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Abstract: Unmanned aerial vehicles (UAVs), relying on wireless communication, are inevitably
influenced by the complex electromagnetic environment, attributed to the development of wire-
less communication technology. The modulation information of signals can assist in identifying
device information and interference in the environment, which is significant for UAV communica-
tion environment monitoring. Therefore, in scenarios involving the communication of UAVs, it is
necessary to find out how to perform the spectrum monitoring method to obtain the modulation
information. Most existing methods are unsuitable for scenarios where multiple signals appear in the
same spectrum sequence or do not use an end-to-end structure. Firstly, we established a spectrum
dataset to simulate the UAV communication environment and developed a label method. Then,
detection networks were employed to extract the presence and location information of signals in
the spectrum. Finally, decision-level fusion was used to combine the output results of multiple
nodes. Five modulation types, including ASK, FSK, 16QAM, DSB-SC, and SSB, were used to simulate
different signal sources in the communication environment. Accuracy, recall, and F1 score were used
as evaluation metrics. The networks were tested at different signal-to-noise ratios (SNRs). Among
the different modulation types, FSK exhibits the most stable recognition performance across different
models. The proposed method is of great significance for wireless radio spectrum monitoring in
complex electromagnetic environments and is adaptable to scenarios where multiple receivers are
used in vast terrains, providing a deep learning-based approach to radio monitoring solutions for
UAV communication.

Keywords: radio monitoring; UAV communications; deep learning; automatic modulation
recognition; multi-signal recognition; decision-level fusion

1. Introduction

With the rapid development of unmanned aerial vehicles (UAVs), applications in
various fields have experienced explosive growth. As high-mobility platforms based
on wireless communication, UAVs are closely associated with wireless communications
and communication environments. However, the current communication environment
has become increasingly complex, posing numerous challenges to the communication
effectiveness, security, and robustness of UAVs [1–4].

Driven by the development in the fields of communication, electronics, and computers,
coupled with the proliferation of wireless devices, the wireless channel environment has
become highly complex [5]. The spectrum has become congested and fraught with threats.
Consequently, the communication environment for UAVs is significantly affected. The cur-
rent wireless communication spectrum is extensively utilized by various wireless devices,
including mobile communications, wireless local area networks, and Bluetooth devices,
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resulting in limited and fiercely contested spectrum resources. This spectrum congestion
and interference intensify the difficulty of UAV communication, potentially leading to
degraded communication quality or even interruptions. Moreover, UAVs face challenges in
wireless communication security. With the widespread use of UAVs, security risks such as
unauthorized UAVs entering restricted areas or UAV hijacking have emerged [6–8]. These
threats impose new requirements on the confidentiality and reliability of UAV commu-
nication, necessitating effective security measures to protect UAV communication data
and systems.

To overcome the impact of the current complex communication environment on UAV
communication, spectrum analysis, monitoring, and management are essential. These
measures will facilitate efficient spectrum planning and allocation, enhancing the reliability
and performance of UAV communication. Additionally, spectrum monitoring helps to
strengthen the security of UAV communication, including the monitoring of unknown
communication devices and potential communication interference signals, which ensures
secure UAV operations and data transmission.

For radio monitoring, modulation recognition is the initial and crucial step. Obtaining
the modulation information of signals allows for demodulation and further analysis. The
modulation information itself plays a significant role in identifying the identities of com-
munication devices and assessing communication interference in the current environment.
Therefore, modulation recognition is necessary for radio monitoring.

1.1. Related Work

In the analysis and monitoring of non-cooperative wireless communication environ-
ments lacking prior knowledge, automatic modulation recognition (AMR) technology is
indispensable [9–11]. Modulation identification information is essential to demodulate sig-
nals and allow further analysis. Without the application of AMR, modulation recognition
is heavily based on manual judgment or more complex demodulators. These methods
are difficult to guarantee accuracy, and the implementation of the system becomes very
difficult in a straightforward manner.

Currently, there have been numerous studies on AMR technology for the recognition
of individual signals. In classical approaches, there are mainly two methods: likelihood-
based methods and feature-based methods [12]. In [13], Zhang et al. proposed a likelihood
ratio-based AMR method. This method can identify orthogonal frequency division multi-
plexing (OFDM) with index modulation signals and discusses both known channel state
information and blind recognition scenarios. Ghauri et al. [14] introduced a classifier for
pulse amplified modulation (PAM) and quadrature amplified modulation (QAM) signals.
The classifier is based on hidden Markov models (HMM) and genetic algorithms, achieving
an accuracy of 88% under SNR is 0dB and a signal sampling point count of 1024. Punith
Kumar H. L. et al. [15] utilized a feature-based pattern recognition method, employing only
three crucial features to achieve a good recognition rate, even at low SNR. At SNR = 4 dB,
it achieved an overall recognition rate of 98.8% for six digital modulation signals. M.
Abu-Romoh et al. [16] proposed a hybrid automatic modulation classification method,
which lies between likelihood-based and feature-based classifiers, relying on statistical
moments along with a maximum likelihood engine. This classifier achieved 100% accuracy
in classifying QAM and PSK at 18 dB but exhibited a significant decrease in accuracy
at low SNR. In recent years, deep learning (DL) methods have garnered attention from
researchers due to their excellent classification performance, and there has been a lot of
research work based on DL [17–20]. Y. Wang et al. [21] presented a constellation-based
convolutional neural network (CNN) ensemble consisting of two CNNs. The first CNN
layer, named DrCNN, is responsible for recognizing BPSK, QPSK, QAMs, GFSK, CPFSK,
and PAM4. The second CNN layer, named MaxCNN, focuses on recognizing QAMs within
the range of −8 dB to 18 dB, with 2 dB intervals. The recognized signal types include BPSK,
QPSK, 16QAM, 64QAM, GFSK, CPFSK, and PAM4. When the SNR exceeds 4 dB, DrCNN
achieves an accuracy of over 95%, outperforming RNN, DNN, and Inception models for
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such tasks. MaxCNN achieves an accuracy close to 100% in distinguishing between 16QAM
and 64QAM. It can be observed that extensive research has been conducted on AMR of
individual communication signals in the past.

And many related research works also exist on using AMR for radio monitoring in the
UAV communication environment [22]. Emad et al. [23] proposed a method based on deep
learning for radio frequency (RF) signal spectrum monitoring and deployed the neural
network on FPGA. For UAV radar signal modulation recognition, Liu et al. [24] proposed a
method based on bispectral slice, which performs excellently under a low SNR. Compared
with most modulation identification methods, these methods use more digital and radar
signals and are suitable for radio monitoring in the UAV communication environment.
However, most existing works also do not consider the presence of multiple signals on the
spectrum to be identified.

In a diverse communication environment, the probability of multiple non-cooperative
wireless devices appearing simultaneously increases. In order to effectively monitor the
spectrum within a certain frequency range, it is necessary to simultaneously identify and
analyze multiple wireless signals captured. However, the majority of AMR methods typically
only work for a single signal. Therefore, improvements to AMR methods for multiple signals
are necessary. Hou et al. [25] proposed a sliding window-based spectrum segmentation
method that divides the spectrum into smaller regions containing the signals of interest, and
then applies AMR method for the individual signal to each of them. This method achieves high
detection accuracy, but the entire detection process is not end to end, leading to a reduction
in detection speed. Due to the rapid changes in the wireless communication environment,
real-time capability is crucial for wireless monitoring. Table 1 evaluates the related work.

Table 1. Related works.

Related Works Method Strength Weakness

Zheng et al. [13] Likelihood-Based

Both known channel state
information and blind
recognition scenarios
are discussed.

Restricted to OFDM.

Ghauri et al. [14] HMM and genetic algorithms
Higher recognition accuracy
than other
traditional methods.

Few types of recognition, and
only one can exist at the
same time.

Punith Kumar H.L et al. [15] Decision theoretic approach

Based on the minimum
feature extraction, quickly
performed through the
decision tree.

Compared with the accuracy
of using a more complex deep
learning model, the
recognition accuracy is still
not high; still limited to only
one signal at one time.

M. Abu-Romoh et al. [16] likelihood-based and
feature-based

Achieved 100% accuracy in
classifying QAM and PSK
at 18dB.

Exhibited a significant
decrease in accuracy at low
SNR; still limited to only one
signal at one time.

Y. Wang et al. [21] CNN (DrCNN and MaxCNN)

Various digital
communication signals
including 16QAM and
64QAM can be distinguished.

Requires multiple data set
inputs; only one signal can be
resolved in data at a time.

Emad et al. [23] CNN

Have been implemented on a
GPU and an FPGA;
modulation types up to
11 kinds.

Recognition accuracy is
slightly lower; still only single
signal modulation
recognition.

Liu et al. [24] GA-BP neural network
Good performance on radar
signals recognition under the
low SNR conditions.

Common communication
modulations are not covered
and still only for single signal
modulation recognition.

Hou et al. [25] Complex-ResNet and
sliding window

High detection accuracy,
multi-signal covered.

Not end-to-end, leading to a
reduction in detection speed.
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Therefore, it is important to explore a multi-signal AMR method that offers fast
detection speed and a shorter detection process while ensuring minimal fluctuations
in accuracy.

Additionally, single-node spectrum monitoring is significantly constrained in environ-
ments with specific monitoring range requirements or in the presence of severe shadowing
or fading effects [26,27]. The introduction of multiple receiver nodes working collabora-
tively can effectively enhance the radio monitoring capability in demanding environments.

1.2. Contributions

Currently, individual signal AMR is insufficient to support the monitoring of complex
communication environments and lacks a multi-signal AMR method with a shorter process-
ing time. This paper proposes a deep learning-based multi-signal recognition method that
achieves the recognition of coexisting signals in the frequency domain that are separable
and temporally overlapped. Firstly, a multi-signal spectrum dataset is constructed, in-
cluding signal categories such as M-ASK, FSK, 16QAM, AM, and AM-SSB. Each spectrum
file contains 1 to 4 signals with SNR ranging from −8 dB to 6 dB with 2 dB intervals.
Subsequently, three different architectures of multi-signal recognition networks are built,
and the advantages and disadvantages of these three networks are analyzed. Additionally,
a decision fusion method is introduced in the experiments to improve the accuracy of the
proposed method. Finally, the performance of the method is tested, including the recall,
precision, and F1-score. The innovations of this work are detailed as follows:

• A method of multi-signal modulation recognition based on a one-dimensional neu-
ral network is proposed. The network structure is relatively simple, and multiple
communication signals can be considered.

• A multi-node joint decision-making model is considered under a distributed architec-
ture. Only the decision results of each node need to be transmitted for fusion, which
effectively reduces the data transmission cost. The method requires little calculation
and can quickly detect whether a signal is in the target frequency band. Thus, applying
this method in nodes will not incur excessive computational pressure and delays.

The remainder of this paper is organized as follows. Section 2 introduces the system
architecture. Section 3 presents the implementation method of multi-signal recognition
based on the one-dimensional neural network, including the spectrum dataset, neural
network structure, training and testing methods, and the decision fusion method. Section 4
analyzes the performance and Section 5 concludes the paper.

2. System Architecture
2.1. Multi-Signal Spectrum Dataset

Assuming that there are M receiver nodes in total and N unknown signals to be
recognized in the UAV communication spectrum in the same period, after collecting
information via hardware, the time domain information is determined as follows:

xj(t) =
N−1

∑
i=0

uji(t) + nj(t), (1)

where uji(t) is the i-th unknown signal to be detected in the spectrum sensed by the j-th
receiver node, and nj(t) is the additive white Gaussian noise (AWGN) in the channel where
the j-th receiver node is located. It is obviously difficult to extract effective information
in the time domain. After fast Fourier transform (FFT), the frequency domain is denoted
as follows:

Xj(ω) =
N−1

∑
i=0

Uji(ω) + Nj(ω), (2)

where Uji(ω) does not overlap in the same receiver node.
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The position of the spectrum and the occupied bandwidth of Ui(ω) are limited, and
SNR varies from −8 to 6 dB in 2 dB intervals. The selected signal types cover digital and
analog modulation schemes, and the number of points in each segment of the wideband
spectrum data is 1024. The specific parameters are shown in Table 2, where fs is the
sampling frequency.

Table 2. Parameters for the multi-signal spectrum dataset.

Type Parameters Range

M-ASK Carrier Frequency f0 (0.07–0.43)* fs
Symbol Width Tb (1/25–1/10)*N/ fs

M [10,15,20,25]
2FSK Carrier Frequency f1, f2 (0.07–0.43)* fs,

0.04 ≤ | f1 − f2|
fs

≤ 0.08

Tb (1/25–1/10)*N/ fs
16QAM Tb (1/25–1/10)*N/ fs
DSB-SC f0 (0.07–0.43)* fs

Baseband fh (0.005–0.007)* fs
SSB f0 (0.07–0.43)* fs

fh (0.005–0.007)* fs

We employ text format .txt files to label and store the dataset. The tags contain the
types, occupied bandwidth, and positions of the different communication signals.

The original training set has a total of 32,000 data. These data are organized into the
structure that is shown in Figure 1. The training set can also be split into multiple subsets
for specific applications.

Numbers of signals in one spectrum (1 ~ 4)

1
0

0
0

 D
at

a 
A

cc
u

m
u
la

ti
o
n 1×1×10001×8×1000

Figure 1. Dataset structure.

Different datasets are generated according to the needs of different test methods to
create the test sets. The dataset used for each test will be described before the corresponding
experiment result.

2.2. Processing in the Single Node

Before the fusion, the corresponding single node must perform spectrum detection for
the UAV communication environment. There may be multiple communication devices in
the environment, and we may also have multiple detection nodes. The specific flow chart
is shown in Figure 2.
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Figure 2. Single-node spectrum sensing process.

The concept of our proposed method originates from object detection in image process-
ing. Firstly, data preprocessing is carried out. The data are converted from the time domain
to the frequency domain by fast Fourier transform (FFT). After that, the spectrum data are
input into a one-dimensional neural network to sense the frequency domain information,
including detecting the existence of signals and the occupied frequency bandwidth and
positions. The frequency band information must be normalized when inputting. After
processing, some predicted positions and modulation labels are output. The redundant
predictions are then cleaned up by the non-maximum suppression algorithm. Finally, the
label of each signal is obtained, which realizes the frequency bandwidth occupation and
the frequency band position detection of the signals. The one-dimensional neural network
is an essential component in multi-signal modulation recognition. The specific structure is
explained in Section 3.

2.3. Multi-Node Fusion Process Structure

The method in this paper adopts a centralized structure, which is shown in Figure 3.
Multiple nodes aggregate the data to the fusion center, which then makes the final decision.
Different nodes occupy different frequency bands and positions, which means the interfer-
ences are not the same, and there are subtle differences between models in nodes. Each
node then gives its own prediction under a different environment, and these are returned to
the fusion center. Finally, the fusion center employs decision fusion to vote on the different
results reported by multiple nodes.

Neural network for multi-signal 

AMR 

Fusion center

Different Environment

Passing the prediction in a single 

node

Figure 3. Multiple nodes environment.

3. Proposed Approach
3.1. Using Neural Networks in Multi-Signal AMR

Machine learning technology has applications in many fields, especially deep learning.
In the field of wireless communication, deep learning technology can respond quickly, with-
out prior knowledge, adapt to rapidly changing massive data, and has many applications in
signal recognition and processing [28–30]. It is already being employed in wireless device
identification [31]. Deep learning models can easily complete classification or detection
tasks, provided there is sufficient data support [32–34]. As the problem of multi-signal
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AMR is transformed into the detection of the frequency bandwidth and location occupied
by the multiple signals in the spectrum, the concepts and ideas of deep learning in image
processing and object detection can also be borrowed.

Analogous to object detection, either a one-stage or two-stage scheme can be used
for multi-signal AMR. In a one-stage scheme, the input data are divided into a limited
number of cells; if the center position occupied by the signal is in a certain cell, then this
cell is responsible for detecting it. A two-stage scheme employs a sliding window like [25]
or a region proposal method without inputting the entire spectrum into the network.
Although the two-stage scheme has higher accuracy, the detection speed is relatively low.
As the spectrum monitoring method requires good real-time performance, we employ
the one-stage scheme in this work, sacrificing a small amount of accuracy in exchange
for a significantly improved detection speed. Figure 4 shows the structure of the one-
dimensional neural network for multi-signal AMR. The first area in Figure 4 is the feature
extraction part, which can be arbitrary as long as the network structure can realize the
feature extraction. In Figure 4, the convolutional neural network (CNN) is employed as
an example.

Convolutional Layer Leaky ReLU Layer Batch Normalization Maxpooling Layer

Feature Extraction

1-Dimentional Neural Network for Multi-signal AMR

Predicting

Flatting

Fully Connected

OUTPUT

Positions

- Center frequency

- Bandwidth

Confidence Scores

INPUT

Multi-signal 

Spectrum 

Data

(1, 1024)

ReLU Layer

Figure 4. One-dimensional neural network for multi-signal AMR.

This paper uses three feature extraction networks: CNN, convolutional long-short-
term memory fully connected deep neural network (CLDNN), and deep complex convo-
lutional network (complex-conv). CNN is one of the most commonly used networks for
image processing and classification, which employs a stack of convolutional and pooling
layers to extract features. CNN models have a small size and short training time. CLDNN
is a composite network that uses CNN, long short-term memory (LSTM), and deep neural
network (DNN) structures simultaneously. Because of the LSTM cell, CLDNN is reason-
ably effective at dealing with sequential data. Adding the CNN before LSTM reduces
the variance and dimension of the sequence data first, which is followed by the DNN
structure for nonlinear mapping. The three models have complementary advantages and
significantly improve the performance of sequence data processing. Trabelsi et al. [35]
proposed complex-conv with richer expressiveness and data processing capabilities in
2017. Experiments were carried out to test the complex-conv models on several computer
vision and music transcription tasks using the MusicNet dataset, achieving state-of-the-art
performance. In this paper, complex-conv is mainly implemented using complex con-
volutional layers and complex pooling layers. The three extraction networks have their
unique features.

The network will require more parameters and a longer training time as the expressive
ability improves. Table 3 shows the parameters of the one-dimensional neural network for
recognition built with different feature extraction networks and illustrates that complex-
conv has more parameters than the other two networks.
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Table 3. Total parameters in three networks for recognition.

Feature Extraction Parts CNN CLDNN Complex-Conv

Total Parameters 39.0 M 41.1 M 77.3 M

3.2. Data Preprocessing for the Dataset

The initial time-domain data is first generated according to the dataset parameters
shown in Table 2. The FFT is then employed to transfer the information to the frequency
domain, and the training data are labeled by category, center frequency, and occupied
bandwidth. Each piece of spectrum data is divided into 16 subsections, with 64 points per
section. Each subsection contains two prediction data for the signal whose center frequency
is in that subsection, including center frequencies, occupied bandwidth, confidence scores
(CSs), and modulation classifications. The specific composition is shown in Figure 5. The
length of the modulation classification possibilities is five because the current dataset
is divided into five categories according to the preset modulation method used in the
communication, in the order of ASK, FSK, QAM, DSB, and SSB. If the ground truth value is
used during training, the possibility for the actual category is marked as 1, and the others
are 0. For example, if the communication signal is FSK, then the tensor will be 01000. The
network’s autonomous judgment of the category provides the predictions. If there is no
signal in this section, the data in this tensor is all 0. In this way, a wideband spectrum data
label can be converted into a 16 × 11-dimensional tensor.

Pred.1 

Position

Pred.1

CS

Pred.2

CS

Pred.2

Position
Classifications' Possibilities

11-dimensional tensor

Figure 5. The 11-dimensional tensor for each section.

3.3. Training and Testing Method

We perform two stages of training in our network. Because the network structure
is too deep, the integrated training of the network may cause the convergence rate to
be too slow or in a state of nonconvergence. The first stage trains the feature extraction
network. We observe that in many classical deep learning networks, the structure of the
classification network can effectively extract features from data. Therefore, the framework
of classification networks is employed to train a network for extracting features from
spectrum data. The second stage is the overall training. The trained feature extraction
network parameters are then employed as the initialization parameters of the recognition
network, which significantly reduces the training time. Algorithm 1 is the overview of the
training procedure.

3.3.1. Pretraining of the Feature Extraction Network

After adding a flattening layer and a fully connected layer after the feature extraction
network, the model is trained as a multi-class network. The parameters in Table 2 are
employed to generate a new individual signal dataset for training. We generate 4000 spec-
trum data for each category and use 10% as the validation set. The model is saved after
training the fixed epochs. Three multi-classification networks require training at this point:
CNN, CLDNN, and complex-conv. When training, the cross-entropy function is used as
the loss function.

3.3.2. Overall Training

First, the network parameters saved in the previous stage are correspondingly at-
tached to the recognition network. It should be noted that the layer names here must be
consistent with the multi-class network layer names. The previously generated dataset is
then employed for training, in which the output results are 176-dimensional tensors. The
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model is saved after training for a fixed number of epochs. When training overall, the loss
function is different from the first stage. The following section describes the loss function
used in the overall training.

Algorithm 1 Training the recognition networks

Input: Feature Extraction Dataset (or Subset) D1, Multi-signal Dataset (or Subset) D2;
Output: Neural Network Parameters θs
1: TRAIN_FEN(D1) :
2: θFE ← initialize randomly
3: for e ∈Maxepoch1 do:
4: (x, y)← random mini-batch from D1
5: ŷ← forward-propagation(x, θFE)
6: e1 ← cross-entropy(y, ŷ)
7: θFE ← backpropagation(e1)
8: end
9: return θFE

10: TRAIN_SN(θFE, D2) :
11: θS ← initialize randomly
12: θS ← corresponding layer parameters(θFE)
13: for e ∈Maxepoch2 do:
14: (x, y)← random mini-batch from D2
15: ŷ← forward-propagation(x, θS)
16: e2 ← cross-entropy(y, ŷ)
17: θS ← backpropagation(e2)
18: end
19: return θS

3.3.3. Loss Function for Recognition Networks

Because supervised learning is the mapping relationship between the raw data and
the label in the fitting sample, we need to design a function to estimate the loss between
the predictions and the ground truth. Observing the loss will indicate the quality of the
network parameters fitting. Three quantities need to be considered in the recognition
network: localization, confidence scores, and modulation categories. Therefore, the error
used for the overall network is also divided into three parts, namely, the localization,
confidence, and classification errors. The confidence error is divided into errors that are
with or without a signal:

e1 = λ1

a

∑
i=0

b

∑
j=0

1sig
ij

[
(xi − x̂i)

2 +
(√

wi −
√

ŵi

)2
]

,

e2 =
a

∑
i=0

b

∑
j=0

(
1sig

ij + λ21nosig
ij

)
(ci − ĉi)

2,

e3 =
a

∑
i=0

1sig
i ∑

c∈ classes
(pi(c)− p̂i(c))

2.

(3)

The sum of e1, e2, and e3 is the entire loss function. In Equation (3), e1 is the localization
error, including the center frequency error and the occupied width error. We square the
widths to balance the errors of different occupied widths, which improves the identification
accuracy of signals with narrower occupied bandwidths. Additionally, e2 is the confidence
error, where ci is the prediction confidence score, which is calculated as Pr(s)× IoUtruth

pred .
If the signal exists in a section, Pr(s) = 1, and the prediction confidence score will be the
intersection over union (IoU) of the prediction and the ground truth. If a signal does not
exist, it will be zero. Finally, e3 is the classification error.
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Of the three errors, λ1 and λ2 are weights of different parts. In this paper, λ1 and λ2
are taken as 5 and 0.5, respectively; a is the number of sections of spectrum data; b is the
number of intra-section signal predictions for each section. We take 16 and 2, respectively.
Here, 1sig

ij indicates that a signal exists in the j-th prediction of section i and 1nosig
ij indicates

that no signal exists; 1sig
ij and 1nosig

ij are complementary; and 1sig
i means a signal exists in

the section i.

3.3.4. Testing Method

Before testing, the test set is generated according to the parameters in Table 3, and
then the categories and positions of signals are predicted through one-dimensional neural
networks. The category with the highest possibility is selected as the signal’s category in
each section, and then NMS is used to select the final output of the network.

First, the predictions in the same category are sorted in one section according to the CS,
where the highest prediction is taken as the final output prediction. The IoU of the other
prediction is then calculated, where the result with the highest CS is taken. All predictions
above a certain threshold are deleted, and the process is repeated until all redundancies
are eliminated.

3.3.5. Evaluation Method

Corresponding evaluation indicators are required to evaluate the quality of a network.
In this paper, we employ the precision, recall, F1-score, and P-R curve as performance
indicators. We cannot derive the true negative TN values in a section of spectrum data, as
there is no set minimum separation distance between signals, so we cannot use accuracy
as an evaluation metric. In this paper, the true positive TP, false positive FP, and missing
detection FN values are well judged. When the IoU of the predicted value and the ground
truth value is greater than 0.65, we regard it as a TP. When the IoU between the prediction
and the ground truth value is less than or equal to 0.65, or when the signal is not reflected
in the prediction, we regard it as an FN. When a signal detected in the prediction is not
represented in the ground truth, we treat it as an FP. The specific expressions of precision
and recall are shown in Equation (4):

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

(4)

We then calculate the F1-score with the known precision and recall using Equation (5):

F1-score = 2× precision × recall
precision + recall

. (5)

Figure 6 is a calculation example of the IoU, precision, and recall. The presence of
noise or other disturbances in the spectrum is not included. In the figure, serial numbers 1,
2, and 3 represent the three signals in the spectrum, and blue, orange, and green are used as
marks respectively. The ground truth value is in the upper half, and the network prediction
value is in the lower half. It can be seen that No. 1 and No. 2 are successfully predicted
in the network prediction values, and their IoU values (0.772 and 1) both exceed the set
threshold of 0.65. Thus, the TP is 2. For signal No. 3, there is no eligible predicted value. In
addition, there is one FP between the No. 1 and No. 2 predictions, and the last prediction
of the spectrum is also determined to be an FP because IoU3 is smaller than the threshold
value. Thus, FP is 2, and FN is 1.
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Figure 6. An example for IoU, precision, and recall.

As illustrated in the above process, the two indicators of precision and recall reflect
the accuracy and completeness of the network, respectively. However, only considering the
precision or recall is not a comprehensive consideration for evaluating model performance.
Therefore, we also employ the F1-score, as it can also consider when it is difficult to fix the
precision or recall.

The precision–recall curve (P-R curve) reflects the balance between precision and recall.
Taking recall as the x-axis and accuracy as the y-axis, the curve changes as the confidence
threshold fluctuates. The closer the P-R curve is to the upper right corner, the better the
network performance.

3.4. Decision Fusion

Ensemble learning is a joint concept that improves the overall performance of model
prediction by comprehensively considering multiple results after training multiple models.
Many ensemble learning methods have been proposed. In this paper, we refer to the
classical bagging method, which is representative of parallel ensemble learning. Bagging is
based on the idea that a stable and reliable strong classifier can be obtained by combining
several weak classifiers. The subsets mentioned in Algorithm 1 are for the bagging models.
By transferring this idea to our scenario, each node will be a relatively weak sensing node,
and a multi-receiver architecture will be a strong sensing system. The execution of multiple
nodes is in parallel. An overview of the bagging weak models’ training process is provided
in Algorithm 2.

Algorithm 2 Training the weak networks

Input: N Multi-signal Training Samples {(xi, yi)}N
i=1 in Dataset D2;

Output: Weak Networks Group Parameters θM
1: TRAIN_MULTI(D2) :
2: for i ∈ Maxnodenumber M do:
3: {(xi, yi)}n

i=1 ← n random samples from D2
4: θsi ← TRAIN_SN(θFE, {(xi, yi)}n

i=1)
5: return θM ← {θS1 , ... , θSM}

Weak models are voters, and this joint voting system is a strong model. Because of the
task of this paper, we cannot use the maximum or average to calculate the joint predictions.
Therefore, a threshold must be manually chosen to judge the validity of the prediction
results. The judging procedure is shown in Algorithm 3.

As it is only effective to fuse multiple results by ensuring that each node is independent
and diverse, we divide the original dataset into multiple subsets. Each subset is of the exact
specification, and all are derived from the sampling of the original dataset. Subsets are
allowed to overlap. To allow independence and diversity between single-node models, the
nodes are trained on these subsets rather than the entire training set. In the final decision, a
single node makes a prediction independently, which is sent to the fusion center. The best
collective prediction is then made through an improved voting scheme, which is described
as follows:
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1. Find all predictions of all single nodes and store them in the same section of spectrum.
2. Divide the synthesized spectrum into 16 sections.
3. Accumulate the number of center frequency points in each section. If the C category

is higher than the certain voting threshold, it is counted as a joint decision result.
4. Return to the original predictions, identify those that match the joint decision results,

count their start and end positions in the spectrum data, and average them.

Algorithm 3 Judging the joint decision results

Input: Prediction subsections, voting threshold φ;
Output: Joint decision results;
1: for i ∈ Subsections do:
2: for j ∈ Maxnodenumber M do:
3: classij, posij ← Modelj(θsi , Subsectioni)

4: if ∑j classij ≥ φ:
5: class resulti ← current class
6: position resulti ← average position
7: return class result, position result

It is essential to select an appropriate threshold. One that is too small will lead to an
excessively aggressive prediction, while one that is too large will lead to results that are
similar to a single node and cannot reflect the advantages of fusion. In this paper, we select
and compare suitable voting threshold three after testing.

4. Experiments and Results

Variables, including the SNR, the quantity of signals, the modulation types of signals,
and the number of nodes, are considered in this section. We employ the precision, recall,
and F1-score to measure the models’ performance, and precision–recall curves of the three
models are drawn. Finally, we simulate the same multi-signal AMR by multiple nodes
in different locations and compare it with the recognition performed by a single node.
Unless otherwise specified, the three single-node recognition network models use the
whole training set for 30 epochs, and the multi-node networks use 60% of the randomly
selected training sets for 20 epochs.

4.1. Performance under Different SNRs

Figure 7 shows the results of three different single-node models under SNRs beyond
the training set range. The spectrum data are mixed with different signal quantities, and
noise with different energy is applied. Finally, the dataset is separated by the SNR. These
single-node models are trained using the whole training set with 30 epochs. The perfor-
mance of feature extraction using complex-conv is the best, and the overall performance
of the other two networks shows little difference. In Table 4, the precision, recall, and
F1-scores under some typical SNRs are shown in detail. It can be seen that the models are
sensitive to noise. When the SNR drops to a certain low value, the performance results
of the three networks have almost no difference. When SNR = 0 dB, the F1-scores of all
networks are above 0.80. When SNR is less than −14 dB, the F1-scores are all below 0.20.
Thus, all networks are hard to work with, or there are so many false alarms or misses that
the prediction results are unusable.

4.2. Performance under Different Quantities of Signals

We consider different quantities of signals, where the test set is divided into four parts,
and recall is the primary metric. A set of thresholds is selected, the precision is maintained
above 90%, and the recall is tested. As illustrated in Figure 8, the quantities of signals
influence the performance of the neural networks.
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Table 4. Precision and recall (SNR = ±10 dB, ±6 dB, 0 dB, and −18 dB).

Precision Recall F1-Score

SNR(dB) Complex-conv CLDNN CNN Complex-conv CLDNN CNN Complex-conv CLDNN CNN
10 0.96205 0.93756 0.93991 0.91481 0.90221 0.90711 0.93784 0.91954 0.92322
6 0.95905 0.92890 0.93511 0.91091 0.88041 0.89481 0.93436 0.90400 0.91452
0 0.91343 0.89534 0.87564 0.81551 0.78221 0.79981 0.86170 0.82629 0.84488
−6 0.74680 0.70079 0.72603 0.59871 0.58831 0.59371 0.66461 0.64996 0.64282
−10 0.44593 0.45719 0.39159 0.37851 0.38861 0.40071 0.40946 0.42012 0.39610
−18 0.09940 0.10380 0.08841 0.10501 0.10211 0.14161 0.10213 0.10295 0.10885

one three fourtwo 
      Quantities

0.0

0.2

0.4

0.6

0.8

1.0

Influence of  Signal Quantities on Sensing Performance

F1-score
Precision
Recall
Miss

Figure 8. Recall and miss of the models when the precision remains above 90%.

In general, the fewer signals in the spectrum data, the better the models’ performance.
Figure 8 shows that the recall of the model is more sensitive to the number of signals in
spectrum data, while the precision does not change as much. As the quantities of signals
increase, there will be fewer free segments in the spectrum, and the network will miss
signals with lower confidence when analyzing the crowded spectrum. The results in
Figure 8 indicate that the difficulty of sensing different sources is varied. When choosing
the network parameters, it is likely to conform to most types of signals but the confidence
of the more difficult ones (such as SSB) is low.
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4.3. Performance under Different Types of Signals

The performance of three networks for five types of signal types and mixtures is
shown in Figure 9, where the final figure is the comparison values. An individual signal
dataset is created, and there are 200× 21 pieces of signal spectrum data of each type. The
range of SNR of the test set exceeds training set one, ranging from −20 to 20 dB, with an
interval of 2 dB. In most cases, the performance of the three models is not significantly
different. Amongst these modulation types, the recognition performance of FSK signals
demonstrates the highest consistency across different models. However, when the SSB
signal is chosen as the communication modulation type, the performance of complex-conv
as the feature extraction network is obviously better than other networks. This may be
because the features of the SSB signal are significantly different in length from other signals,
which means it is not well characterized. As a result, they have low recall, which affects the
overall performance.
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Figure 9. Performance under different types of signals.

4.4. Performance of the Fusion Method

The predictions from multiple nodes at different channels in the fusion center are fused
by our method proposed in Section 3.4. Random noise with different energy is then applied
to the spectrum dataset to simulate the different channels and positions for different nodes.
The SNR of the spectrum dataset is controlled between −8∼6 dB, and six different SNRs
are randomly selected as the interference selections for the test data.

The average performance of the single node is the baseline for the fusion experiment.
In addition, the experimental data after fusion are compared with the data when nodes = 6,
according to the literature [36] in Table 5. The results of the fusion and baseline methods
are shown in Table 6 and indicate that the fusion method performs better than single-node
measurements. When using single-node measurements, it is clear that the training epochs
and the size of the training dataset also significantly affect the model’s performance. As
shown in Table 5, when the number of nodes is six, the performance after fusion is slightly
better than that of DAG-SVM.

4.5. Precision-Recall Curves

While a model cannot be fully measured by the precision or recall corresponding to a
certain point, the overall performance of the P-R curve can provide a more comprehensive
evaluation. The entire P-R curve is generated by changing the confidence threshold from
high to low, where points close to the vertical axis have a larger confidence threshold and
vice versa. P-R curves under different SNRs are shown in Figure 10, illustrating that the
complex-conv model performs better in most situations.
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Table 5. Fusion method performance under Complex-conv and DAG-SVM [36].

Fusion and
Conditions

Node = 1,
Complex-conv with 20
Epochs, 60% Dataset

Node = 1,
Complex-conv with 30
Epochs, 100% Dataset

Node = 6,
Complex-conv with 20
Epochs, 60% Dataset

Node = 6,
DAG-SVM [36] with
Obtained Training

Data Size

F1-score (Sensing
Accuracy) 0.8405 0.8678 0.8933 0.8343

Table 6. Fusion method performance comparison with the single node.

Feature
Extraction

Parts

Single Fusion
20 Epochs, 60% Dataset 30 Epochs, 100% Dataset 6 Nodes, 20 Epochs, 60% Dataset

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

CNN 0.79664 0.69881 0.74452 0.89661 0.80121 0.84623 0.91542 0.85281 0.88301
CLDNN 0.73912 0.61761 0.67292 0.88575 0.80001 0.84070 0.92616 0.86281 0.89336
Complex-

conv 0.88570 0.79961 0.84046 0.91790 0.82281 0.86776 0.92503 0.86361 0.89327
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Figure 10. Performance under different types of signals.

4.6. Model Runtime Duration

The average inference time of the model is shown in Table 7. The duration counts the
average duration from inputting a frequency domain sequence into the model until the
prediction is completed during the test. CLDNN has a higher running time than the other
two due to adding the LSTM layer.

Table 7. Average model runtime.

Feature Extraction Parts CNN CLDNN Complex-Conv

Runtime (ms) 4.0298 21.0138 13.9534
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5. Conclusions

This work proposed a multi-signal AMR method based on deep learning models
and the fusion method to rationalize the monitoring and managing of electromagnetic
spectrum resources. The radio monitoring method can monitor multiple signals on the
spectrum simultaneously and return the offset frequency and occupied bandwidth of
the signal relative to the scanning center frequency. Moreover, it can lay the foundation
for subsequent judgments on whether it is non-cooperative interference and interference
countermeasures, and contribute to the security of the communication environment. The
model could work under multi-receiver scenarios with a good balance between complexity,
speed, and energy consumption. End-to-end deep learning models can provide a more
straightforward structure for radio monitoring. The architecture using the fusion method
could also fuse more information. The decision-level fusion by the fusion center was
enhanced by the diversity and independence of the slightly different models employed
for prediction.

The proposed technique was tested by comparing the single-node and multi-node
model. The single-node model achieved the highest F1-score under SNR = 10 dB, which was
about 93.784%. When FSK was selected as the signal source, its recognition performance
remained the most stable across different models. Performance results were higher when
the fusion method employed multiple nodes rather than a single node. Using six models
trained for 20 epochs and employing only 60% of the dataset for decision-level fusion could
achieve better results than a single node trained for 30 epochs on the entire dataset. The
results indicated that the proposed method is suitable for a distributed architecture. Using
the method based on deep learning could improve the performance of radio monitoring,
thus enhancing spectrum resource utilization efficiency.

The proposed method still has limitations. Feature extraction networks do not work
effectively due to the similarity between modulation signals, and some specific sources,
such as SSB, are not well sensing in the models. In addition, this method does not consider
the security of the deep learning model itself in the non-cooperative adversarial communi-
cation scenarios [37], commonly observed in UAV communication scenarios. As the CNN
model has been attacked by some methods in the recognition process [38], the security
of the proposed method should also be strengthened. Due to the differences between
the actual and simulated electromagnetic environments, future research directions may
include testing with real-world signal datasets from UAV communication environments to
supplement the analysis.
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