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Abstract: Timely and accurate monitoring of winter wheat yields is beneficial for the macro-guidance
of agricultural production and for making precise management decisions throughout the winter
wheat reproductive period. The accuracy of crop yield prediction can be improved by combining
unmanned aerial vehicle (UAV)-based multispectral data with deep learning algorithms. In this
study, 16 yield-sensitive vegetation indices were constructed, and their correlations were analyzed
based on UAV multispectral data of winter wheat at the heading, flowering, and filling stages. Seven
input variable sets were obtained based on the combination of data from these three periods, and four
generalized machine learning algorithms (Random Forest (RF), K-Nearest Neighbor (KNN), Bagging,
and Gradient Boosting Regression (GBR)) and one deep learning algorithm (1D Convolutional Neural
Network (1D-CNN)) were used to predict winter wheat yield. The results showed that the RF model
had the best prediction performance among the generalised machine learning models. The CNN
model achieved the best prediction accuracy based on all seven sets of input variables. Generalised
machine learning models tended to underestimate or overestimate yields under different irrigation
treatments, with good prediction performance for observed yields < 7.745 t·ha−1. The CNN model
showed the best prediction performance based on most input variable groups across the range of
observed yields. Most of the differences between observed and predicted values (Yi) for the CNN
models were distributed between −0.1 t·ha−1 and 0.1 t·ha−1, and the model was relatively stable.
Therefore, the CNN model is recommended in this study for yield prediction and as a reference for
future precision agriculture research.

Keywords: 1D-CNN; irrigation treatments; observed; precision agriculture

1. Introduction

Winter wheat is a vital food crop in both northern China and worldwide, where the
demand for winter wheat is increasing due to the growing world population and rapid
economic development [1]. Therefore, accurate winter wheat yield predictions are crucial
to ensuring food security and promoting agricultural production. Winter wheat yield
forecasting has long been an important area of research in agriculture. Traditional yield
forecasting methods are mainly based on manual surveys and statistics. This involves
collecting a range of information, including growth and meteorological data, followed by
data analysis and modelling [2]. This approach is not only time-consuming and laborious
but also challenging to ensure accuracy. In recent years, the continuous progress of science
and technology has opened up new opportunities for winter wheat yield prediction with
the application of new technologies such as remote sensing technology, which has great
potential in this field.
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Compared with traditional methods, remote sensing technology has great potential
for winter wheat yield prediction. With the continuous development of modern technology,
remote sensing technology is being increasingly used in various fields, such as environ-
mental monitoring [3] and agricultural precision management [4]. Manual methods of
remote sensing data collection are not only inefficient but also costly [5]. Satellite remote
sensing has advantages such as a wide collection area and good resolution; however, its
actual impact is often unsatisfactory due to its long acquisition time and susceptibility to
weather, cloud cover, and sensor technology [6]. In contrast, the emerging technology of
UAV remote sensing platforms can carry a variety of sensors with high resolution, flexibility,
convenience, and low cost. These platforms can overcome the limitations of satellite remote
sensing technology and quickly and efficiently obtain data on the growth status [7] and soil
moisture [8] of winter wheat at different fertility stages. Artificial intelligence and big data
analysis can be used to process and analyse the data [9], resulting in more accurate yield
predictions. The UAV remote sensing platform with multispectral sensors has been used to
non-destructively assess LAI [10], biomass [11], yield [12], chlorophyll content [13], and
N-use efficiency [14] of different materials with good results.

Machine learning algorithms are widely used in agriculture, using mathematical and
statistical methods to enable computers to learn from data and improve performance
without explicit instruction [15]. For maize yield prediction, the RF algorithm has demon-
strated high accuracy, outperforming support vector machines and artificial neural network
models [16]. At the tuber formation stage for potatoes, the RF algorithm performed best
in predicting above-ground biomass while providing satisfactory accuracy at the tuber
expansion stage [17]. The K-Nearest Neighbor algorithm has also shown good predictive
performance for cassava yield prediction [18]. In the study of chlorophyll content in winter
wheat, the Bagging model demonstrated significant accuracy, although it did not perform
the best in prediction performance [19]. In addition, the GBR model has shown the best
performance in predicting daily evapotranspiration for irrigation planning, providing new
ideas for future agricultural water management allocation [20]. Given the demonstrated
success of these machine learning algorithms in previous studies, they are well suited for
use in winter wheat yield prediction.

Deep learning models, especially 1D CNN models, have gained popularity in various
scientific fields [21]. 1D CNN models have the capability of representational learning, which
allows them to perform translation invariant classification through the hierarchical structure
of the input information [22]. They can be utilised for lossless maize yield prediction and
are well-suited for feature extraction and classification [23]. CNNs can also extract effective
feature structures from complex spectral data, providing greater model expressiveness and
higher performance than traditional models [24]. These characteristics make CNNs highly
promising for improving the precision of winter wheat yield prediction, especially during
the heading stage, which is a suitable time for data collection [25]. 1D CNNs have been
shown to be a promising approach for the detection of water pH, offering higher prediction
accuracy and better modelling convenience compared to traditional algorithms without
the need for complex pre-processing of input variables [26]. In soil phosphorus content
prediction, 1D-CNN is also expected to significantly improve the ability to predict effective
phosphorus in soil [27]. Therefore, the 1D-CNN model was chosen for the winter wheat
yield prediction.

Although many studies have been conducted on winter wheat yield, few have investi-
gated the construction of winter wheat yield prediction models by combining data from
multiple fertility stages and using different machine learning and deep learning algorithms.
Therefore, the main objectives of this study were: (1) to evaluate the feasibility of yield pre-
diction using vegetation index data from three fertility stages; (2) to evaluate the predictive
performance of yield prediction models based on combinations of vegetation indices from
different fertility stages; and (3) to analyse the stability of different models by examining
the distribution of differences between observed and predicted yield values Yi. The results
of this study will demonstrate the reliability of using different fertility vegetation indices
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as input variables for yield prediction, providing an efficient and economical method for
future yield prediction research.

2. Materials and Methods
2.1. Experimental Area and Design

This study was conducted at the comprehensive experimental base of the Chinese
Academy of Agricultural Sciences in Xinxiang County, Xinxiang City, Henan Province
(Figure 1). The study area is located at 113◦45′38′′ N longitude and 35◦8′10′′ N latitude,
with an altitude of 88 m above sea level and a subtropical monsoon climate characterised
by an average annual temperature of 14 ◦C and an average annual rainfall of 650 mm.

Version July 31, 2023 submitted to Journal Not Specified 4 of 7

Figure 3. This is a wide figure.Figure 1. Test area and plots.

The trial was conducted during the 2021–2022 season and consisted of 180 test plots
with six irrigation treatments: IT1 (300 mm, full irrigation water), IT2 (240 mm, 80%
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full irrigation water), IT3 (180 mm, 60% full irrigation water), IT4 (120 mm, 40% full
irrigation water), IT5 (60 mm, 20% full irrigation water), and IT6 (rainfed). These treatments
corresponded to plot serial numbers 1–30, 31–60, 61–90, 91–120, 121–150, and 151–180. Ten
wheat varieties commonly grown in the North China Plain were planted, with three
replications of each variety set up for each treatment. Each treatment consisted of 30 test
plots, measuring 4 m long and 1.4 m wide, with adjacent plots spaced 0.4 m apart to the left
and right and 1 m apart to the front and back. The trial was sown at the end of October 2021
and harvested by test plot on 5 June 2022, with yield data collected for a total of 180 plots.

2.2. Spectral Data Acquisition and Processing

The spectral data used in the experiment were obtained from a DJI M210 equipped
with the Micasense RedEdgeMX multispectral camera (Figure 2a,b). The DJI M210 is a
four-axis multi-rotor vehicle with good stability and flight control, an average endurance
of about 30 min, and a maximum horizontal flight speed of 18 m/s. The Red-Edge MX
sensor on board the UAV captures five wavelength bands (red, green, blue, near-infrared,
and red edge) with centre wavelengths of 668 nm, 560 nm, 475 nm, 840 nm, and 717 nm,
respectively. The sensor has a resolution of 1280 × 960 for each band and a field of view
of 47.2◦. To account for possible cloud and light intensity variations during the mission,
the multispectral camera is equipped with a radiometric calibration whiteboard (Figure 2c)
and an on-board irradiance sensor, which are used for sensor calibration during post-image
processing. The data used in the study were acquired at three fertility stages: heading
stage, flowering stage, and filling stage, on 20 April, 6 May, and 26 May, respectively. The
missions were flown between 11:00 a.m. and 2:00 p.m. to avoid shadow interference and at
an altitude of 30 m with a heading overlap rate of 85% and a bypass rate of 80%. 12 ground
control points (Figure 2d) were established for easy later geo-correction, and the sensors
used a vertical ground plane with an equal time interval photo mode to collect data.
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Figure 2. UAV remote sensing platform and ground control point. (a) DJI M210, (b) Red-Edge MX
multispectral sensor, (c) Radiation calibrated whiteboard, (d) ground control point (GCP).

2.3. UAV Image Pre-Processing

In this study, multispectral data were collected at three different stages (T1, T2, and
T3) of the crop growth cycle, corresponding to the heading, flowering, and filling periods,
respectively. The collected data for each period was then transferred to a computer and
imported into Pix4DMapper Pro software (version 4.4.12) (Pix4D S.A., Prilly, Switzerland),
where three projects were created. Project parameters were set to align the images using
a feature point-matching algorithm. First, a sparse point cloud of the flight area was
generated from the UAV image and position data. A spatial grid was then created based on
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the sparse point cloud, and the spatial coordinate information of the 12 GCPs was added.
Next, a sparse point cloud with precise positions was generated, and the surface geometry
of the flight area was reconstructed. Finally, a high-resolution digital orthophoto (DOM)
and a digital surface model (DSM) of the flight area were generated, and the processed
images were exported as TIFF files. The multispectral HD digital orthophotography was
divided into plots using ArcMap 10.5 (Environmental Systems Research, Inc., Redlands,
CA, USA). A shapefile was created, divided into 180 plots with IDs corresponding to the
number of each experimental plot. Using the Zonal Statistics as Table function in the
ArcMap software (version 10.8), the average value of each plot was calculated for each
of the five bands, and the five spectral bands corresponding to each plot were identified
and exported.

2.4. Acquisition of Vegetation Index

Spectral reflectance alone cannot directly reflect the growth condition and health status
of vegetation, as it is simply the ratio of the intensity of reflected light to the intensity of
incident light from vegetation. However, vegetation indices can better reflect the growth
condition and health status of vegetation by combining waveband information according
to different spectral reflectances. Many vegetation indices have been widely used with high
reproducibility and accuracy. In this study, we calculated 16 vegetation indices based on
the UAV multispectral data we acquired for three fertility periods, which are sensitive to
the yield of winter wheat. All feature information can be found in Table 1.

Table 1. Information about the Vegetation Index.

Vegetation Index Formulas References Applications

Normalised Difference Vegetation
Index NDVI = (NIR− R)/(NIR + R) [28] Agriculture,

Vegetation
Normalised Difference Red-Edge NDRE = (NIR− RE)/(NIR + RE) [29] Vegetation

Blue-normalised difference
vegetation index BNDVI = (NIR− B)/(NIR + B) [30] Vegetation

Green NDVI GNDVI = (NIR− G)/(NIR + G) [31] Vegetation
Blue-wide dynamic range vegetation

index BWDRVI = (0.1 ∗ NIR− B)/(0.1 ∗ NIR + B) [30] Vegetation

Coloration index CI = (R− B)/R [32] Vegetation
Transformed Vegetation Index TVI =

√
NDVI + 0.5 [33] Vegetation

Wide Dynamic Range Vegetation
Index WDRVI = (0.1 ∗ NIR− R)/(0.1 ∗ NIR + R) [34] Vegetation

Green ratio vegetation index GRVI = NIR/G [35] Vegetation
Red-Green Ratio RGR = R/G [36] Vegetation

RedEdge Ratio Index 1 RRI1 = NIR/RE [29] Remote sensing
RedEdge Ratio Index 2 RRI2 = RE/R [29] Remote sensing

Soil and Atmospherically Resistant
Vegetation Index

SARVI = 2.5 ∗ (NIR− R)/
(1 + NIR + 6 ∗ R− 7.5 ∗ B)

[37] Soil, Vegetation

Adjusted transformed soil-adjusted
Vegetation Index

ATSAVI = 1.22 ∗ (NIR− 1.22 ∗ R− 1.22)/
(1.22 ∗ NIR + R− 1.22 ∗ 0.03 + 0.08 ∗ (1 + 1.222))

[38] Soil, Vegetation

Chlorophyll Index Green CIg = (NIR/G)− 1 [33] Vegetation
Chlorophyll IndexRedEdge CIre = (NIR/RE)− 1 [33] Vegetation

2.5. Framework for Yield Prediction Models

After obtaining the necessary data for this study, suitable deep learning and gener-
alised machine learning models were selected to predict winter wheat yields (Figure 3).
First, the multispectral vegetation index data collected during the three fertility periods
were standardised, and the correlation between these indices and yield was analysed. In
this study, minimum-maximum scaling is used to find the period maximum and minimum
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values for each feature, and the range of values of the data is scaled to between [0, 1] using
the following formula:

x = (x− xmin)/(xmax − xmin)

where x is the original data feature, xmin is the minimum value of the feature, and xmax is
the maximum value of the feature.
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Based on the correlation and significant characteristics of each vegetation index, all
16 vegetation indices constructed had a good correlation with yield and could be used as
input variables for the predictive models. In addition, different combinations of fertility
vegetation indices were investigated in the construction of the prediction model, and
the three fertility vegetation index datasets were combined as input variables for the
model based on the research needs. To evaluate the performance of the models, the input
variables were randomly divided using a five-fold cross-validation method, where each
fold was used as the validation set and the remaining four folds were used as the training
set. All the acquired data were used as training and validation samples, and the final
accuracy of the model was determined by calculating the mean value of the five results.
Further details of the generalised machine learning and deep learning yield prediction
models can be found in the flowchart. The yield prediction models were constructed using
Python 3.8. In this study, grid search was chosen to screen the hyperparameters of the
model by combining the defined hyperparameters and candidate values in a grid, also
known as a Cartesian product, and then using cross-validation to evaluate the performance
of each hyperparameter combination and selecting the best performing hyperparameter
combination as the optimal combination to train the model to obtain the final model
performance metrics.

2.5.1. Generalized Machine Learning Models

According to the results of previous research, we found that RF, KNN, GBR, Bagging,
and CNN have shown the best predictive performance in prediction research in the field of
agriculture, respectively, which is recognised by the public, so these five algorithms were
chosen to construct yield prediction models in this study.
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RF is an ensemble learning method based on decision trees. It works by constructing
multiple decision trees, each trained with a random subset of features and datasets, and
then combining the predictions of all the trees to obtain the final prediction [39–41]. RF is
widely used in many machine learning applications due to its ability to automatically select
features, handle high-dimensional data, and provide good robustness and interpretability.

KNN is a non-parametric regression algorithm based on distance metrics [42]. Its core
idea is to predict the target value by finding the K nearest neighbours in the feature space.
The performance of KNN depends on the choice of K value and the distance metric used.
KNN works well with small datasets but can become less efficient when dealing with larger
datasets [43].

GBR is an iterative integrated learning method that improves prediction performance
by training multiple weak regression models and combining them [44]. GBR first trains
a simple regression model, and then in each iteration, it trains a new regression model
based on the error of the previous one. It then combines the output of all the models by
weighting and averaging them to obtain the final prediction result, which is highly flexible
and accurate [45].

Bagging is an integrated learning method based on the bootstrap sampling method.
It trains multiple models by randomly sampling the training dataset and averaging their
outputs to obtain the final prediction [46]. Bagged regression is effective in reducing model
variance and generalisation error and performs well on large datasets [47]. The sampling
technique allows a sample to be resampled multiple times with a replacement.

2.5.2. Deep Learning Models

A 1D CNN is a deep learning model based on convolutional operations and composed
of several types of layers suitable for processing one-dimensional data [48]. The network
typically includes an input layer, a convolutional layer, a pooling layer, a fully connected
layer, a hidden layer, and an output layer, along with additional hidden layers such as
batch normalisation, activation functions, and dropout. The convolutional layer is the core
layer that extracts features from the input data by performing convolutional operations
and contains a convolutional kernel whose size is usually a positive integer. In addition,
the convolutional layer contains N filters of the same size. Pooling is used to reduce the
dimensionality of the features in a 1D CNN, which reduces computational complexity and
improves network robustness while preventing overfitting [49]. In a 1D CNN, the pooling
layer typically follows the convolutional layer. The fully connected layer is a common
neural network layer used to map the network output into a specific output space. Every
neuron in a fully connected layer is connected to all the neurons in the previous layer. The
batch normalisation layer is an optimisation method that normalises the input data of each
batch, which speeds up the training process of the network. The activation function layer
maps the linear output of the neural network into a non-linear space, which improves
the performance of the network [50]. In a 1D CNN, the Dropout layer is a regularisation
method used to prevent overfitting by randomly dropping a percentage of neurons in the
network [51].

In this study, we constructed a 1D CNN model to predict winter wheat yield. The
model architecture consists of 1 input layer, 2 convolutional layers, 2 batch normalisation
layers, 2 activation function layers, 1 flattening layer, 1 dropout layer, 2 average pooling
layers, 1 fully connected layer, and 1 output layer, as shown in Figure 4. The input to the
1D CNN model is one-dimensional vegetation index data. The number of filters in the two
convolutional layers is 2 and 4, respectively, and the size of the convolutional kernel is 3.
The batch normalisation layer is used to normalise small batches of data and normalise
the output to a standard normal distribution, which prevents overfitting of the model and
improves computational speed. We added a dropout layer that randomly drops nodes to
further reduce model overfitting. The pool size is set to 2 × 1 with a step size of 1. The
activation function used for the two activation function layers is ReLU. The output layer is
a fully connected, dense layer with 1 node.
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2.6. Model Evaluation Indicators

In this study, we used Pearson’s correlation coefficient to assess the relationship
between vegetation indices and yield at each fertility period. In addition, we used the coef-
ficient of determination (R2) and the root mean square error (RMSE), which are commonly
used indicators to evaluate the performance of regression models, to assess the accuracy
of our prediction models. In general, a higher Pearson correlation coefficient indicates a
stronger correlation between yield and vegetation index, while a larger R2 value (closer
to 1) indicates a better ability of the model to explain the data. A smaller RMSE (closer
to 0) indicates a better predictive ability of the model, which means that there is less error
between the observed and predicted values. The formula for calculating R2 and RMSE is
shown below:

r(X,Y) =
Cov(X, Y)√

Var(X)Var(Y)
(1)

where Cov(X, Y) represents the covariance of X and Y, Var(X) is the variance of X, and
Var(Y) is the variance of Y.

R2 = 1− ∑n
i=1 (

>yi − yi)
2

∑n
i=1 (yi − y)2 (2)

RMSE =

√
∑n

i=1 (ŷi − yi)
2

N
(3)

where yi is the observed value, ŷi is the predicted value, y is the mean of the observed
values, and N is the sample size.

3. Results
3.1. Correlation Analysis and Acquisition of Input Variable Sets

In this study, we selected 16 vegetation indices that showed a significant correlation
with yield (Figure 5) and analysed the relationship between yield and the vegetation index
variables of the three fertility periods in an integrated manner using a correlation matrix.
The upper triangle of the matrix shows the correlation coefficients between yield and
each of the 16 vegetation indices, while the lower triangle shows the amount of change
in the correlation between yield and the 16 vegetation indices. As shown in Figure 5, it
was observed that the correlation between yield and each vegetation index increased as
the fertility stage of winter wheat progressed from the heading stage to the filling stage.
ATSAVI and WDRVI had the best correlation with yield at the heading stage (Figure 5a),
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both reaching a value of 0.42, followed by NDVI, NDRE, TVI, RRI1, RRI2, and CIre, all
with absolute correlation values with yield above 0.4. During flowering (Figure 5b), the
correlation between vegetation indices and yield increased, except for RGR, which had
an absolute correlation value of 0.58. The correlation between all vegetation indices and
yield was above 0.62, with SARVI showing the best correlation with yield at 0.7. During
the filling stage (Figure 5c), the correlation between vegetation indices and yield increased
significantly, with absolute values above 0.76. CI, RGR, and RRI2 of the 16 vegetation
indices showed a negative correlation with yield, while the rest of the vegetation indices
showed a positive correlation with yield.
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The multispectral features acquired at different fertility periods are complementary,
and the sensitivity of vegetation indices constructed based on the reflectance of differ-
ent spectral bands of the multispectral spectrum at different fertility periods varies. By
analysing the spectra of different fertility periods, the complementarity between the spectra
can be used to improve the accuracy of UAV remote sensing monitoring. Therefore, in this
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study, the vegetation indices of three fertility periods were used as input variable groups,
and then the vegetation indices of two fertility periods were combined to obtain a total of
seven input variable groups: (a) T1; (b) T2; (c) T3; (d) T1 and T2; (e) T1 and T3; (f) T2 and
T3; (g) T1, T2, and T3.

3.2. The Performance of Five Models on Yield Prediction

The RF model had the highest R2 of 0.703 for input variable group g (T1, T2, and T3)
(Figure 6); however, the lowest RMSE of 0.409 t·ha−1 for input variable group f (T2 and T3)
(Table 2). In general, R2 increased as the number of input variables increased, and RMSE
tended to decrease before increasing, as shown in Figure 6. However, except for input
variable group d (T1 and T2), where the prediction accuracy was lower than that of input
variable group c (T3), the inclusion of too many input variables had a negative impact on
the prediction accuracy of the RF model.
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Table 2. Yield prediction model accuracy ((a) T1; (b) T2; (c) T3; (d) T1 and T2; (e) T1 and T3; (f) T2
and T3; (g) T1, T2, and T3).

Variable
Sets

RF Bagging GBR KNN CNN Means

R2 RMSE
(t·ha−1) R2 RMSE

(t·ha−1) R2 RMSE
(t·ha−1) R2 RMSE

(t·ha−1) R2 RMSE
(t·ha−1) R2 RMSE

(t·ha−1)

(a) 0.458 0.593 0.384 0.711 0.397 0.842 0.377 0.672 0.472 0.733 0.418 0.710
(b) 0.506 0.623 0.505 0.566 0.494 0.676 0.469 0.695 0.540 0.654 0.517 0.643
(c) 0.614 0.500 0.594 0.556 0.601 0.586 0.589 0.602 0.627 0.526 0.605 0.554
(d) 0.594 0.513 0.554 0.643 0.546 0.735 0.509 0.764 0.636 0.497 0.568 0.630
(e) 0.648 0.477 0.632 0.662 0.647 0.648 0.615 0.677 0.674 0.445 0.643 0.582
(f) 0.681 0.409 0.641 0.516 0.673 0.560 0.649 0.477 0.720 0.442 0.673 0.481
(g) 0.703 0.467 0.665 0.513 0.698 0.442 0.664 0.555 0.752 0.404 0.697 0.476

Means 0.611 0.512 0.568 0.595 0.579 0.641 0.553 0.635 0.631 0.529

The KNN model showed the highest yield prediction R2 of 0.664 (Figure 6) for the
input variable group g (T1, T2, and T3) and the lowest RMSE of 0.477 t·ha−1 for input
variable group f (T2 and T3) (Table 2). However, the RMSE was higher for both input
variable groups d (T1 and T2) and e (T1 and T3) with larger errors, indicating that the
combination of two fertility data sets had an effect on the predictions of the KNN model.

The Bagging model gave the highest yield prediction accuracy (R2 = 0.665,
RMSE = 0.513 t·ha−1) for input variable group g (T1, T2, and T3) (Table 2). While in-
put variable group d (T1 and T2) had a higher R2 than input variable groups a (T1) or b (T2),
its RMSE was higher than input variable group b (T2) (RMSE = 0.566 t·ha−1), indicating
a larger error. Similarly, input variable group e (T1 and T3) had a higher R2 than input
variable groups a (T1) or b (T3), but its RMSE was higher than that of input variable group
b (T3) (RMSE = 0.556 t·ha−1), indicating that increasing the number of input variables also
negatively affected the predictive accuracy of the Bagging model.

The GBR model produced a maximum R2 and minimum RMSE of 0.698 and
0.442 t·ha−1 for input variable group g (T1, T2, and T3), respectively (Table 2). It can
be observed that the accuracy of the model gradually improved with increasing fertility,
with the highest accuracy at input variable group c (T3), where R2 improved to 0.601 and
RMSE reduced to 0.586 t·ha−1, as input variable groups progressed from a (T1), b (T2), or
c (T3). However, input variable groups d (T1 and T2) or e (T1 and T3) both had a higher
RMSE than variable group c (T3), indicating that combining two fertility data sets as input
features to the GBR model resulted in a larger error (Figure 6).

As for the CNN model, the best yield prediction accuracy (R2 = 0.752,
RMSE = 0.404 t·ha−1) was obtained for the input variable group g (T1, T2, and T3) (Table 2).
In general, the R2 of the CNN model increased with increasing input variables, and the
RMSE gradually decreased, indicating a gradient improvement in the accuracy of the model
(Figure 6).

The mean values of R2 and RMSE were calculated for different input variable groups
to observe the predictive performance of different models (Table 2). The mean value of R2

for input variable group g (T1, T2, and T3) was the highest at 0.697, and the mean value
of RMSE was also the lowest at 0.476 t·ha−1 (Table 2). In conclusion, all five models had
the best prediction accuracy for input variable groups g (T1, T2, and T3), and the CNN
models obtained the best model accuracy for different input variable groups. The average
accuracy of the five models based on different input variable groups was then calculated
(Table 2). It was found that the average ranking of the predicted R2 for each model was:
CNN > RF > GBR > Bagging > KNN, and the mean ranking of the predicted RMSE for each
model was: CNN < RF < Bagging < KNN < GBR. The CNN model was still found to have
the best accuracy, with the RF model having the second-best accuracy. The GBR model had
the largest RMSE and produced a larger error. By comparing the RMSEs under different
input variable groups, it was found that larger errors were produced under input variable
groups a (T1) or b (T2) with RMSEs of 0.842 t·ha−1 and 0.676 t·ha−1, respectively, indicating
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the poor performance of GBR in predicting individual early fertility stages of winter wheat,
as also evidenced by the RMSEs for input variable groups d (T1 and T2). Thus, RF was
shown to be a suitable generalised machine learning model when different-sized input
variable groups were considered to construct the prediction model, while the prediction
performance of the deep learning CNN model was shown to be superior to that of the
machine learning models.

In summary, both the generalised machine learning-based model and the deep learning
model obtained the best prediction accuracy with the input (g) combination of variables
as shown in Table 3. It was found that the RF, Bagging, GBR, KNN, and CNN models
obtained the highest accuracy at IT5, IT4, IT4, IT5, and IT6, respectively, indicating that the
models were more capable of predicting yield under moisture deficit conditions and were
more suitable for yield prediction.

Table 3. Accuracy of each irrigation treatment for the optimal yield prediction model.

Treatment

RF Bagging GBR KNN CNN

R2 RMSE
(t·ha−1) R2 RMSE

(t·ha−1) R2 RMSE
(t·ha−1) R2 RMSE

(t·ha−1) R2 RMSE
(t·ha−1)

IT1 0.256 1.05 0.553 0.531 0.552 0.556 0.411 0.811 0.684 0.917
IT2 0.732 0.201 0.61 0.299 0.605 0.232 0.538 0.207 0.543 0.642
IT3 0.345 0.381 0.547 0.269 0.573 0.252 0.614 0.416 0.682 0.446
IT4 0.459 0.309 0.724 0.144 0.795 0.148 0.663 0.242 0.735 0.464
IT5 0.827 0.207 0.655 0.368 0.514 0.392 0.726 0.626 0.62 0.496
IT6 0.337 0.474 0.612 0.473 0.706 0.309 0.673 0.425 0.902 0.59

3.3. Analyzing the Dynamics of Predicting Yield

The different models did not consistently predict winter wheat yield dynamics, espe-
cially for wheat under different treatments (Figures 7–11). The RF, KNN, and GBR models
predicted significantly lower yield values than observed values in the range of 1–120 plots
(IT1, IT2, IT3, and IT4) and significantly higher yield values in the range of 121–180 plots
(IT5 and IT6). In addition, the RF model predicted higher yield values for input variable
group d (T1). The Bagging model showed less volatility and fluctuated within the range of
1–180 plots. The CNN model outperformed the other prediction models in terms of yield
prediction under different irrigation treatments, regardless of the variation in the input
variable groups.

To evaluate the dynamic prediction performance of yields in different yield ranges,
the observed yield data were divided into three groups: the upper quartile (observed
yield > 8.865 t·ha−1), the middle quartile (7.745 t·ha−1 < observed yield < 8.865 t·ha−1), and
the lower quartile (observed yield < 7.745 t·ha−1). Analyzing the variation of R2 and RMSE
for the five models (Figure 12), the CNN model showed the best prediction performance
when the observed yield was below 7.745 t·ha−1, except for the input variable group (b).
The generalised machine learning model, GBR, performed second best and showed good
yield prediction performance, except for the input variable group (a). The RF, KNN, and
Bagging models, although not showing the best prediction performance, also showed good
prediction performance when predicting lower observed yields. Therefore, the CNN model
is more suitable for predicting lower observed yields, while the GBR is the most suitable
generalised machine learning model for predicting lower observed yields.
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Figure 7. Comparison of observed and predicted values of RF models based on different combina-
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Figure 7. Comparison of observed and predicted values of RF models based on different combinations
of input variables under the test area series. Indicators (a–g) denote (a) T1; (b) T2; (c) T3; (d) T1 and
T2; (e) T1 and T3; (f) T2 and T3; (g) T1, T2, and T3. The green line represents the predicted yield, and
the black line represents the observed yield.
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Figure 8. Comparison of observed and predicted values of KNN models based on different combina-
tions of input variables in the test area series. Indicators (a–g) denote (a) T1; (b) T2; (c) T3; (d) T1 and
T2; (e) T1 and T3; (f) T2 and T3; (g) T1, T2, and T3. The purple line represents the predicted yield,
and the black line represents the observed yield.
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Figure 9. Comparison of observed and predicted values of Bagging models based on different
combinations of input variables under test area series. Indicators (a–g) denote (a) T1; (b) T2; (c) T3;
(d) T1 and T2; (e) T1 and T3; (f) T2 and T3; (g) T1, T2, and T3. The blue line represents the predicted
yield, and the black line represents the observed yield.
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Figure 10. Comparison of observed and predicted values of GBR models based on different combi-
nations of input variables under the test area series. Indicators (a–g) denote (a) T1; (b) T2; (c) T3; (d) 
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Figure 10. Comparison of observed and predicted values of GBR models based on different combina-
tions of input variables under the test area series. Indicators (a–g) denote (a) T1; (b) T2; (c) T3; (d) T1
and T2; (e) T1 and T3; (f) T2 and T3; (g) T1, T2, and T3. The yellow line represents the predicted yield,
and the black line represents the observed yield.
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Figure 11. Comparison of observed and predicted values of 1D CNN models based on different 
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T3; (d) T1 and T2; (e) T1 and T3; (f) T2 and T3; (g) T1, T2, and T3. The red line represents the pre-
dicted yield, and the black line represents the observed yield. 

  

Figure 11. Comparison of observed and predicted values of 1D CNN models based on different
combinations of input variables under the test area series. Indicators (a–g) denote (a) T1; (b) T2; (c) T3;
(d) T1 and T2; (e) T1 and T3; (f) T2 and T3; (g) T1, T2, and T3. The red line represents the predicted
yield, and the black line represents the observed yield.
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Figure 12. Performance of five models in predicting yield dynamics during the model testing phase. 
The observed yield values were sorted and classified into three ranges: (a,b) observed yield > 8.865 

Figure 12. Performance of five models in predicting yield dynamics during the model testing
phase. The observed yield values were sorted and classified into three ranges: (a,b) observed
yield > 8.865 t·ha−1, upper quartile; (c,d) 7.745 t·ha−1 < observed yield < 8.865 t·ha−1, (e,f) middle;
observed yield < 7.745 t·ha−1, lower quartile. (a,c,e) denote R2, and (b,d,f) denote RMSE.
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The CNN showed the best prediction performance for observed yields between
7.745–8.865 t·ha−1, except for input variable groups (b) and (c), while the GBR had the
second-best prediction performance. The CNN model achieved the lowest RMSE of
0.103 t·ha−1 for the input variable group (g). Therefore, the CNN model is more suit-
able for predicting observed yields in the middle range of the data.

For observed yields > 8.865 t·ha−1 (quadratic precision plots c and d), the CNN model
had the highest R2 for the input variable group (g) and the lowest RMSE for the input
variable group (e) among the CNN models. Among the generalised machine learning
models, the GBR showed better prediction performance for input variable groups (a), (b),
and (g); the Bagging model showed better prediction performance for input variable group
(c); and the RF model showed better prediction performance for input variable groups (d),
(e), and (f).

Overall, the CNN models showed the best prediction performance for different ob-
served yield ranges based on most input variables and can be used to predict yields in
different ranges of winter wheat. In addition, the generalised machine learning models
showed good prediction performance at lower observed yields, with the second-best pre-
diction performance in the medium yield range and unsatisfactory prediction performance
at higher observed yields. This suggests that the generalised machine learning models are
not suitable for predicting higher observed yields (observed yields > 8.865 t·ha−1).

3.4. Distribution of Differences between Observed and Predicted Yields

This study shows the distribution of differences between predicted and observed yields
(Yi = observed yield value-predicted yield value) for different groups of variables and
models (Figure 13). The Yi density of the generalised machine learning models increased
significantly in the range of −0.1 to 0.1 t·ha−1 as the wheat growth stage progressed when
using individual fertility data as input variables. In input variable group (c), the GBR
model had a significantly higher Yi density (48.89%) than the RF (27.22%), KNN (20%), and
Bagging (35%), with the CNN model at 52.22%, all higher than the generalised machine
learning model. In input variable group (e), the deep learning model (88.89% for CNN)
had a significantly higher kernel density between −0.1 and 0.1 t·ha−1 than the generalised
machine learning models (27.78% for RF, 20.26% for KNN, 45.56% for Bagging, and 66.11%
for GBR). For the input variable group (g), the deep learning model (82.78% for CNN) also
had higher Yi densities in both the−0.1 and 0.1 t·ha−1 ranges than the generalised machine
learning models (28.89% for RF, 23.89% for KNN, 41.67% for Bagging, and 60% for GBR).
Mean values of Yi densities were calculated for different sets of input variables and models,
and the deep learning models (66.27% for CNN) showed significantly better Yi densities
in the range of −0.1 and 0.1 t·ha−1 ranges than the generalised machine learning models
(26.19% for RF, 17.06% for KNN, 35.47% for Bagging, and 50.32% for GBR). In summary,
the deep learning models outperformed the generalised machine learning models for all
prediction models constructed using different numbers of input variables, and the CNN
models were closer to the actual values.
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4. Discussion

Winter wheat yield trends show variability over time and are influenced by various
factors such as water availability, climate conditions, soil type, geographical region, and
the growing demand for grain production to feed a growing population. Predicting future
wheat yield trends is a challenging task. In this study, 16 multispectral vegetation indices
were selected as input variables for yield prediction models that have high yield sensitivity
during the heading, flowering, and filling stages. Instead of using multispectral band
reflectance directly, vegetation indices were preferred as input variables because they are
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widely used to study vegetation growth status and change and have high application
value and accuracy. The absolute values of the correlations between the vegetation indices
selected for this study and yield gradually increased with the development of the repro-
ductive period. At the filling stage, all the vegetation indices showed extremely strong
correlations, with the absolute values of the correlations between NDVI, BNDVI, TVI,
RGR, and ATSAVI all reaching more than 0.8, which is consistent with the findings of
Jewan [52]. The yield prediction model constructed from the vegetation indices of a single
fertility period showed that the higher the correlation between vegetation indices and yield,
the higher the accuracy of the constructed model. The correlation between vegetation
indices and yield at the filling stage was above 0.7, and the maximum value of R2 of the
model reached 0.627, which is larger than the maximum R2 of 0.472 of the model at the
heading stage, consistent with the findings of Bian [15]. These results indicate that the best
predictions for individual growth stages occur at the filling stage. It is also noteworthy that
the correlation between ATSAVI and yield was poor at 0.289 at the heading stage but above
0.7 at both the flowering and filling stages. This may be due to the limited canopy cover of
wheat at the heading stage, where spectral reflectance is disturbed by background factors
such as bare soil, resulting in a low correlation with the constructed vegetation index.

Generalised machine learning models are widely used in precision agriculture, partic-
ularly in predicting phenotypic information about crops, such as crop yield [53]. This study
shows that generalised machine learning models are not only influenced by different crop
fertility periods but also by the number of input variables. Overall, the RF model showed
the best prediction performance among the four generalised machine learning models,
while the KNN model showed the worst performance. As shown in the accuracy table,
when a single fertility vegetation index was used as an input variable for three fertility
periods, the RF model improved the mean R2 value by 6.36%, 5.75%, and 10.04% compared
to the Bagging, GBR, and KNN models, respectively. When two fertility vegetation indices
were used as the input variable set, the RF model had mean R2 values of 5.3%, 3.09%, and
8.5% higher than the Bagging, GBR, and KNN models, respectively. However, the GBR
model outperformed the RF model in predicting yield and observed yield when the range
8.865 t·ha−1 > observed yield > 7.745 t·ha−1 was considered. The GBR model also showed
good accuracy in the range of observed yield > 8.865 t·ha−1. This is probably due to the fact
that this experiment included six irrigation treatments and the data distribution had some
regularity, resulting in a high accuracy of the regression between the model predicted and
observed values (Fig.). RF models are often able to capture non-parametric or non-linear
relationships between predictors or yields and input variables, making their predictions
more stable and reliable. Therefore, the RF model is a more desirable model for yield
prediction in generalised machine learning models [54]. In his study, Zhong found that the
R2 of both the RF model and the Bagging model was above 0.91; however, the error of the
RF model was lower than that of the Bagging model [55]. In a study to predict the yield of
alfalfa in the current season, Feng showed that the accuracy of the RF model was better
than that of the KNN model, and the R2 of both models was above 0.8 [53]. However, in
our study, the mean R2 of the RF model was 7.57%, 5.43%, and 10.49% higher than that of
the Bagging, GBR, and KNN models, respectively. The mean R2 values were in the range
of 0.55–0.62, indicating that the GBR model outperformed the Bagging and KNN models.
This highlights that the prediction accuracy of generalised machine learning models is
affected by different application scenarios and datasets.

In this study, both generalised machine learning models and CNN models from deep
learning were used to predict winter wheat yield. The CNN model showed the best
prediction performance for all seven sets of input variables, ranging from single fertility
data as input variables to a combination of three fertility data as input variables. Compared
to the best-performing generalised machine learning model with the same combination of
inputs, the R2 of the CNN model improved by 3.11%, 6.6%, 2.08%, and 6.91%, respectively.
These results are consistent with Ghanbari [56], who found in his study on sediment core
size mapping that the CNN model outperformed the best RF model in the generalised
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machine learning model in terms of prediction performance. When the observed yield
was <7.745 t·ha−1, each generalised machine learning model showed better prediction
accuracy, and overall, the CNN model still had the best prediction performance. These
results are consistent with those of He [57], who found similar results when predicting
the minimum greenhouse temperature, both showing that the deep learning model had
the best prediction performance among the machine learning models. In their study on
winter wheat yield prediction, Tanabe [25] found that the CNN model they constructed
outperformed the linear regression model and performed best at the heading stage, which
was considered to be the most appropriate data collection stage for winter wheat. However,
our experimental results showed that the prediction accuracy of the model was better at
the filling stage than at the heading and flowering stages, indicating that the results of the
prediction model may be influenced by the variety of winter wheat, the region, the climate,
and the experimental conditions. Srivastava [58] analysed the performance of machine
learning and deep learning methods in winter wheat yield prediction and found that the
CNN model outperformed all other baseline models (with a 7–14% reduction in RMSE),
which was also demonstrated in our study. However, the reduction in RMSE of the CNN
model varied from 1.44–18.77%, further illustrating that the performance of the prediction
models in winter wheat yield prediction is influenced by a number of factors.

This experiment suggests that the RF, KNN, and GBR models underestimate yield in
the 1–120 plot range and overestimate yield in the 121–180 plot range. Furthermore, for
the 4 irrigation treatments IT1, IT2, IT3, and IT4 in the 1–120 plot range, it is shown that
the RF, KNN, and GBR models underestimate yield for treatments with more than 40%
adequate irrigation and overestimate yield for treatments with less than 40% adequate
irrigation. In a separate study, He [59] also found that the spatial downscaling method
for precipitation in an adaptive random forest underestimates extreme precipitation. This
suggests that different experimental settings and machine learning methods may lead to
over- or underestimation of monitoring metrics. The difference between observed and
predicted yields, denoted as Yi, reflects the accuracy of a model’s prediction. The smaller
the value of Yi, the closer the predicted yield value is to the observed yield value, and the
better the model matches the actual situation. Hu [60] developed a yield prediction model
based on a non-linear function that relates infrared water stress indicators to winter wheat
yield. The error between the predicted yield values and the actual yield values was small,
demonstrating the feasibility of the model in predicting yield. Our experiments showed
that the CNN model constructed with seven input variables had the highest percentage,
reaching up to 88.89% when Yi was in the range of −0.1 and 0.1 t·ha−1. However, the
generalised machine learning model did not perform well in this error range, indicating
that the CNN model had the best prediction accuracy as the error between its predicted
yield values and the observed yield values was small. Nevertheless, the GBR model also
improved the percentage of Yi in the range of −0.1 and 0.1 as the input variable set data
increased, achieving a maximum of 66.11%, thereby improving the prediction accuracy
of the model. This result demonstrated the good predictive ability of the GBR model in
the generalised machine learning model. Leng [61] demonstrated that in predicting and
optimising the specific surface area of biochar, the nitrogen content of biochar, and biochar
yield, the GBR model generally had better predictive ability than the RF model. Although
the RF model slightly outperformed the GBR model in this study, the predictive ability
of the GBR model was more stable in terms of the distribution of Yi. This stability may
be due to the fact that the GBR model automatically adjusts the error through continuous
iteration during the training process, thereby reducing the influence of outliers on the
results, resulting in high accuracy and generalisation ability for the GBR model.

In this study, only one deep learning model, CNN, was investigated. Future research
will consider the inclusion of recurrent neural network models and long- and short-term
memory network models for yield prediction. In addition, this study only used UAV
multispectral data to construct vegetation indices as input variables for the model. In the
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next study, the inclusion of hyperspectral, RGB, and thermal infrared data for multi-source
data fusion may be considered to improve yield prediction.

5. Conclusions

This study investigated the accuracy and potential of four generalised machine learn-
ing models and one deep learning model for winter wheat yield prediction. Seven different
sets of input variables consisting of multispectral data from three fertility stages were
used as input features for the models. The results showed that multi-fertility data fusion
improved the predictive performance of the models, with the CNN model having better
performance in yield prediction. Furthermore, the generalised machine learning models
showed a tendency to overestimate or underestimate yield under different irrigation treat-
ments, generating large errors. In contrast, the difference between observed and predicted
values (Yi) of the deep learning model (CNN) was relatively stable and remained within
a high percentage of the error range of −0.1 to 0.1 t·ha−1. Therefore, the CNN model is
recommended for yield prediction in this study. Overall, the CNN model successfully
estimated the winter wheat yield under different irrigation treatments and provided a
basis for future evaluation of the winter wheat yield under different conditions. Future
work should consider experimenting with different growing environments to improve
the stability and usefulness of the method. In addition, the inclusion of recurrent neural
network models and long- and short-term memory network models, as well as the fusion
of multiple data sources, such as hyperspectral, RGB, and thermal infrared data, should be
considered for further research.
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