to goals through LiDAR for obstacle avoidance at 11 s.
Gray cylinders symbolize obstacles and the yellow curve represents the predefined path. The three
UAVs are distinguished by the colors red, green and blue, while spherical markers at the ends of
the path indicate the start and goal points of each UAV. In addition, the green sphere along the path
represents the following point. Dotted lines in red, green and blue indicate the range of the LiDAR
mounted on each UAV.
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Figure 9. Simulation scenario: 3 UAVs flying to goals through LiDAR for obstacle avoidance at 22 s.
Gray cylinders symbolize obstacles and the yellow curve represents the predefined path. The three
UAVs are distinguished by the colors red, green and blue, while spherical markers at the ends of
the path indicate the start and goal points of each UAV. In addition, the green sphere along the path
represents the following point. Dotted lines in red, green and blue indicate the range of the LiDAR
mounted on each UAV.

Figure 10. Simulation scenario: 3 UAVs flying to goals through LiDAR for obstacle avoidance at 33 s.
Gray cylinders symbolize obstacles and the yellow curve represents the predefined path. The three
UAVs are distinguished by the colors red, green and blue, while spherical markers at the ends of
the path indicate the start and goal points of each UAV. In addition, the green sphere along the path
represents the following point. Dotted lines in red, green and blue indicate the range of the LiDAR
mounted on each UAV.

To further test the performance of the algorithm, we ran 1000 rounds of tests and
presented statistical results. Our simulation experiment employed three UAVs and counted
the success rate of each UAV reaching the goal point. The results of each experiment can be
divided into 0 UAVs, 1 UAV, 2 UAVs or 3 UAVs successfully reaching their goal points. We
ran 1000 rounds of tests with our trained model, and the results are displayed in Table 3
and Figure 14. Note that due to the random generation of environmental obstacles, extreme
cases may occur, such as obstacles that coincide with or are too close to the start or goal
points. These obstacles can prevent any UAV from reaching the goal point. While the
probability of encountering such extreme situations is low, we acknowledge their potential
and clarify that they do not significantly affect the overall success rate assessment of the
algorithm. We can obtain that compared with the other two methods (about 70% success
rate), the proposed algorithm achieves 80% success rate to guarantee that 3 UAVs reach
the goal points. The experimental results confirm that adding path-following points and
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encouraging the move’s reward function has a significant improvement in the success rate
of the task.

Figure 11. Simulation scenario: 3 UAVs flying to goals through LiDAR for obstacle avoidance at 44 s.
Gray cylinders symbolize obstacles and the yellow curve represents the predefined path. The three
UAVs are distinguished by the colors red, green and blue, while spherical markers at the ends of
the path indicate the start and goal points of each UAV. In addition, the green sphere along the path
represents the following point. Dotted lines in red, green and blue indicate the range of the LiDAR
mounted on each UAV.

Figure 12. Simulation scenario: 3 UAVs flying to gooals through LiDAR for obstacle avoidance at
55 s. Gray cylinders symbolize obstacles and the yellow curve represents the predefined path. The
three UAVs are distinguished by the colors red, green and blue, while spherical markers at the ends
of the path indicate the start and goal points of each UAV. In addition, the green sphere along the
path represents the following point. Dotted lines in red, green and blue indicate the range of the
LiDAR mounted on each UAV.

Table 3. Simulation result: Data on the number of successful UAV arrivals of the three methods in
1000 rounds.

Methods 0 UAV 1 UAV 2 UAVs 3 UAVs

baseline 0 39 256 705

hybrid 0 34 244 722

hybrid-move 1 10 160 829
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Figure 13. Simulation scenario: 3 UAVs sensing each other and avoiding obstacles through LiDAR.
Gray cylinders symbolize obstacles and the yellow curve represents the predefined path. The three
UAVs are distinguished by the colors red, green and blue, while spherical markers at the ends of
the path indicate the start and goal points of each UAV. In addition, the green sphere along the path
represents the following point. Dotted lines in red, green and blue indicate the range of the LiDAR
mounted on each UAV.
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Figure 14. Simulation result: Comparison of the three methods in the number of successful UAV
arrivals in 1000 rounds.

4. Conclusions

This paper introduces a parameter-sharing off-policy multi-agent path planning and
the following approach. We establish a multi-UAV simulation environment to train and
validate the proposed approach, and a parameter-sharing off-policy multi-agent path
planning and the following approach is proposed. Furthermore, we design a reward
function that encourages UAV movement, addressing the problem of UAVs remaining
stationary in the initial phase and exhibiting overly cautious and minimal actions when
approaching the goal. Future work will focus on applying the proposed algorithm to real
UAVs, with a particular emphasis on integrating safety constraints to ensure the robust and
secure deployment of the system in practical scenarios.
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The following abbreviations are used in this manuscript:

SAC Soft actor–critic
RRT Rapidly exploring random tree
DRL Deep reinforcement learning
AIT* Adaptively informed trees
SEAC Shared experience actor–critic
MDP Markov decision process
DDPG Deep deterministic policy gradients
TD3 Twin-delayed deep deterministic
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FC Fully connected
IQL Independent Q-learning
TD Temporal difference
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