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Abstract

:

Drones have been increasingly used in firefighting to improve the response speed and reduce the dangers to human firefighters. However, few studies simultaneously consider fire spread prediction, drone scheduling, and the configuration of supporting staff and supplies. This paper presents a mathematical model that estimates wildfire spread and economic losses simultaneously. The model can also help us to determine the minimum number of firefighting drones in preparation for wildfire in a given wild area. Next, given a limited number of firefighting drones, we propose a method for scheduling the drones in response to wildfire occurrence to minimize the expected loss using metaheuristic optimization. We demonstrate the performance advantages of water wave optimization over a set of other metaheuristic optimization algorithms on 72 test instances simulated on selected suburb areas of Hangzhou, China. Based on the optimization results, we can pre-define a comprehensive plan of scheduling firefighting drone and configuring support staff in response to a set of scenarios of wildfire occurrences, significantly improving the emergency response efficiency and reducing the potential losses.
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1. Introduction


Wildfires, such as forest fires and mountain fires, are one of the most frequent disasters causing great economic losses, environmental damage, and threats to lives worldwide. Efficient firefighting operations are critical to reduce the losses. However, traditional firefighting operations often pose significant dangers to human firefighters. In addition, traditional aerial firefighting using helicopters, air tankers, and other manned aircraft are often limited in low flexibility, scalability, and cost-effectiveness [1,2]. In recent years, unmanned robotics, especially drones (also known as unmanned aerial vehicles, UAVs), have been increasingly used in firefighting operations to improve the response speed and economic effectiveness while reducing the dangers to human firefighters [3,4,5,6]. In wild areas, the typical usage of firefighting drones is to deliver water capsules (bags) to fire spots and then release water (or other water-based liquids) in dispersed form to suppress fire in the covered area [7,8]. Depending on the types of drones, the amount of water that a drone carries at a time typically varies from 10 to 1000 kg. Figure 1 shows a TD220 coaxial firefighting drone (made by Zhongzhihang [9]), which has a payload of 120 kg.



Qin et al. [3] designed a drone firefighting system, which consisted of a quadcopter as the platform, a transmission system to collect and release water, a kinematic-based navigation system, and a mission control system to coordinate the drone to find an optimal path (with respect to distance and power consumption) to the fire spot and then suppress the fire. Viegas et al. [10] designed a lightweight tethered UAV forest firefighting drone, which utilized water jet propulsion combined with multi-rotor propulsion to increase the flight endurance. However, receiving a continuous intake of water for firefighting can be impossible in wild areas, as the operational distance is limited by the length of the aerial hose. Using water capsules delivered by aircraft, to and released on the fire spot, eliminates this limitation [11]. The aircraft releases a water capsule at an appropriate position. When moving in a medium above the critical temperature, the capsule shell accumulates an integral amount of damage; when the damage reaches the value of the thermal stability coefficient of the shell, the shell breaks and releases water in dispersed form [8]. Explosive blasts in water makes shock waves, so shock waves propagate in water first and then beyond water to continue propagation in the air. Explosive water mist lowers the temperature, insulates oxygen, and asphyxiates the absorption of heat radiations. Large momentum also enables the mist to pass through smoke to act on the surface of fuel and (sometimes) soaks into the fuel further [12]. Successive explosions of multiple capsules can distribute water to cover the fire vulnerability zone more fully. How to choose an appropriate water-dropping scheme to achieve the optimal firefighting effect is quite a difficult problem. Śmigielski et al. [13] used a numerical method of distribution propagation and uncertainty propagation to analyze the precision of system controlling delivery of a water capsule by a helicopter. Czerniak et al. [14] employed an artificial bee colony (ABC) to optimize the physical model of flight of a water bag dropped from an aircraft. They also used the ABC method to optimize fuel consumption of the aircraft [15]. Wang et al. [16] proposed a combined genetic algorithm (GA) for optimizing the water-dropping scheme for a fixed-wing firefighting aircraft based on a neural network agent model between the aircraft water-dropping schema and a water distribution polygon.



Smart drones are subject to limited endurance and low load capabilities. Effective path planning (if needed, with the consideration of obstacle and collision avoidance) of firefighting drones in a complex, wild environment is important. UAV path planning methods have been extensively studied in the literature, which can be categorized into local and global search methods depending on whether path planning is considered as a global optimization problem [17]. Global search methods can be further divided into problem-specific heuristic methods and metaheuristic methods [18,19,20,21]. Luo et al. [22] proposed an improved D*Lite algorithm for planning the paths of UAVs supplemented by unmanned ground vehicles (UGVs), which is effective even when the 3D workspace is only partially known. Harikumar et al. [23] proposed an Oxyrrhis-Marina-inspired search and dynamic formation control method, which first selects between Levy flight, Brownian search, and directionally driven Brownian search for target identification and then controls the UAVs to fly in a dynamic formation to quench the fire using water. Zheng et al. also studied the heuristic and metaheuristic methods to search and identify targets using UAVs [24] as well as human–UAV cooperation [25,26]. Wang et al. [27] proposed an adaptive vortex search algorithm of planning optimal firefighting UAV paths in terms of the solution quality, length, and energy. Xiang and Wang [28] presented an improved ant colony optimization (ACO) algorithm, which combines pseudo-random rules and roulette, and updates the pheromone concentration based on the distribution rules of the wolf colony algorithm to give strong feedback to the ants. Based on a forest fire risk map, Xu et al. [29] presented a method using ring self-organizing mapping to plan a flight path for forest fire monitoring according to the forest fire risk level. Alsammak et al. [30] used swarm intelligence to model autonomous and decentralized behaviors for a drone swarm, which used an improved random walk algorithm to explore distributed fire spots and a self-coordination mechanism based on the stigmergy to extinguishing fire cooperatively.



Nevertheless, few works on firefighting drone path planning integrate the modeling of fire propagation, which is a decision basis for firefighting plans. Xavier Viegas [31] studied the linkage between convection and radiation in the fire propagation in laboratory experiments and then generalized the results for wind-driven fires to interpret the global movement of the fire front. Li et al. [32] presented a forest fire spreading simulation system, to visualize the impact of multi-factors on the fire spread, which can be used to identify the key sites for the prevention and the control of forest fires. Cellular automata is one of the major methodologies for describing the dynamics of fire propagation. Alexandridis et al. [33] presented the simulation results of a cellular automata model describing the dynamics of a forest fire spread on a mountainous landscape, taking into account factors such as the type and density of vegetation, the wind speed and direction, and the spotting phenomenon. Some model parameters were tuned using a black-box non-linear optimization approach. Rui et al. [34] constructed an improved model that couples cellular automata with an existing forest fire model, considering the impact of time steps on simulation accuracy to provide an optimal time-step value. They tested the model on a case study of a forest fire at Daxing’an Mountain in China, 2006. Mutthulakshmi et al. [35] adopted a physical model to simulate the spread and extinguishing of fire in the context of Dumai, Indonesia. They applied cellular automata to predict the effects of firefighting intervention with the spatial and propagation dynamics of fire. Wu et al. [36] established a fire propagation model containing multidimensional physical and environmental variables, where an artificial neural network (ANN) was used to analyze spatial time series patterns. A restriction of the grid-based models is that they cannot precisely represent complex topographic differences among cells. There were also studies on fire spreading in and/or between buildings [37,38], for which surface area of fuel/floor, ventilation, and thermal conductivity of the boundary material play critical roles. In comparison, wildfire spreading mainly relies on wind force and combustible vegetation density.



To the best of our knowledge, no previous work simultaneously considers fire spread prediction, drone scheduling, and the configuration of support staff and supplies for firefighting. Moreover, most existing work focus on extinguishing a fire as quickly as possible. However, in most real-world cases, different fire spots have different priorities, e.g., a subarea with expensive cash crops should be prior to an uncultivated subarea. Therefore, scheduling firefighting drones to minimize the total fire loss based on the prediction of fire spread and losses is practically significant, but it is a challenging task due to the complexity of fire dynamics and its relation to fire losses. To address this challenge, in this study, first we present a mathematical model that predicts dynamic wildfire spread together with the related economic losses, which is validated on two real-world wildfires. The model output can also help us to determine the minimum number of firefighting drones in preparation for wildfire in a given wild area. Next, given a limited number of firefighting drones, we propose a method for scheduling the drones in response to wildfire occurrence to minimize the expected loss using metaheuristic optimization. We demonstrate the performance advantages of water wave optimization (WWO) [39] over a set of other popular metaheuristic optimization algorithms. Based on the optimization results, we can pre-define a comprehensive plan of scheduling firefighting drones and configuring support staff in response to a set of scenarios of wildfire occurrences. We conduct experiments on a set of 72 test instances simulated on some forest park areas in Hangzhou, China, and the results demonstrate that the proposed method significantly improved the emergency response efficiency and reduced potential losses. The main contribution of this paper can be summarized as follows:




	
We present a mathematical model of wildfire spreading that simulates dynamic fire development and propagation, and, at the same time, estimates the economic losses caused by the fire.



	
We propose a heuristic optimization method for configuring and scheduling firefighting drones to minimize the expected total wildfire loss.



	
We conduct expensive computational experiments to validate the effectiveness and efficiency of the proposed method on real-world instances.








In the remainder of this paper, we describe the mathematical model for predicting wildfire spread and the corresponding economic losses in Section 2, present the optimization method for drone scheduling in Section 3, and present the experimental results in Section 4. Finally, we conclude with discussions in Section 5.




2. Wildfire Spread Modeling and Loss Estimation


Given a wild area  A , we divided it into a set of m subareas   {  A 1  ,  A 2  , … ,  A m  }   according to two basic criteria: (1) two adjacent subareas have different topographic and/or environmental features, for example, one subarea is full of tall trees and the other is mainly with shrubs; (2) the area and vegetation biomass of a subarea are not very large, such that the water volume for extinguishing the fire in the subarea is reasonable (normally 1000∼10,000 kg, which can be carried by 5 to 20 drones at a time). Typically, we first divide the area according to the first criterion; if some resulting subareas are too large to satisfy the second criterion, we then divide them into smaller subareas according to the second criterion. After division, we estimate the fire dynamics and losses in each subarea and the propagation between different subareas.



2.1. Fire Dynamics and Heat Release


The typical process of a wildfire consists of three stages: preheat (growth), full combustion, and decay [31,40], which are illustrated in Figure 2 [41]. Given the time   t i ig   of fire ignition in subarea   A i  , temperature   T ( t )  , (relative) humidity   M ( t )  , wind force   wf ( t )  , and wind direction   wd ( t )   in each time slice t, the present model estimates the process of fire growth in   A i   and the process of fire propagation to areas adjacent to   A i  , as well as the corresponding economic losses. Table 1 presents the model parameters used in this paper.



	
Preheat stage. After the ignition time   t i ig  , the heat release rate    θ i ph   ( t )    continuously grows with time t, and its growth rate depends on the combustible vegetation density   ρ i   of the subarea, temperature   T ( t )  , humidity   M ( t )  , and the wind force   wf ( t )  :


   θ i ph   ( t )  =  ρ i  h  T ( t ) , M ( t )    ( t −  t i ig  )   g ( wf ( t ) )    



(1)




where   h ( · )   is a function of temperature and humidity, and   g ( · )   is a function of wind force. Currently, we define   h ( · )   only on the temperature range from   − 10 °   to   50 °  , which covers the temperature ranges in most of East China and South China. For convenience, we simply define   g ( · )   on ten levels of wind force (wind force above level 10 rarely occurs on the mainland), as shown in the function in Table 2.



	
Full combustion stage, in which gas combustion is dominant. Whenever the heat release rate reaches a threshold   θ ^  , i.e.,    θ i ph   ( t )  ≥  θ ^   , the fire in the subarea enters into the full combustion stage, the time at which is denoted as   t i fc  :


   t i fc  =  min   t ′  ≥  t i ig      θ i ph   ( t )  ≥  θ ^    



(2)







The heat release rate during this stage is relatively stable:


   θ i fc   ( t )  =  c 1   ρ i  −  h ′   wf ( t )    ( t −  t i fc  )  2   



(3)




where   c 1   is a constant, and    h ′   ( · )    is a function of the wind force, the values of which is shown in the third row of the function in Table 2.



	
The decay stage, in which charcoal combustion is dominant. Whenever the ratio of the total released heat to the total combustible heat of the vegetation   Q i   in the subarea reaches a threshold    p ^  Q  , the fire in the subarea enters into the decay stage, the time at which is denoted as   t i de  :


   t i de  =  min   t ′  ≥  t i fc       ∫   t i ig    t i fc    θ i ph   ( t )  d t +  ∫   t i fc    t ′    θ i fc   ( t )  d t  ≥   p ^  Q   Q i    



(4)







The heat release rate during this stage decreases with time:


   θ i de   ( t )  =  c 2   ρ i    ( t −  t i de  )   −  g ′   ( wf  ( t )  )     



(5)




where   c 2   is a constant and    g ′   ( · )    is a function of the wind force, the values of which is shown in the fourth row of the function in Table 2. Note that   t =  t i de    will cause a division-by-zero in Equation (5); at this time, the heat release rate should be calculated according to    θ i fc   ( t )    in Equation (3).



Whenever the heat release rate decreases to a lower limit   θ ̲   (or the total released heat reaches the total combustible heat), the fire is extinguished, the time at which is denoted as   t i ex  :


   t i ex  =  min   t ′  ≥  t i de      θ i de   ( t )  ≤  θ ̲    



(6)










As a result, the heat release rate of the fire in subarea   A i   at each time t is:


   θ i   ( t )  =       θ i ph   ( t )       t i ig  < t ≤  t i fc         θ i fc   ( t )       t i fc  < t ≤  t i de         θ i de   ( t )       t i de  < t ≤  t i ex       0    else       



(7)








2.2. Loss Estimation


We consider two types of losses: losses of vegetation and losses of other vulnerable assets. Let   v i   be the valuation of vegetation and   v i ′   be the valuation of other vulnerable assets in subarea   A i  . At each time  τ , we calculate the first type of losses according to the ratio of the total released heat to the total combustible heat of the vegetation:


   LV i   ( τ )  =         ∫   t i ig   τ   θ i ph   ( t )  d t   Q i    v i       t i ig  < τ ≤  t i fc           ∫   t i ig    t i fc    θ i ph   ( t )  d t +  ∫   t i fc   τ   θ i fc   ( t )  d t   Q i    v i       t i fc  < τ ≤  t i de           ∫   t i ig    t i fc    θ i ph   ( t )  d t +  ∫   t i fc    t i ex    θ i fc   ( t )  d t +  ∫   t i de   τ   θ i de   ( t )  d t   Q i    v i       t i de  < τ ≤  t i ex        v i     τ >  t i ex        



(8)







For other vulnerable assets, we assume that they are partially lost during the preheat stage and completely lost if the fire enters the full combustion stage:


   LV i ′   ( τ )  =         ∫   t i ig   τ   θ i ph   ( t )  d t   Q i    v i ′       t i ig  < τ ≤  t i fc        v i ′     τ >  t i fc        



(9)







The total loss in   A i   at time  τ  is


   L i   ( τ )  =  LV i   ( τ )  +  LV i ′   ( τ )   



(10)








2.3. Fire Propagation


Fire spread in a subarea is unimpeded. On the contrary, the propagation of a fire in a subarea   A i   to an adjacent area   A  i ′    is considered as probabilistic, and the probability    p  i ,  i ′     ( t )    depends on the heat release rate, wind power and direction, and open boundary between the subareas (e.g., for two subareas mainly separated by a river but linked by a narrow shrub zone, of which the narrow shrub zone is considered as the open boundary between the subareas). Let   lb  i ,  i ′     be the length of the open boundary between   A i   and   A  i ′    and   α = ∠ ( wd ,  ol  i ,  i ′    )   be the angle between the wind direction  wd  and the line   ol  i ,  i ′     orthogonal to the open boundary (as shown in Figure 3). We define


  ω  ( α )  =         cos  ( α )  +  δ c    1 +  δ c      e c      0 ≤ α ≤ 90 °           ( 1 + 0.75 cos  ( α )  )   δ c    1 +  δ c      e c      else       



(11)




where   δ c   and   e c   are two constants between 0 and 1 (taking values of 0.2 and 0.5 in our study, respectively, which results in that   ω ( 0 ° ) = 1  ,   ω ( 90 ° ) = 1 / 6  , and   ω ( 180 ° ) ≈ 1 / 25  ).



The probability that the fire propagates from   A i   to   A  i ′    at the next time   t + 1   is calculated as


   p  i ,  i ′     ( t + 1 )  =    θ i   ( t )    θ ^   ·   lb  i ,  i ′     lb ^   · ω  ∠ ( wd  ( t )  ,  ol  i ,  i ′    )  · ϖ  wf ( t )   



(12)




where   lb ^   is a threshold of the boundary length, and   ϖ ( · )   is a function of the wind force, the values of which is shown in the fifth row of the function in Table 2. As we can see, the value is always one when the wind force level is above six. That is, if the fire is in full combustion (as the heat release rate reaches the threshold   θ ^  ), the open boundary length is not shorter than the threshold   lb ^  , the wind direction is in line with the line orthogonal to the open boundary, and the wind force level reaches or exceeds six, of which the probability is then 1, i.e., the fire propagates from   A i   to   A  i ′    deterministically.



In the case that there are multiple burning subareas   {  A  i 1   ,  A  i 2   , … ,  A  i K   }   adjacent to a subarea   A i  , the joint probability of the ignition in subarea   A i   is calculated as


   p i ig   ( t )  = 1 −  ∏  k = 1  K   1 −  p   i k  , i    ( t )    



(13)








2.4. Simulation Process


Suppose that a set   A *   of one or more subareas are burning at the beginning time. From   t = 0   to a given end time    t end   , we can simulate the process of fire propagation by iteratively calculating the ignition probabilities and estimating the fire development in related subareas at each time slice t using the following steps:




	
Let   t = 0  ; for each subarea    A i  ∉  A *   , initialize its accumulated ignition probability    pc i ig   ( 0 )  = 0  .



	
Set   t = t + 1  ; if   t =  t end   , then exit.



	
For each subarea    A i  ∈  A *   , calculate its heat release rate according to Equations (1)–(7) (if needed, update its fire stage), and then calculate its loss according to Equations (8)–(10).



	
For each subarea    A i  ∉  A *    and for each   τ ∈ [ 1 , t ]   satisfying    p i ig   ( τ )  > 0   (i.e., the subarea has a probability of being ignited at time  τ ), calculate its heat release rate according to Equations (1)–(7) (if needed, update its fire stage), and then calculate its loss according to Equations (8)–(10) under the condition of    t i ig  = τ  .



	
For each subarea    A i  ∉  A *   :




	(a)

	
Initialize the non-ignition probability    p i  ¬ ig    ( t )  = 1  .




	(b)

	
For each subarea    A  i ′   ∈  A *    that is adjacent to   A i  :




	i

	
Calculate    p   i ′  , i    ( t )    according to Equation (12).




	ii

	
Update the non-ignition probability as


   p i  ¬ ig    ( t )  =  p i  ¬ ig    ( t )   ( 1 −  p   i ′  , i    ( t )  )   



(14)














	(c)

	
For each subarea    A  i ′   ∉  A *    that is adjacent to   A i   while having    pc   i ′   ig   ( t  −  1 )  > 0  :




	i

	
Calculate the probability of the propagation from   A  i ′    to   A i   as


   p   i ′  , i    ( t )  =   E   θ  i ′    ( t )     θ ^   ·   lb   i ′  , i    lb ^   · ω  ∠ ( wd  ( t )  ,  ol   i ′  , i   )  · ϖ  wf ( t )   



(15)




where   E   θ  i ′    ( t )     is the expected heat release rate of   A  i ′    at time t, which is calculated as


  E   θ  i ′    ( t )   =  ∑  τ = 1   t  −  1   θ  ( τ |  t   i ′   ig  = τ )   p   i ′   ig   ( τ )   



(16)








	ii

	
Update the non-ignition probability according to Equation (14).










	(d)

	
Set    p i ig   ( t )  = 1 −  p i  ¬ ig    ( t )   .




	(e)

	
If    p i ig   ( t )  ≥ 1 − ϵ   (where  ϵ  is a small value, which is set to 0.001 in this study), then add   A i   to   A *  ;




	(f)

	
Otherwise, update the accumulated probability    pc i ig   ( t )    of ignition in   A i   as


   pc i ig   ( t )  =  pc i ig   ( t  −  1 )  +  1 −  pc i ig   ( t  −  1 )    p i ig   ( t )   



(17)







If    pc i ig   ( t )  ≥ 1 − ϵ  , then add   A i   to   A *  .









	
Go to step 2.








For model verification, we used the above process to simulate two wildfires that occurred in Zhejiang Province, China: one in 2020 and the other in 2022. The data came from the Emergency Management Department of Zhejiang Province, recording the time at which each subarea entered into the full combustion stage and the decay stage (as the preheat stages of wildfires were difficult to monitor, the corresponding times were missing). We conducted Monte Carlo simulations, with 50 trials on each wildfire, and compared the simulated full combustion time and decay time with the actual time, then presented the results of the two fires in Figure 4 and Figure 5, respectively. The results showed that the deviations of the simulated time curves from the corresponding actual time curves were generally small. In particular, the full combustion time curves fitted with the actual time curves well. On the two fires, the mean absolute percentage errors (MPAE) of the full combustion time were 7.77% and 6.98%, and the MPAE of the decay time were 8.56% and 7.81%, respectively. As the full combustion stage plays the most important role in fire spread and causes the most losses, the proposed model for wildfire spread and loss estimation is practically useful.





3. Drone Configuration and Scheduling


3.1. Minimum Number of Firefighting Drones in Preparation for Wildfire


Let   a i   be the area (in m2) of subarea   A i  . The amount of water for extinguishing the fire in the area is proportional to   a i   and    θ i   ( t )    at time t. Let W be the amount of water that can be carried by a drone at a time (under the assumption of homogeneous drones, which is not difficult to extend to heterogeneous drones). The least number of firefighting drones required for extinguishing the fire in subarea   A i   at time t is


   N i   ( t )  =   c 3     a i   θ i   ( t )   W    



(18)




where   ⌈ · ⌉   denotes rounding up to the closest integer, and   c 3   is a constant. The value of    θ i   ( t )    is at most   θ ^  , and the number is at most


    N ^  i  =   c 3     a i   θ ^   W    



(19)







A basic principle of firefighting drone preparation for wildfire is that the usage of all drones is sufficient to extinguish the fire in any subarea at any time. Therefore, the minimum number of firefighting drones in preparation for wildfire in the while wild area can be determined as


   N  drones  min  =  min  1 ≤ i ≤ m      N ^  i    



(20)








3.2. Optimization Problem of Firefighting Drone Scheduling


For fire prevention for a wild area  A , we normally establish a lightweight fire station near a water resource and equip the station with   N drones   firefighting drones (   N drones  ≥  N drones min   ). Let   d i   be the distance from the fire station to subarea   A i  ,   v i   be the speed of a fully-loaded drone from the fire station to subarea   A i  , and   v i ′   be the speed of an empty drone (after releasing water) from   A i   to the fire station. We also set up at lease one fire sensor in each subarea of  A : the probability of the sensor perceiving a fire in the subarea is 1 in the full combustion stage and smaller than 1 in the preheat stage. Anyway, whenever we receive the warning from a sensor in subarea   A i   at time 0, we pessimistically assume that    t i fc  = 0  , i.e., the fire is in the full combustion stage.



Suppose that we receive the warning from a set    A *   ( 0 )    of one or more subareas at time 0. A firefighting decision  x  is defined as an order (sequence) of subareas in  A . Let   Δ t (  A *  )   be the time for a drone flying to the shortest subarea in   A *  , i.e.,


  Δ t  (  A *  )  =  min   A i  ∈  A *     d i  /  v i   



(21)







Whenever there are available drones at time t, we select a candidate set    A C   ( t )    of subareas, each of which has already been ignited (but not yet extinguished) or has an accumulated ignition probability    pc i ig   t + Δ t (  A *   ( t )  )    larger than a threshold   e pc  . We arrange the drones to extinguish the fires in the subareas in    A C   ( t )    in the same order as in  x .



Based on the above principle, the fitness of a firefighting solution  x  is evaluated using the following steps:




	
Let   t = 0  ,   N  ( t )  =  N drones    be the initial number of available drones.



	
Calculate   Δ t  (  A *  )   ( t )    according to Equation (21) and select the candidate set    A C   ( t )    of subareas satisfying    pc i ig   t + Δ t (  A *   ( t )  )  >  e pc   , which are sorted in the same order as in  x .



	
For each subarea    A i  ∈  A C   ( t )   :




	(a)

	
Calculate    N i   ( t )    according to Equation (18).




	(b)

	
If    N i   ( t )  ≤ N  ( t )   , then assign    N i   ( t )    drones to subarea   x i  , whose fire will be extinguished at time   t +  d  x i   /  v  x i    , and these drones will be available at the station at time   t +  d  x i   /  v  x i   +  d  x i   /  v  x i  ′   , and then set   N  ( t )  = N  ( t )   −   N i   ( t )   .




	(c)

	
If   N  ( t )  <   min  i <  i ′  ≤  n x     {  N  i ′    ( t )  }    , then go to step 4.









	
Set   t = t + 1  .



	
Check whether there is any burning subarea whose fire will be extinguished at time t; if so, set the extinguish time to t and heat release rate to zero and remove it from    A *   ( t )   .



	
If there is no burning subareas, calculate the total loss and exit.



	
Use steps 3 to 5 described in Section 2.4 to update the states of the other subareas at time t; if there is any subarea entering into the full combustion stage, add it to    A *   ( t )   ; if there is any burning subarea whose fire is naturally extinguished at time t, remove it from    A *   ( t )   .



	
Check whether there are some drones returning to the station at time t; if so, update the value of   N ( t )  .



	
Go to step 2.








For each subarea    A i  ∈ A  , if it is ignited as a deterministic time   t i ig   and extinguished at time    t i ex   ( x )    based on the firefighting solution  x , then its expected loss   E   L i   ( x )     is   L   t i ex   ( x )     calculated according to Equations (8)–(10); otherwise, its expected loss is calculated as


  E   L i   ( x )   =  ∑ τ  L   t i ex    ( x )  |   t i ig  = τ   p i ig   ( τ )   



(22)







This problem aims to minimize the total loss:


  min f  ( x )  =  ∑  i = 1  m  E   L i   ( x )    



(23)








3.3. Optimization Algorithms


The above firefighting drone scheduling problem is to find an optimal sequence of subareas, which is essentially a permutation optimization problem. The solution space has the same structure as the traveling salesman problem (TSP) and permutation flowshop scheduling problem (PFSP), while the fitness evaluation function is significantly more complex and computationally expensive than TSP and PFSP. For a wild area with dozens to hundreds of subareas, the computational cost of exact optimization methods can be unaffordable. Here, we adapt several popular metaheuristic optimization algorithms for TSP/PFSP, which are briefly described as follows:




	
GA using order-based solution representation, partial mapping crossover, and swap mutation [42].



	
Particle swarm optimization (PSO) using discrete sequence-based particle representation [43], where velocity trail values are used as the probabilities of the components being placed in certain positions of the sequence. We also incorporate a comprehensive learning strategy [44,45] and an adaptive parameter control mechanism [46].



	
Differential evolution (DE) adapted for permutation optimization based on floating-to-integer mapping [47], where solutions are encoded as floating vectors and evolved via standard DE mutation and crossover, then decoded to integer sequences based on the order of floating values.



	
Biogeography-based optimization (BBO) for permutation optimization based on subsequence migration [48,49]. The migration operator selects a subsequence from the emigrating solution and uses it to replace the corresponding part in the immigrating solution while using the original components in the part to substitute the corresponding components in the other part to avoid duplication.



	
Ecogeography-based optimization (EBO) that extends BBO by integrating local and global migration [50,51].








As the fitness evaluation of a solution to the problem involves the computationally expensive simulation process, we mainly focus on WWO [39], which uses a small population to avoid too many fitness evaluations. WWO is a metaheuristic mimicking water wave motions to search the solution space. In WWO, each solution  x  is analogous to a wave with a wavelength   λ ( x )  , which is inversely proportional to the solution fitness; at each iteration, each solution searches in a range proportional to its wavelength such that high-fitness solutions search in small ranges, while low-fitness solutions search in large ranges (as illustrated in Figure 6), which leads to a good balance between diversity and convergence.



To adapt the original WWO for continuous optimization to this firefighting drone scheduling problem, we redefine its propagation and breaking operators based on the principles from [52]. Propagation of a solution  x  is performed, for m times, by each, with a probability of   λ ( x )  , randomly choosing and reversing a subsequence of  x . In this way, the expected number of subsequence reversals on  x  is   m λ ( x )  , which is inversely proportional to the solution fitness. If the propagated solution is better than the original one, it replaces the original one in the population. After each iteration, the wavelength of each solution is updated as follows (note that the objective function   f ( x )   defined in Equation (23) is inversely proportional to its fitness):


  λ  (  x ′  )  = λ  ( x )   α   f max   − ( f  ( x + ϵ )  /   (  f max  −  f min  + ϵ )     



(24)




where   f max   and   f min   are the maximum and minimum objective function values in the population, respectively;  α  is a constant taking a value of 1.0026; and  ϵ  is a very small positive value to avoid division by zero.



Whenever the algorithms find a new best-known solution   x *  , a breaking operation is performed by generating   K N   (a random number in   [ 1 , m ]  ) neighboring solutions, each being obtained by randomly swapping two subareas   x i   and   x  i ′    in the sequence. The best neighbor, if better than   x *  , will replace   x *   in the population. In this way, the algorithm uses diverse solutions to facilitate global search in the early stages while focusing on a small number of solutions to enhance local search in later stages.



We also employ a population reduction policy [53], which reduces the population size  NP  from an upper limit   NP max   to a lower limit   NP min  :


  NP =  NP max  −     n g   n g max    2   (  N P max  −  NP min  )   



(25)




where   NP max   and   NP min   are the upper and lower limit of the population sizes, respectively;   n g   is the current generation number; and   n g max   is the maximum generation number. Whenever the population size should be decreased by 1, the current worst solution is removed.



Algorithm 1 presents the pseudo-code of the WWO algorithm for firefighting drone scheduling, where each solution  x  is evaluated using the procedure described in Section 3.2.



	Algorithm 1: WWO algorithm for firefighting drone scheduling.
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The above WWO algorithm uses component swap for local search. To further improve the performance, we propose an enhanced WWO (EWWO) algorithm that includes two additional local search: one using NEH reconstruction [54] and the other using reinsertion, i.e., randomly selecting a component and inserting it into another position. For each breaking operation, EWWO adaptively selects one from the three local search operators based on their past performance. Initially, the three operators have the same selection probability of 1/3. At each generation after the first  LP  generations (where  LP  is the learning period), the probability of each l-th operator (  1 ≤ l ≤ 3  ) is updated based on its performance during the previous  LP  generations:


   ρ l  =    c l   n l I  /  n l     ∑  l = 1  3   c l   n l I  /  n l     



(26)




where   n l   is the number of invocations of the l-th operator,   n l I   is the number of invocations of the operator that produce better solutions in the recent learning period, and   c l   is the computational complexity of the l-th operator (   c 1  = 1  ,    c 2  = n / 2  , and    c 3  = 1  ). Using the adaptive local search, Lines 15–18 of Algorithm 1 are replaced by the procedure shown in Algorithm 2.



	Algorithm 2: WWO breaking using self-adaptive local search.
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3.4. Drone/Staff Configuration and Preplanning


Normally, when configuring   N drones   drones for a wild area, we fit out   2  N drones    water capsules at the fire station such that each drone returning from the fire spot can directly replace the empty capsule with a capsule full of water. Suppose that the (average) time duration for a staff member to fill up a water capsule is   t ˜  ; if N empty water capsules are left by drones at the station at time t and are required to be filled up at time   t + Δ t  , the least number of staff is


   n s min  =  N   t ˜   Δ t     



(27)







Given a given fire instance, according to the best-known solution obtained by the optimization algorithms, we select a round of drone dispatch that has the maximum   N / Δ t   and then obtain the required number of staff according to Equation (27).



Moreover, let   T ^   be the maximum flight time duration of a drone with a fully charged battery and   T j   be the total flight time duration of each j-th drone in the solution, where the total number of fully charged batteries required for the operation can be calculated as


   n bat  =  ∑  j = 1   N drones      T j   T ^     



(28)







Consequently, for a given wild area, we can identify a subset of risky subareas that easily catch fire, as well as record the most common wind force levels and temperature grades. For each risky subarea, we simulate the ignition under each wind force level and temperature grade and use the optimization algorithms to solve the instance. By saving these instances and the corresponding best-known solutions, when encountering a real fire warning from a subarea, we can directly select an existing solution to schedule the drones as well as the required number of staff for firefighting.



Furthermore, we can identify those subareas, where the ignition will cause the most significant losses and/or require the largest number of staff, as the most important subareas and, therefore, to strengthen the management and surveillance of those subareas, we must reduce the risks and consequences as much as possible.





4. Computational Experiments


We test the proposed method in a wild area belonging to the West Mountain Forest Park, Hangzhou, Zhejiang Province, China. The area is divided into 127 subareas, among which eight subareas are identified as high-risk subareas. According to our simulation, when the wind force level is zero (no wind) or one (light air) and the temperature is below 5 °C, most fires ignited from the risky areas can be extinguished by one or two rounds of drone dispatch, i.e, the instances of the firefighting drone scheduling problem are quite easy to solve. Therefore, we select a set of three wind levels of {2, 4, 6} (as the differences between two adjacent wind force levels are relatively small, and wind force levels above eight rarely appear in the area) and a set of three temperature grades of {15–20, 25–30, 35–40} (°C). We also set the number of drones to a random integer in   [  N  drones  min  , 1.2  N  drones  min  ]  . By simulating the ignition in each high-risk subarea under each wind level and each temperature grade (the wind direction is always assumed to be toward the center of the area), we construct a suite of 72 test instances.



On the test suite, we compare the seven metaheuristic optimization algorithms (GA, PSO, DE, BBO, EBO, WWO, and EWWO). Each algorithm is run for 30 times on each instance, for which we record the minimum and median objective function values (in thousand RMB Yuan or CNY) among the 30 runs and the standard deviation (std). To ensure a fair comparison, for all algorithms, the termination condition is set so that the number of objective function evaluations reaches 50,000. Table 3 presents the results of the seven algorithms on the 72 test instances. We also conduct a non-parametric Wilcoxon rank-sum test to compare the result of EWWO and the result of other algorithms on each instance. Table 4 summarizes the averaged values of the results obtained by each algorithm on the test instances as well as the corresponding ranks among the seven algorithms.



From the results, we can observe that EWWO always obtains the best result on each test instance. Among the other six popular metaheuristic optimization algorithms, GA performs the worst mainly because the genetic selection and crossover operations are elitism-based, making GA to be easily trapped by the local optima. The migration operator of BBO is similar to genetic crossover, and, therefore, the performance of BBO is close to that of GA, although the BBO migration model provide better diversity than genetic selection. Using velocity-based solution movement, the PSO algorithm converges fast, but it also easily falls into premature convergence. Both the DE mutation schema and the EBO global migration model have powerful global exploration abilities and can result in good diversities, and their performances are better than GA, PSO, and BBO. WWO performs the best among the first six algorithms because its wavelength-based control model brings a quite good balance between global exploration and local exploitation. The performance advantage of EWWO over WWO, obviously, is due to the integration and adaptive control of the three local search operators. For the instances with significant losses, using the solutions of EWWO, we can reduce approximately 300,000∼600,000 CNY of losses compared to the solutions of GA and approximately 100,000∼400,000 CNY compared to the solutions of other algorithms. In summary, the experimental results demonstrate that EWWO exhibits a significantly better performance than the other popular algorithms on the test suite. Therefore, we recommend EWWO as the most suitable algorithm to solve the firefighting drone scheduling problem to the fire department.



According to the best-known results obtained by EWWO, among the eight subareas, under the most serious conditions (highest temperature and wind force), the losses in six subareas are approximately 1.1∼1.6 billion CNY, while the losses in the other two subareas are 2.2 and 1.9 billion CNY, respectively. Therefore, the fire department close the major entrances to the top risk subarea enhances the entrance management for the second top risk subarea, significantly reducing the potential fire risks.



Although the seven algorithms use the same number of objective function evaluations, there are still slight differences among their running times. Figure 7 presents the median running time of each of the seven algorithms on instances 1–9 (the time variations are similar on the remaining instances). Moreover, Figure 8 presents the median convergence time of each algorithm on the instances (we consider). As we can observe, with the increase in instance size, the convergence time of EWWO becomes more significantly shorter than that of the other algorithms.




5. Conclusions


This paper presents a study consisting of a mathematical model that predicts wildfire spread and the corresponding economic losses that work simultaneously; an optimization problem of firefighting drones scheduling to minimize the fire loss based on the wildfire spread and loss estimation; and a metaheuristic optimization method, in particular, the EWWO algorithm for efficiently solving the optimization problem. The results of the model and algorithms can also help us to configure the drones and staff to support efficient firefighting operations and well as prepare a set of plans in response to possible wildfire occurrences. Validation of the fire spread model on the two real-world wildfires showed that the MPAE of full combustion time and decay time were around 7∼8%, respectively. Experiments of the scheduling algorithms on a set of 72 test instances demonstrated that the solutions obtained by the proposed algorithm of EWWO could reduce approximately 100,000∼600,000 CNY compared to the solutions of other popular algorithms.



The present work has certain limitations. First, we only estimate the losses caused by fire but do not consider the cost of drones in configuration and firefighting. Second, the proposed method limits that the fire in a subarea should be extinguished at a time by a small number of drones, which is not scalable to large areas that need multiple batches of drones for firefighting. Third, the scheduling schema requires that the distance between the fire station (configured with drones) and the utmost subarea cannot exceed the half of the flight range of the drone. Therefore, for large wild areas, we need to set up more fire stations.



In the future work, we will consider the cooperation of drones and ground vehicles [55,56], where ground vehicles carry water and batteries (or support fast battery recharging) for drones to shorten the travel distances of drones and improve the firefighting efficiency. Our ongoing work also considers integrating reinforcement learning into the optimization to improve the problem-solving performance [57].
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Figure 1. A firefighting drone with a water capsule [9]. 
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Figure 2. Illustration of the typical stages of a wildfire. 
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Figure 3. Angle between the wind direction and the line orthogonal to the open boundary between two subareas. 
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Figure 4. Comparison of the simulated and actual fire spread in the first wildfire (fire area consisting of 46 subareas). 
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Figure 5. Comparison of the simulated and actual fire spread in the second wildfire (fire area consisting of 22 subareas). 
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Figure 6. Illustration of wavelength-based search in WWO. 
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Figure 7. Median running time of each of the seven algorithms on instances 1–9. 
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Figure 8. Median convergence time of each of the seven algorithms on instances 1–9. 
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Table 1. Model parameters used in this paper.
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	Parameter
	Description





	m
	Number of subareas



	   A i   
	Area (m2) of subarea   A i  



	   t i ig   
	Time of fire ignition in subarea   A i  



	   ρ i   
	Combustible vegetation density   ρ i   of subarea   A i  



	   Q i   
	Total combustible heat of the vegetation in subarea   A i  



	   T ( t )   
	Temperature at time t



	   M ( t )   
	Humidity at time t



	   wf ( t )   
	Wind force at time t



	   wd ( t )   
	Wind direction at time t



	   h ( T , M )   
	Coefficient used in Equation (1) for calculating the heat release rate in the preheat

stage



	   g  wf ( t )    
	Exponent used in Equation (1) for calculating the heat release rate in the preheat

stage



	    h ′   wf ( t )    
	Coefficient used in Equation (3) for calculating the heat release rate in the full

combustion stage



	    g ′   wf ( t )    
	Exponent used in Equation (5) for calculating the heat release rate in the decay stage



	   ϖ  wf ( t )    
	Coefficient used in Equation (12) for calculating the probability of fire propagation



	   t i fc   
	Time at which the fire in subarea   A i   enters into the full combustion stage



	   t i de   
	Time at which the fire in subarea   A i   enters into the decay stage



	   t i ex   
	Time at which the fire in subarea   A i   is naturally extinguished



	   θ ^   
	Threshold of heat release rate for the fire enters into the full combustion stage



	    p ^  Q   
	Threshold of the ratio of the total released heat to   Q i   for the fire enters into the

decay stage



	   v i   
	Valuation of vegetation in subarea   A i  



	   v i ′   
	Valuation of vulnerable assets in subarea   A i  



	   lb  i ,  i ′     
	Length of the boundary between two adjacent subareas   A i   and   A  i ′   



	   lb ^   
	Threshold of boundary length for fire propagation



	   ∠ (  l A  ,  l b  )   
	Angle between two lines   l A   and   l b  



	W
	Amount of water that can be carried by a drone at a time



	D
	Maximum distance of the drone



	W
	Maximum load of the drone



	   v u max   
	Maximum velocity of the drone



	   v u min   
	Minimum velocity of the drone










 





Table 2. Function values of   g ( · )   used in Equation (1),    h ′   ( · )    used in Equation (3),    g ′   ( · )    used in Equation (5), and   ϖ ( · )   used in Equation (12).
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	Wind Force Level
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10





	  g ( · )   values
	1.414
	1.503
	1.691
	2.000
	2.265
	2.673
	2.967
	3.341
	3.568
	4.102
	4.609



	   h ′   ( · )    values
	0.55
	0.63
	0.77
	0.92
	1.01
	1.18
	1.29
	1.40
	1.53
	1.68
	1.85



	   g ′   ( · )    values
	1.64
	1.32
	1.21
	1.12
	0.97
	0.90
	0.83
	0.77
	0.74
	0.65
	0.61



	  ϖ ( · )   values
	0.16
	0.25
	0.33
	0.46
	0.6
	0.89
	1
	1
	1
	1
	1










 





Table 3. Resulting minimum, median, and standard deviation of the objective function values (i.e., total fire loss in thousand CNY) obtained by the algorithms on the test instances. Symbol    †   indicates that the result is significantly different from the result of EWWO at a confidence level of 95%.






Table 3. Resulting minimum, median, and standard deviation of the objective function values (i.e., total fire loss in thousand CNY) obtained by the algorithms on the test instances. Symbol    †   indicates that the result is significantly different from the result of EWWO at a confidence level of 95%.
















	Instance
	Metrics
	GA
	PSO
	DE
	BBO
	EBO
	WWO
	EWWO





	1
	minimum
	788
	787
	782
	786
	782
	779
	778



	
	median
	   †   808
	   †   806
	801
	   †   808
	801
	801
	798



	
	std
	17
	11
	15
	12
	8
	15
	16



	2
	minimum
	936
	932
	927
	930
	923
	919
	916



	
	median
	   †   980
	   †   970
	951
	   †   974
	   †  964
	955
	946



	
	std
	29
	27
	15
	35
	21
	31
	25



	3
	minimum
	1059
	1052
	1044
	1057
	1051
	1046
	1039



	
	median
	   †   1172
	   †   1139
	   †   1109
	   †   1136
	   †   1114
	1096
	1084



	
	std
	62
	55
	36
	59
	40
	34
	29



	4
	minimum
	1133
	1132
	1118
	1132
	1121
	1110
	1108



	
	median
	   †   1221
	   †   1207
	   †   1189
	   †   1203
	   †   1194
	1180
	1162



	
	std
	79
	53
	43
	45
	46
	50
	28



	5
	minimum
	1256
	1235
	1218
	1260
	1225
	1204
	1162



	
	median
	   †   1345
	   †   1345
	   †   1282
	   †   1325
	   †   1301
	   †   1253
	1226



	
	std
	57
	49
	28
	41
	60
	31
	49



	6
	minimum
	1428
	1394
	1356
	1405
	1365
	1329
	1290



	
	median
	   †   1576
	   †   1514
	   †   1454
	   †   1564
	   †   1466
	1392
	1369



	
	std
	67
	78
	51
	75
	74
	46
	54



	7
	minimum
	1640
	1640
	1526
	158
	1517
	1428
	1354



	
	median
	   †   1788
	   †   1694
	   †   1641
	   †   1745
	   †   1622
	   †   1590
	1428



	
	std
	111
	24
	85
	98
	86
	71
	64



	8
	minimum
	1807
	1784
	1642
	1752
	1671
	1558
	1517



	
	median
	   †   1980
	1   †   897
	   †   1778
	   †   1889
	   †   1819
	   †   1699
	1620



	
	std
	97
	50
	84
	90
	110
	75
	70



	9
	minimum
	1921
	1874
	1787
	1927
	1778
	1710
	1610



	
	median
	   †   2201
	   †   2135
	   †   1984
	   †   2193
	   †   2036
	   †   1852
	1729



	
	std
	230
	226
	127
	188
	219
	127
	64



	10
	minimum
	675
	674
	672
	674
	672
	667
	665



	
	median
	   †   699
	   †   690
	684
	   †   697
	680
	682
	670



	
	std
	14
	11
	8
	17
	6
	9
	4



	11
	minimum
	778
	771
	757
	775
	765
	752
	749



	
	median
	   †   788
	   †   782
	   †   779
	   †   784
	772
	769
	763



	
	std
	9
	6
	15
	6
	4
	14
	8



	12
	minimum
	822
	816
	804
	822
	805
	803
	793



	
	median
	   †   837
	   †   836
	817
	   †   837
	   †   820
	809
	808



	
	std
	6
	17
	9
	13
	6
	3
	13



	13
	minimum
	946
	920
	895
	931
	889
	872
	832



	
	median
	   †   975
	   †   961
	   †   921
	   †   973
	930
	897
	862



	
	std
	18
	23
	13
	34
	26
	17
	14



	14
	minimum
	1074
	1062
	992
	1024
	993
	931
	906



	
	median
	   †   1133
	   †   1112
	   †   1047
	   †   1128
	   †   1056
	   †   992
	926



	
	std
	50
	35
	44
	79
	52
	32
	12



	15
	minimum
	1281
	1243
	1083
	1205
	1136
	1115
	990



	
	median
	   †   1340
	   †   1286
	   †   1232
	   †   1316
	   †   1185
	   †   1183
	1039



	
	std
	42
	36
	130
	67
	20
	28
	24



	16
	minimum
	1468
	1335
	1230
	1359
	1264
	1172
	1128



	
	median
	   †   1556
	   †   1435
	   †   1331
	   †   1546
	   †   1365
	   †   1275
	1221



	
	std
	61
	79
	66
	107
	46
	53
	49



	17
	minimum
	1625
	1573
	1356
	1599
	1427
	1281
	1251



	
	median
	   †   1739
	   †   1634
	   †   1424
	   †   1755
	   †   1565
	   †   1489
	1335



	
	std
	62
	41
	36
	85
	103
	178
	34



	18
	minimum
	1891
	1811
	1587
	1751
	1591
	1615
	1423



	
	median
	   †   2024
	   †   2024
	   †   1789
	   †   2013
	   †   1769
	   †   1668
	1502



	
	std
	64
	140
	97
	232
	145
	32
	43



	19
	minimum
	655
	652
	648
	652
	650
	649
	645



	
	median
	   †   655
	   †   653
	   †   651
	   †   655
	   †   651
	   †   649
	645



	
	std
	0
	1
	1
	2
	1
	0
	0



	20
	minimum
	734
	708
	686
	728
	711
	693
	665



	
	median
	   †   758
	   †   738
	   †   708
	   †   757
	   †   716
	   †   707
	685



	
	std
	19
	25
	9
	18
	3
	8
	14



	21
	minimum
	788
	788
	723
	788
	737
	694
	685



	
	median
	   †   822
	   †   807
	   †   742
	   †   813
	   †   763
	   †   746
	694



	
	std
	18
	13
	8
	13
	19
	28
	7



	22
	minimum
	891
	836
	763
	844
	834
	755
	729



	
	median
	   †   970
	   †   937
	   †   833
	   †   927
	   †   848
	   †   820
	749



	
	std
	45
	57
	62
	36
	6
	46
	14



	23
	minimum
	1010
	953
	891
	968
	908
	865
	837



	
	median
	   †   1148
	   †   1085
	   †   991
	   †   1101
	   †   1009
	   †   993
	872



	
	std
	119
	60
	43
	82
	49
	101
	26



	24
	minimum
	1084
	1043
	1018
	1071
	1002
	967
	951



	
	median
	   †   1300
	   †   1291
	   †   1100
	   †   1287
	   †   1152
	   †   1095
	985



	
	std
	134
	176
	45
	105
	123
	111
	26



	25
	minimum
	1325
	1266
	1201
	1257
	1155
	1049
	1015



	
	median
	   †   1492
	   †   1462
	   †   1250
	   †   1449
	   †   1293
	   †   1239
	1059



	
	std
	125
	103
	32
	166
	84
	89
	22



	26
	minimum
	1586
	1462
	1353
	1519
	1405
	1219
	1069



	
	median
	   †   1714
	   †   1603
	   †   1427
	   †   1691
	   †   1556
	   †   1249
	1128



	
	std
	95
	96
	50
	116
	76
	16
	42



	27
	minimum
	1852
	1729
	1381
	1871
	1620
	1291
	1207



	
	median
	   †   2014
	   †   1992
	   †   1620
	   †   1947
	   †   1671
	   †   1450
	1285



	
	std
	90
	188
	213
	42
	24
	137
	41



	28
	minimum
	773
	773
	767
	770
	768
	765
	763



	
	median
	   †   788
	   †   784
	784
	   †   789
	   †   785
	780
	778



	
	std
	6
	6
	11
	14
	10
	8
	10



	29
	minimum
	891
	864
	828
	855
	832
	828
	788



	
	median
	   †   916
	   †   882
	   †   868
	   †   900
	   †   845
	   †   863
	803



	
	std
	11
	8
	28
	27
	11
	30
	13



	30
	minimum
	101
	989
	930
	983
	943
	916
	891



	
	median
	   †   1054
	   †   1031
	   †   973
	   †   1032
	   †   967
	   †   978
	926



	
	std
	33
	19
	25
	22
	18
	35
	17



	31
	minimum
	1074
	1028
	993
	1068
	1021
	966
	926



	
	median
	   †   1133
	   †   1089
	   †   1052
	   †   1108
	   †   1034
	   †   983
	936



	
	std
	34
	35
	41
	31
	9
	7
	8



	32
	minimum
	1246
	1142
	1041
	1209
	1066
	1004
	965



	
	median
	   †   1335
	   †   1264
	   †   1179
	   †   1278
	   †   1216
	   †   1138
	995



	
	std
	49
	86
	64
	31
	131
	112
	13



	33
	minimum
	1404
	1396
	1244
	1317
	1285
	1212
	1133



	
	median
	   †   1492
	   †   1441
	   †   1348
	   †   1498
	   †   1333
	   †   1297
	1172



	
	std
	38
	39
	80
	77
	38
	61
	32



	34
	minimum
	1507
	1445
	1369
	1507
	1403
	1330
	1226



	
	median
	   †   1591
	   †   1528
	   †   1460
	   †   1582
	   †   1478
	   †   1374
	1276



	
	std
	62
	66
	69
	56
	54
	26
	22



	35
	minimum
	1630
	1560
	1453
	1529
	1534
	1386
	1349



	
	median
	   †   1734
	   †   1675
	   †   1597
	   †   1703
	   †   1604
	   †   1541
	1423



	
	std
	82
	78
	82
	144
	42
	75
	61



	36
	minimum
	1881
	1722
	1551
	1894
	1726
	1622
	1463



	
	median
	   †   1965
	   †   1880
	   †   1746
	   †   1957
	   †   1834
	   †   1667
	1542



	
	std
	38
	86
	175
	47
	85
	30
	46



	37
	minimum
	896
	896
	894
	895
	893
	893
	891



	
	median
	   †   906
	   †   906
	900
	   †   906
	902
	897
	896



	
	std
	7
	7
	4
	7
	7
	2
	4



	38
	minimum
	985
	970
	962
	969
	959
	955
	936



	
	median
	   †   101
	   †   995
	   †   976
	   †   1001
	   †   983
	   †   975
	951



	
	std
	12
	18
	7
	200
	16
	11
	6



	39
	minimum
	1019
	1015
	995
	998
	998
	984
	960



	
	median
	   †   1044
	   †   1028
	   †   1004
	   †   1033
	   †   1005
	   †   993
	965



	
	std
	13
	8
	7
	14
	6
	7
	3



	40
	minimum
	1064
	1051
	1035
	1054
	1046
	1031
	1024



	
	median
	   †   1093
	   †   1077
	   †   1054
	   †   1074
	   †   1066
	1054
	1034



	
	std
	23
	20
	14
	15
	15
	20
	7



	41
	minimum
	1305
	1228
	1188
	1239
	1167
	1111
	1039



	
	median
	   †   1428
	   †   1368
	   †   1282
	   †   1410
	   †   1232
	   †   1247
	1069



	
	std
	86
	105
	51
	83
	37
	77
	19



	42
	minimum
	1497
	1494
	1339
	1481
	1286
	1253
	1167



	
	median
	   †   1571
	   †   1546
	   †   1397
	   †   1571
	   †   1383
	   †   1347
	1197



	
	std
	35
	27
	44
	80
	85
	56
	25



	43
	minimum
	1556
	1524
	1441
	1459
	1406
	1373
	1261



	
	median
	   †   1645
	   †   1572
	   †   1523
	   †   1661
	   †   1514
	   †   1460
	1325



	
	std
	54
	37
	33
	99
	87
	49
	51



	44
	minimum
	1847
	1847
	1595
	1821
	1582
	1469
	1413



	
	median
	   †   1985
	   †   1895
	   †   1789
	   †   2004
	   †   1741
	   †   1636
	1507



	
	std
	118
	39
	89
	92
	91
	73
	42



	45
	minimum
	2029
	1898
	1679
	2040
	1827
	1537
	1482



	
	median
	   †   2197
	   †   2083
	   †   1907
	   †   2191
	   †   2001
	   †   1696
	1571



	
	std
	141
	98
	119
	107
	110
	94
	75



	46
	minimum
	749
	749
	749
	749
	749
	749
	749



	
	median
	   †   754
	   †   754
	   †   752
	   †   753
	751
	750
	749



	
	std
	4
	4
	2
	3
	1
	0
	0



	47
	minimum
	788
	787
	783
	788
	785
	781
	778



	
	median
	   †   818
	   †   816
	   †   811
	   †   816
	806
	805
	803



	
	std
	14
	14
	23
	13
	14
	12
	20



	48
	minimum
	906
	902
	874
	896
	863
	847
	837



	
	median
	   †   960
	   †   956
	   †   901
	   †   950
	   †   904
	   †   914
	877



	
	std
	31
	45
	19
	28
	21
	37
	28



	49
	minimum
	1182
	1169
	1102
	1142
	1082
	1047
	1000



	
	median
	   †   1271
	   †   1223
	   †   1194
	   †   1236
	   †   1150
	   †   1130
	1069



	
	std
	78
	48
	81
	79
	57
	73
	62



	50
	minimum
	1458
	1393
	1325
	1433
	1257
	1204
	1148



	
	median
	   †   1566
	   †   1527
	   †   1417
	   †   1580
	   †   1372
	   †   1282
	1207



	
	std
	64
	66
	40
	69
	54
	53
	28



	51
	minimum
	1566
	1456
	1420
	1529
	1417
	1301
	1261



	
	median
	   †   1694
	   †   1631
	   †   1464
	   †   1694
	   †   1500
	   †   1476
	1325



	
	std
	99
	121
	23
	147
	5
	152
	53



	52
	minimum
	1660
	1600
	1529
	1632
	1585
	1540
	1473



	
	median
	   †   1773
	   †   1695
	   †   1627
	   †   1731
	   †   1701
	   †   1610
	1556



	
	std
	84
	74
	52
	46
	73
	39
	73



	53
	minimum
	1872
	1798
	1604
	1795
	1681
	1597
	1537



	
	median
	   †   1990
	   †   1983
	   †   1704
	   †   1986
	   †   1755
	   †   1765
	1615



	
	std
	55
	75
	44
	140
	53
	104
	63



	54
	minimum
	2049
	1919
	1903
	2041
	1864
	1694
	1655



	
	median
	   †   2157
	   †   2057
	   †   2007
	   †   2104
	   †   1993
	   †   1875
	1748



	
	std
	84
	99
	90
	36
	68
	147
	62



	55
	minimum
	857
	855
	836
	851
	837
	822
	818



	
	median
	   †   882
	   †   867
	   †   850
	   †   882
	   †   865
	   †   848
	832



	
	std
	15
	9
	7
	23
	14
	15
	6



	56
	minimum
	965
	946
	911
	940
	937
	925
	896



	
	median
	   †   995
	   †   973
	   †   970
	   †   981
	   †   941
	   †   940
	926



	
	std
	14
	14
	41
	21
	2
	10
	18



	57
	minimum
	1251
	1243
	1181
	1256
	1171
	1122
	1098



	
	median
	   †   1310
	   †   1276
	   †   1224
	   †   1302
	   †   1227
	   †   1172
	1133



	
	std
	28
	21
	32
	23
	47
	21
	18



	58
	minimum
	1522
	1442
	1280
	1485
	1378
	1286
	1216



	
	median
	   †   1591
	   †   1518
	   †   1348
	   †   1604
	   †   1430
	   †   1358
	1276



	
	std
	37
	50
	47
	92
	45
	57
	29



	59
	minimum
	1660
	1647
	1449
	1540
	1504
	1416
	1335



	
	median
	   †   1783
	   †   1727
	   †   1567
	   †   1794
	   †   1618
	   †   1570
	1423



	
	std
	87
	45
	68
	197
	80
	127
	69



	60
	minimum
	1995
	1937
	1883
	1886
	1825
	1729
	1675



	
	median
	   †   2142
	   †   2066
	   †   2004
	   †   2056
	   †   1942
	   †   1918
	1768



	
	std
	104
	74
	62
	92
	67
	116
	71



	61
	minimum
	2197
	2083
	2092
	2194
	2037
	1932
	1896



	
	median
	   †   2325
	   †   2275
	   †   2129
	   †   2278
	   †   2165
	   †   2023
	1970



	
	std
	54
	149
	25
	69
	77
	81
	44



	62
	minimum
	2448
	2332
	2217
	2336
	2300
	2141
	2049



	
	median
	   †   2610
	   †   2489
	   †   2382
	   †   2579
	   †   2384
	   †   2333
	2162



	
	std
	138
	80
	119
	166
	67
	103
	60



	63
	minimum
	2837
	2652
	2363
	2819
	2584
	2369
	2221



	
	median
	   †   3058
	   †   2860
	   †   2648
	   †   3043
	   †   2774
	   †   2486
	2325



	
	std
	157
	171
	252
	99
	161
	85
	57



	64
	minimum
	650
	650
	650
	650
	650
	650
	650



	
	median
	   †   660
	   †   659
	   †   654
	   †   659
	   †   654
	   †   654
	650



	
	std
	7
	6
	3
	7
	3
	2
	0



	65
	minimum
	773
	772
	771
	772
	771
	770
	768



	
	median
	   †   803
	   †   790
	   †   791
	   †   801
	   †   786
	   †   773
	768



	
	std
	26
	11
	17
	13
	7
	3
	0



	66
	minimum
	975
	952
	878
	948
	911
	872
	852



	
	median
	   †   1024
	   †   1019
	   †   967
	   †   1024
	   †   956
	   †   925
	867



	
	std
	21
	46
	63
	48
	30
	35
	13



	67
	minimum
	1281
	1254
	1187
	1254
	1238
	1164
	1152



	
	median
	   †   1345
	   †   1325
	   †   1252
	   †   1336
	   †   1293
	1215
	1212



	
	std
	56
	59
	27
	42
	27
	43
	46



	68
	minimum
	1409
	1392
	1314
	1392
	1307
	1284
	1236



	
	median
	   †   1502
	   †   1463
	   †   1361
	   †   1487
	   †   1376
	   †   1376
	1285



	
	std
	55
	29
	30
	79
	60
	45
	38



	69
	minimum
	1670
	1595
	1552
	1631
	1544
	1533
	1463



	
	median
	   †   1788
	   †   1730
	   †   1632
	   †   1788
	   †   1655
	   †   1599
	1532



	
	std
	101
	87
	53
	114
	84
	46
	34



	70
	minimum
	1975
	1853
	1818
	1940
	1769
	1741
	1625



	
	median
	   †   2108
	   †   2026
	   †   1937
	   †   2036
	   †   1894
	   †   1884
	1704



	
	std
	111
	110
	98
	47
	76
	78
	33



	71
	minimum
	2098
	2032
	1978
	2047
	1938
	1893
	1832



	
	median
	   †   2231
	   †   2153
	   †   2089
	   †   2227
	   †   2064
	   †   1964
	1916



	
	std
	104
	107
	66
	135
	60
	33
	56



	72
	minimum
	2197
	2128
	1996
	2197
	2042
	1965
	1921



	
	median
	   †   2369
	   †   2275
	   †   2067
	   †   2326
	   †   2146
	   †   2044
	2004



	
	std
	126
	130
	48
	52
	54
	46
	43










 





Table 4. Summary of the experimental results of the seven algorithms on the test instances.
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	Metrics
	GA
	PSO
	DE
	BBO
	EBO
	WWO
	EWWO





	AVG(Minimum)
	1348
	1303.5
	1227.6
	1318
	1246.7
	1187.3
	1140.7



	RANK(Minimum)
	68
	54
	33
	56
	37
	22
	11



	AVG(Median)
	1436.5
	1391.8
	1307.3
	1420.3
	1321.4
	1265.9
	1189.7



	RANK(Median)
	68
	52
	32
	60
	36
	23
	10
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