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Abstract: The complex aerodynamic changes of the tilt-rotor UAV (TRUAV) in the transition process
show strong nonlinearity, which brings a great impact on the stability of the vehicle attitude. This
study aims to design a PPO-based RL controller for attitude control in the transition process. A
reinforcement-learning PPO approach is used to learn the control strategy by interacting directly with
the environment. And the reward function is designed and improved for the transition process. The
performance of the proposed controller is tested and compared by simulation. The results show that
the PPO algorithm is more suitable for the tilt-rotor transition process control than the A2C algorithm.
Our proposed reward function improves the attitude control performance and the designed RL
controller has good adaptability to changes in the takeoff weight, the diagonal wheelbase and the tilt
rate. This study highlights the effectiveness and potential of reinforcement learning for tilt-rotor UAV
transition process attitude control. These findings contribute to the advancement of autonomous
flight systems by providing insights into the application of reinforcement learning algorithms. These
results have important implications for the development of intelligent flight control systems and
could guide future research in this area.

Keywords: UAV; flight control; tilt rotor; transition process; reinforcement learning

1. Introduction

Demand for unmanned aerial vehicle (UAV) delivery is on the rise from 2025 to
2050. UAVs fly point-to-point in a straight line through the air, which is less affected by
terrain factors. Moreover, this is a distinct advantage for freight transport in remote areas
and congested urban areas [1]. The tilt rotor aerial UAV (TRUAV) is a novel aircraft that
combines two flight modes: copter mode and airplane mode. The versatile flight mode
brings many application-level benefits. In the copter mode, the TRUAV can take off and
land vertically and hover like a helicopter, which means the vehicle does not need a runway
for takeoff and landing, broadening the application scenario. At the same time, it can
have a fast cruise and large capacity like a fixed-wing aircraft in airplane mode. This
means the vehicle can have long endurance. These are all beneficial to the TRUAV for
cargo transportation applications. However, the new structural design introduces new
technical difficulties, especially in the transition phase. As the tilt angle of front rotors
changes, the airflow of the rotor interacts with the wing. At this phase, the aerodynamic
characteristics of the TRUAV are complex and nonlinear.

The controller proposed in this paper focuses on the transition process. During the
transition, the aerodynamic characteristics of the TRUAV are complex, with severe air-
elastic coupling and significant non-linearity. There are mature and stable control schemes
for attitude control in both copter mode and airplane mode. The challenges in this work are
the configuration change from copter mode to airplane mode and the dramatic aerodynamic
change from stationary to constant-speed cruise. During the transition, the front motor tilt
angle changes and the wing interacts with the propellers, which makes the aerodynamics
complex and uncertain and brings difficulties to the control model design. At the same

Drones 2023, 7, 499. https://doi.org/10.3390/drones7080499 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7080499
https://doi.org/10.3390/drones7080499
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0009-0007-4012-690X
https://orcid.org/0000-0003-0552-2492
https://orcid.org/0000-0003-2126-2897
https://doi.org/10.3390/drones7080499
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7080499?type=check_update&version=1


Drones 2023, 7, 499 2 of 17

time, the front motor tilt angle changes, making the TRUAV attitude control performance
change, especially pitch attitude control. For the TRUAV, the change in takeoff weight also
affects its attitude control performance. In summary, these are the difficulties of modeling
and controller design.

Most control systems in aerospace applications are based on linearized systems de-
signed by picking certain equilibria [2,3]. It is a common approach in TRUAVs to design
different controllers for specific operating conditions. But then the design of controller
switching or scheduling strategies is required. As a classical control theory, PID is the most
widely used in engineering without accurate dynamics modeling [4]. Due to the underac-
tuated property, the tracking of UAV attitude and velocity is generally achieved through a
cascade structure [5–7]. According to the actual application scenario, the controller gain
is adjusted to achieve the desired control effect. In the transition process, the direction
of the front rotor thrust vector is changing, and a single cascade PID cannot adapt to the
entire transition process and cannot meet the dynamic performance requirements of the
TRUAV. Some scholars adopted the scheduled control approach to determine the possible
flight range and flight envelope stability conditions of tilt-rotor UAVs based on trim point
analysis [4], as shown in Figure 1. Due to the constraints of the actuator and lift genera-
tion, appropriate leveling points are selected to evaluate the stability corridor. The flight
envelope is discretized into the required number of operating points, and an independent
controller is developed for each operating point. These independent controllers are gener-
ally PID [8–10], LQR [11,12] and SMC [13]. As the flight configuration changes during the
transition, the appropriate control law is loaded through the controller scheduling policies.
In addition, the required controller switching may affect stability, if scheduling parameters
change quickly concerning controller convergence. However, due to the limited number of
linearized points, the overall control structure is limited to a specific region of the flight
envelope [14].

Figure 1. The tilt rotor aerial UAV (TRUAV) flight envelope [4].

Another approach to controller design is based on adaptive or nonlinear imple-
mentations of unified control methods that can handle nonlinear dynamics and cover
the entire flight envelope, such as optimal control gain scheduling [15,16], dynamic
inversion [17–19], robust control [20–22] and nonlinear model predictive control
(NMPC) [23,24]. This method avoids the instability caused by the unreasonable selec-
tion of the equilibrium point. An improved back propagation (BP) neural network PID
control algorithm is proposed by Peng et al. [25]. The method exploits the strong nonlinear
mapping properties of the neural network to enhance the robustness of the tilt rotor vehicle
transition process. Yu [26] and Yuksek [27] et al. used neural networks to compensate for
dynamic inverse errors and external disturbances. The development of deep neural net-
works has led to a significant increase in the ability of reinforcement learning to be used for
aircraft attitude control, particularly for highly nonlinear control problems. Koch et al. [28]
developed GymFC, a reinforcement learning training environment for training an intelli-
gent neural network attitude controller for UAV attitude control. The performance of the
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intelligent attitude controller was compared with that of a PID controller in the GymFC
environment. The results show that the intelligent neural network attitude controller has
excellent performance. Xu et al. [29] directly applied a neural network controller to control
hybrid UAVs. The designed neural network controller is robust and can take advantage of
complex dynamics. The tilt rotor studied by Huo et al. [30] and Lee et al. [31] only makes
structural changes while hovering. Huo et al. used deep reinforcement learning algorithms
for trajectory tracking control of a trans-domain tilt-rotor robot control. Simulation results
show that the neural network controller trained by the reinforcement learning algorithm is
highly adaptable to complex environments. Lee et al. first attempted to apply reinforcement
learning for low-level attitude control of a tilting multi-rotor. Reinforcement learning is
increasingly used in the field of UAV control, while few relevant studies directly apply
reinforcement learning to the TRUAV attitude control during the transition process.

In summary, scheduled control and unified control are two main types of control
methods regarding the TRUAV, and their main features are presented separately. However,
existing research has mainly focused on applying the pattern recognition capabilities of
machine learning to improve these two types of controllers. Fewer studies have directly
used reinforcement learning to interact with the environment to learn the optimal control
strategy, especially for attitude control of the TRUAV during the transition process.

Therefore, the purpose of this paper is to design a controller using the reinforcement
learning PPO algorithm and to design and improve the reward function for the TRUAV
attitude control. The performance and adaptability of the proposed controller are tested
through simulation. The structure of this study is as follows: the TRUAV transition process
is modeled and simulated, followed by the reinforcement learning PPO algorithm and the
design of the reward function for the transition process. This is followed by the analytical
evaluation, which is divided into four parts, namely convergence analysis, the effect of
improvement on the reward function, the adaptability of the proposed controller and the
effectiveness of our proposed method compared to A2C, standard PPO algorithm.

2. Dynamic Model

Typical tilt rotor UAV models [14,32,33] are listed in Table 1, and the layout of the
TRUAV in this paper is shown in Figure 2.

Table 1. Prototype of the tilt rotor aerial UAV (TRUAV).

Prototype Dual-TRUAVs Tri-TRUAV Quad-TRUAV

Advantage

High flight efficiency High speed Large payload
Long range Simple tilt structure Simple tilt structure
High speed Easy to control Easy to control

Low rotor/wing
airflow disturbance

Low
rotor/wing airflow

Disadvantage

Complex tilting
structure

Low power
utilization

Low
power utilization

High rotor/wing
airflow disturbance High empty Weight High empty Weight

Difficult to control High cost

A flying wing layout is used with the four motors arranged at a distance from the
wing to minimize mutual interference between the wing and the rotor. The center of gravity
of the TRUAV is located in the center of the four motors. During the transition process,
the tilt angle of two motors, r1 and r2, located in front of the wing, gradually tilts from 0° to
90°. The pull T1 and T2 are horizontal forward, and the rear motors r3 and r4 stop rotating
at the end of the transition process.
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The rigid body motion model of the TRUAV can be represented using Newton’s Euler
equation. The equation is as follows.[

mI3 0
0 J

][
v̇B

ω̇B

]
+

[
ωB ×

(
m · vB)

ωB ×
(

J ·ωB) ] =
[

~FB

~MB

]
(1)

where m is the mass, J is the inertia matrix (Ignoring the effect of rotors tilting), I3 is the 3 × 3

identity matrix, vB is the linear velocity, ωB is the angular velocity, ~FB =
[

FB
x FB

y FB
z

]T
is

the force and ~MB =
[

MB
x MB

y MB
z

]T
is the moment.

Rotor tilt angle: it

lx

ly
CG

r1

r2

r3

r4

Figure 2. The layout of the TRUAV. The front motors r1 and r2 can rotate to the horizontal level
compared to the fuselage. The rear motors r3 and r4 are fixed, and the thrust is vertically upward
compared to the fuselage.

Moreover, ~FB and ~MB are the combined force and moment on the vehicle, consisting
of the rotor aerodynamic force and moment, the wing aerodynamic force and moment
and gravity. The equation is as follows.[

~FB

~MB

]
=

[
~FB

G
0

]
+

[
~FB

T
~MB

T

]
+

[
~FB

A
~MB

A

]
(2)

where ~FB
G =

[
0 0 −G

]T is gravity, ~FB
T and ~MB

T is the thrust and moment of the rotor in
the body coordinate system B, ~FB

A and ~MB
A is the aerodynamic force and moment in the

airframe coordinate system. The following equation can establish the rotor aerodynamic
force and moment. [

~FB
T

~MB
T

]
= A(it)T (3)

where T =
[
T1 T2 T3 T4

]T is the propeller thrust and A(it) is the 6 × 4 distribution
matrix, as shown below:

A(it) =



sin it sin it 0 0
0 0 0 0

cos it cos it 1 1
ly cos it − k sin it −ly cos it + k sin it −ly ly
−lx cos it −lx cos it lx lx

−ly sin it − k cos it ly sin it + k cos it −k k

 (4)

where lx is the distance between the rotor and the center of mass along the x-axis of the
body, ly is the distance between the rotor and the center of mass along the y-axis of the
body, k is the propeller torque factor and it is the tilt angle.
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The aerodynamic forces and moment are described by

[
~FB

A
~MB

A

]
= RB

A



CD(α)
CY

CL(α)
Cl
Cm
Cn

QS (5)

where RB
A is the transition matrix from the airframe coordinate system to the body co-

ordinate system, Q = 1
2 ρV2 is the dynamic pressure, S is the wing area and CD(α), CY,

CL(α), Cl , Cm, Cn are the drag coefficient, side force coefficient, lift coefficient, roll moment
coefficient, pitch moment coefficient and yaw moment coefficient, respectively.

3. Method

The policy proximal optimization (PPO) algorithm is a model-free, on-policy method.
PPO has high performance and low computational complexity. The policy network takes
the observation state s as input and outputs the action a. For a continuous action space,
the task of the policy network is to output the probability distribution from which the
action is sampled. In this paper, the PPO algorithm is used to control the attitude of the
TRUAV during the transition process accelerating from hover to cruise speed. To avoid
divergence, it also uses the clip function to reduce the difference between old and new
policies. The reward function is designed for the transition process according to the
characteristics of the TRUAV.

3.1. Algorithm Framework

In this paper, a standard reinforcement learning structure is used for controller training.
The algorithmic framework is shown in Figure 3. The control task involved in this paper
conforms to a Markov decision process (MDP). The composition is (S, A, P, R, γ), where S
is the state, A is the action and P(s′|s, a) is the state transition function for the next state
s’ given the current state s and the action a, R(s, a) is the reward value, γ ∈ [0, 1) is the
discount factor. The policy πθ(a|s) gives the possibility of choosing action a at state s. Thus,
the goal of the algorithm is to find the policy loss J(θ) that optimizes the parameters θ of
the policy.

policy net

value net

St
at

e 
Ve

ct
or

 tr  CLIPL

tÂ

 VL

Update       with the gradient                      CLIPL

Update             with 
the gradient                 

 sV
 VL

Hovering Tilting Cruising Dynamic
Simulation 

Environment

ts ta

Figure 3. Schematic diagram of our process. In the simulation, the agent learns the continuous control
of the attitude with the PPO algorithm during the transition process.
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The policy gradient algorithm is based on the principle of policy gradient estimation
and then computing the gradient for parameter θ updating. The gradient is estimated in a
Monte Carlo method, and the policy loss J is obtained by the agent applying the policy to
interact in the environment.

J(θ) = Eτ∼πθ(τ)

[
∑

t
R(st, at)

]
= Eτ∼πθ(τ)

[
∑

t
R(τ)

]
(6)

In practice, these gradients are obtained by the gradient solver, which updates the
parameters θ of the neural network by backpropagation.

5θ J(θ) = Eτ∼πθ(τ)

[(
T

∑
t
5θ log πθ(at|st)

)
R(τ)

]
(7)

The critical challenge of the policy gradient is to reduce the variance of the gradient
estimate in order to obtain a better policy. The generalized advantage estimation method
(GAE) is utilized in the PPO to reduce the variance. The advantage function is built to
reconstruct the reward signal.

Ât = ∑
t′>t

γt′−trt′ −Vω(st) (8)

The advantage function evaluates a behavior compared to other behavior available in
the state, such that good behavior receives positive rewards and poor behavior has negative
rewards. It is, therefore, essential to estimate the value function of the average reward.
The value network is an independent supervised learning neural network estimated by
collecting the reward value samples. Multiple agents are also used in PPO to collect
samples simultaneously to increase the number of samples. The loss function of the PPO is
as follows:

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
(9)

where rt(θ) = πθ(at |st)
πθ old(at |st)

denotes the ratio between the old and new strategies. ε is a
hyperparameter with a small value used to keep the new policy close to the old policy.
The importance sampling method is used in the PPO algorithm to obtain the expectation of
samples collected from the old policy, which improves sample utilization. The new policy
is refined based on the old policy, and in this way, each sample can be used in multiple
gradient ascent steps. As the new policy is refined, the two policies will deviate more, thus
increasing the difference in estimates, so the old policy is periodically updated to match
the new policy. The PPO algorithm reduces the computational complexity compared to
the second-order optimization involved in the TRPO solution. The PPO uses a first-order
optimization method with confidence intervals, which restricts the ratio between the old
and new strategies rt(θ) to the range [1− ε, 1 + ε] by clip.

3.2. Network Architecture

Because the PPO algorithm is based on the actor–critic method, the neural network
used in this paper consists of policy and value networks, as shown in Figure 4. The policy
network and the value network have the same structure, both have two fully connected
layers with 128 units each, and the activation function is the Relu function. The output
of the value network is the value of the current state vector s which is used to train the
output of the policy network a = (a1, a2, a3, a4). The action space of the policy network
output is within a small symmetric range, such as (−1, 1). Following this design increases
versatility by limiting the action outputs to a maximum and minimum range, which can
then be adapted to the action range of the actuator through a mix-and-match operation
such as scaling. After the operation, we can find the speed of motor r = (r1, r2, r3, r4).
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Figure 4. Neural network structure diagram. The neural network takes a twelve-dimensional vector
s consisting of position P = (y, z), velocity v = (u, v, w), attitude angle ψ = (φ, θ, ϕ), angular velocity
ω = (p, q, r) and tilt angle (it) as input. The value network and the policy network respectively
have two layers with 128 RULU units each. Value network output current state estimation value.
The policy network outputs the amount of throttle a = (a1, a2, a3, a4).

The input of the neural network is a 12-dimensional state vector s.

s = (y, z, u, v, w, φ, θ, ϕ, p, q, r, it) ∈ R12 (10)

where (y, z) is position, (u, v, w) is velocity, (φ, θ, ϕ) is the Euler angle, (p, q, r) is the angular
velocity and (it) is the current rotor tilt angle. To ensure the stability of the attitude of the
vehicle during the transition, it is not only necessary to focus on the fact that the vehicle
attitude angle (φ, θ, ϕ) needs to be at the desired value for a short period. It also needs
to ensure that the velocity vector (u, v, w) is pointing forward, and the change in altitude
and slip during the transition is not too severe. As the transition process is horizontal
and forward, the x-axis position is constantly increasing, which has a large impact on
the estimation error and the time required for training if not normalized. In this paper,
the x-axis displacement has a small effect on attitude control, so the x-axis displacement is
not used as a state input. Further, if the tilt angle is removed and only the pitch angle is
used as a state input, the neural network must control both the motor output a and the tilt
angle it. And this will increase the dimension of the action space and make learning the
optimal strategy difficult in the absence of expert data.

3.3. Reward Function

The reward function is designed and optimized for the characteristics of the TRUAV
transition process, given by the following Equation (11).

rt = d + cp‖4Pt‖+ cvx ×min(vxt, vmax) + cvyz‖4vt‖
+ f (it)× cΨ‖4Ψt‖+ cω‖4ωt‖+ ca‖at‖+ cda‖4at‖

(11)

where d is the survival reward;4Pt is the deviation from the y-axis and z-axis positions
in the ground coordinate system; vxt is the forward velocity and min(vxt, vmax) is a clap
function to limit the maximum reward of the forward velocity. 4vt is the deviation from
the y-axis and z-axis velocity in the ground coordinate system;4Ψt is the vehicle attitude
angular deviation;4ωt is the vehicle attitude angular velocity deviation; at is the action
output characterizing the vehicle energy consumption and4at is the amount of change
from the previous moment of action representing action change magnitude.

The reward function in this paper focuses on guiding the vehicle forward with a
positive x-axis velocity reward while maintaining flight stability and flight altitude. So
speed-related rewards are divided into two parts, cvx ×min(vxt, vmax) and cvyz‖4vt‖.
min(vxt, vmax) is a clap function to limit the maximum reward of the forward velocity.

A common problem in optimal control is the controller output constant oscillation
between maximum and minimum. This causes unnecessary wear and tear on the actuators



Drones 2023, 7, 499 8 of 17

in practice. This is not a significant problem in a simulator environment but is problematic
in actual flight. In real aircraft, online training can have a significant impact on the stability
of the aircraft due to perturbations in the ambient wind. The output of the PPO policy
network is a Gaussian distribution of the action, which is sampled to obtain the output.
The high variance of the distribution leads to high oscillations in the output actions. In this
paper, cda‖4at‖ is introduced into the reward function as a penalty term to reduce the RL
controller output jitter.

The aerodynamic force during the transition process is complex while the TRUAV
accelerates from hover to cruise speed. Attitude and altitude considerations differ at the
beginning and end of the TRUAV transition process. To reduce the deviation between
attitude angles and desired values at the end of the process, a tilt-angle-related coeffi-
cient f (it) = 1.0 + 0.5 ∗ it/π is proposed, and the attitude error penalty term cΨ‖4Ψt‖
introduces the variable coefficient.

3.4. Training

In this part, the controller of the TRUAV is trained with the PPO algorithm. This
simulation environment is developed based on the open-source project framework named
flightmare [34]. The agent interacts with the simulation environment for attitude con-
troller training via reinforcement learning algorithms. To simulate a fully loaded situation,
the maximum output thrust of each motor will be limited to a maximum thrust of 0.3 times
the take-off weight of the vehicle. The goal of the training is to complete the transition
process in 4 s with a simulation step length of 0.02 s, i.e., 200 steps. At the same time,
the stability of the TRUAV attitude is ensured with the rotor tilt angle of the vehicle turning
from 0° to 90°.

The training task is to perform attitude control of the UAV to complete the transition
from copter to airplane mode under a random initial state, as shown in Table 2.

Table 2. Initial state random ranges and expectation values.

Parameter Range

Initial Euler angle [±30◦,±30◦,±30◦]
Expected Euler angle [0.0◦, 0.0◦, 0.0◦]

Initial speed [±1.0,±1.0,±1.0] m/s
Expected speed [10.0, 0.0, 0.0] m/s
Initial position [±1.0, 5.0± 1.0] m

Expected position [0.0, 5.0] m 1

1 For position, focus only on the y-axis and z-axis.

Finally, the well-trained neural network controller was tested under different conditions,
such as rotor tilt angle rate, rotor axis lengths and take-off weights, to verify its robustness
and adaptability. Specific network hyperparameters are referenced in Table 3 below.

Table 3. Hyperparameters used in training.

Name Value Name Value

d 0.1 lam 0.95
cp −0.002 gamma 0.92
cvx 0.0009 n_step 200
cvyz −0.0003 learning_rate 1× 10−5

cΨ −0.067 clip_param 0.1
cω −0.0002 ent_coef 0
ca −0.0002
cda −0.00002
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4. Results and Discussion

In this section, the convergence of the PPO algorithm for attitude control of TRUAV
in the transition process is analyzed. Also, according to the characteristics of the TRUAV,
the reward function is improved. There are two main points. One is to reduce the controller
output jitter, and the other is to reduce the attitude angle deviation from desired values at
the end of the transition process. Three simulations are reported to verify the adaptability of
the designed RL controller during the transition process. In the first simulation, the adapt-
ability of the RL controller to different takeoff weights was tested. In the second simulation,
the adaptability of the RL controller to different diagonal wheelbases was tested. In the
third simulation, the adaptability of the RL controller to different rotor tilt rates, i.e., rotor
tilt strategies, was tested. Finally, the proposed method is compared with the A2C and
standard PPO.

4.1. Convergence Analysis

Since the TRUAV model is highly nonlinear and tends to diverge during training,
a lower learning rate and clip value were chosen. The average reward and the average
episode length are shown in Figure 5. After 1500 iterations, the RL controller can keep the
tilt-rotor UAV from falling during the transition process as shown in Figure 5b. Figure 5a
shows that the maximum reward is reached after 5000 iterations.

(a) (b)

Figure 5. The training curve of the TRUAV: (a) Average accumulated reward; (b) Average steps for
each episode.

A TRUAV simulation flight test is performed by applying the neural network param-
eters under different iterations with the same random initial state range of the TRUAV
in Table 2 as in the training phase. To avoid losing generality, the simulation experiment
was carried out 1000 times. The test results are shown in Figure 6. Vx(m/s) is the x-axis
speed of the TRUAV during the transition process. Py(m) and Pz(m) are the y-axis and
z-axis positions of the TRUAV, respectively. euler_x(◦), euler_y(◦) and euler_z(◦) are the
roll, pitch and yaw angle of the TRUAV, respectively. In Figure 6b, these are the outputs of
the RL controller a = (a1, a2, a3, a4).

The agent cannot complete the transition when the network is trained in 500 iterations,
because it could fall at about 150 steps. After 1500 iterations, the TRUAV can complete
the transition process and have a forward flight speed. However, the attitude control
ability for roll and yaw is poor. In particular, the pitch angle changes greatly during the
transition. The attitude angles have a large deviation from the desired values at the end
of the transition process. And the motor throttle amounts of a1 and a2 are larger in 50 to
200 steps. After 2500 iterations, the attitude control effect is improved, especially the control
effect of the pitch angle. The motor throttle amounts of a1 and a2 are improved. However,
the a3 and a4 motor throttle amount oscillate more in 150 to 200 steps. After 8000 iterations,
the performance of the attitude controller is improved significantly, especially the control
effect of the pitch angle. The attitude angle is around the desired value, at the end of the
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transition process. And it can be observed from the action output that the RL controller
consumes less energy during the transition.

Figure 6. The simulation results of the TRUAV with different iterations: (a) u(m/s) is the x-axis speed,
y(m) and z(m) are the y-axis and z-axis positions, φ(◦), θ(◦) and ϕ(◦) are the roll, pitch and yaw
angle; (b) the motor throttle a = (a1, a2, a3, a4).

4.2. Reward Function Improvements

In this paper, the reward function is modified to make it suitable for TRUAV transition
process strategy learning. At the same time, the reward function is improved. There
are two main points, the first point is to reduce the controller output jitter by adding
the deviation from the previous time output into the reward function as a consideration.
Another point is to reduce the deviation between attitude angles and desired values at the
end of the transition process.

4.2.1. The Controller Output Jitter

This case compares the RL controller while training with or without the jitter cost
cda‖4at‖ in the reward function. The test results are shown in Figure 7. The improved
reward function results in lower output and a narrower variance band at the end of the
transition process for the front motors a1 and a2. The RL controller outputs of the rear
two motors a3 and a4 have a narrower variance band and significantly less oscillation
in output at 100–150 steps. The improved reward function proposed in this paper has a
narrower variance band, which can reduce the controller output jitter, especially for the
output of the rear motors.
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Figure 7. The figures are the output of the throttle a = (a1, a2, a3, a4) while training with/without
the jitter cost.

4.2.2. Attitude Angle Deviation from Desired Values

This paper proposes a coefficient related to the tilt angle of attitude angle deviation.
In the reward function, the attitude angle deviation term f (it) = 1.0 + 0.5 ∗ it/π is mul-
tiplied by a gain that varies according to the rotor tilt angle. And it is used to reduce the
deviation between attitude angles and desired values at the end of the process. The test
results are shown in Figure 8. The TRUAV roll and yaw deviation from desired values are
significantly reduced at the end of the transition process. Attitude considerations differ
during the transition process. The transition process is very aerodynamically complex while
the TRUAV accelerates from hover to cruise speed. Because the attitude angle changes and
affects the angle of attack, the end of the transition process requires more attitude stability.
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Figure 8. The performance of the UAV while training with/without the tilt-angle-related attitude cost.

4.3. Adaptability Test

To verify the adaptability and generalization of the RL controller trained in this paper,
three simulations are performed. Two of them are to change the configuration of the
TRUAV, take-off weight and diagonal wheelbase; the other is to change the rotor tilt rate
during the transition process, i.e., the transition strategy.

4.3.1. Take-Off Weight Test

An enormous take-off weight means that more aerodynamic lift is required to maintain
altitude. Different takeoff weights simulate the transition process under different operating
conditions. Figure 9 shows that the controller can adapt to the take-off weight change
using the trained neural network controller parameters. The RL controller completes the
transition process by adjusting the speed and pitch to maintain the flight altitude. In the
simulation environment, the adaptability of the TRUAV neural network controller was
verified in varying take-off weights. There is no need to adjust the parameters, and the
controller proposed in this paper can adapt to different takeoff weights.
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Figure 9. The simulation results of the TRUAV with different take-off weights. u(m/s) is the x-axis
speed, θ(◦) is the pitch angle and z(m) is the altitude of the TRUAV during the transition process.

4.3.2. Diagonal Wheelbase Test

The simulation results are shown in Figure 10. There is a small change in the flight
speed, pitch angle and altitude curves. Changes in the wheelbase directly affect the torque
for attitude control.
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Figure 10. The simulation results of the TRUAV with different diagonal wheelbases.

When the wheelbase changes, it is a significant challenge to the controller for attitude
control. From Figure 11, it can be found that decreasing the wheelbase has a more significant
impact on the attitude control of the vehicle. The wheelbase decrease, and the motor
throttle volume output jitters more. Such jitter may affect the TRUAV attitude control when
subjected to external perturbations in practice. The adaptability of the neural network
controller is verified by changing the diagonal wheelbase of the vehicle. In the actual
application, if the diagonal wheelbase of the TRUAV changes, the actual flight data should
be collected or the expert data should be used to update the neural network parameters.
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Figure 11. The simulation results of the TRUAV with different axis lengths. The output of the
RL controller.

4.3.3. Rotor Tilt Angle Rate Test

The tilt angle is an important parameter in the TRUAV dynamic model. The change in
the tilt angle rate directly affects the dynamic performance of the UAV. This variation affects
the acceleration and flight attitude during the transition process. During RL controller
training, the rotor tilt angle changes linearly. Three different tilt angle rate functions are
selected to verify the adaptability of the RL controller, as shown below.

Linear Function : i(t) = 0.125 ∗ π/t
Power Function : i(t) = 0.1984 ∗ t2/3

Sine Function : i(t) = 0.5 ∗ π ∗ sin(0.125 ∗ π ∗ t)
Quadratic Function : i(t) = 0.03125 ∗ π ∗ t2

0 ≤ t ≤ 4

(12)

The controller is tested by varying the rotor tilt angle rate during the transition process.
And the simulation results are shown in Figure 12. At different tilt rates, the desired speed
can be achieved. And less attitude deviation between attitude angles and desired values
can be achieved after the transition process. Results show that, under the condition of
changing the tilt angle rate, the proposed controller can control the attitude of the TRUAV
and has strong adaptability.
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Figure 12. The simulation results of the TRUAV with different rotor tilt angle rates.

4.4. Performance

We compare our method with the standard PPO and the A2C algorithms in this case.
The difference between standard PPO and the method proposed in this paper lies in the
improvement of the reward function. The A2C algorithm involved in the comparison
uses the same reward function and learning hyperparameters as the method proposed in
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this paper. In particular, we compare the control performance of the three algorithms for
attitude control. To avoid losing generality, each algorithm completes the transition process
under the same random initial conditions in Table 2, and 1000 simulations are performed
separately. The Euler angle of the TRUAV at the end of the transition process is collected
and the simulation results are shown in Figure 13. From the figure, we can see that the
standard PPO algorithm and the proposed method have better performance for the TRUAV
attitude control during the transition process. However, under the same reward function
and learning hyperparameters in Table 3, the A2C algorithm does not learn the attitude
control of the transition process. At the end of the transition process, the TRUAV has a
large pitch angle, and the TRUAV flies at a large angle of attack after the end of the tilt
process. At the same time, the deviation of the roll angle and yaw angle from the desired
value is large.
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Figure 13. The attitude of the TRUAV with different methods at the end of the transition process
(200th step). The standard PPO and our proposed method have a better performance at the end of
the transition process compared with the standard A2C.

The energy consumption in the transition attitude control is also an important perfor-
mance, as shown in Figure 14. It is found that the A2C algorithm consumes more energy in
controlling attitude during the tilt-rotor transition process. The A2C controller outputs of
the first two motors are almost in the state of maximum speed after 100 simulation steps,
which further confirms that the TRUAV is flying at a large angle of attack at the end of
the transition process. The results show that, although the RL controller obtained by A2C
learning can complete the rotor tilt, it is in the high angle of attack flight state and cannot
control the attitude well to reach the desired values.
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Figure 14. The outputs of the controllers with different methods. In terms of energy efficiency,
the standard PPO and our proposed method have a better performance at the end of the transition
process compared with the A2C. Our proposed algorithm reduces the deviation between attitude
angles and desired values at a slightly larger energy cost compared with the standard PPO.
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In Figure 15, we separately compare our method with the standard PPO algorithm.
And it can be seen that our proposed method improves the attitude control performance of
the TRUAV transition process significantly, which effectively reduces the deviation between
attitude angles and desired values. In general, compared with the standard PPO algorithm,
our proposed method has a higher performance in a deviation between attitude angles and
desired values while consuming more energy in the second half of the transition process.
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Figure 15. The attitude of the TRUAV with different methods at the end of the transition process.
Compared with the standard PPO, our proposed method performs better at deviation between
attitude angles and desired values.

5. Conclusions

In summary, the purpose of this study is to investigate the application of reinforcement
learning in the design of the TRUAV controller in the transition process. Through simu-
lation and evaluation, it is observed that the attitude control performance is significantly
improved for the design of the reward function. And significant adaptability to changes in
takeoff weight, axis distance and rotor tilt rate is demonstrated. These findings demonstrate
the effectiveness of reinforcement learning in addressing flight control during the transition
process of the TRUAV. The adaptive and self-learning properties of reinforcement learning
enable the flight controller to adapt to flight conditions, thereby improving control perfor-
mance. The reinforcement learning algorithm effectively learns the optimal control strategy
by interacting with the environment. By successfully applying reinforcement learning
to the flight control design of the TRUAV transition process, we have demonstrated its
potential to improve the performance and adaptability of the flight controller. In the current
study, the research was conducted solely in a simulated environment, which may not fully
capture the complexities and uncertainties present in the real world such as measurement
noise, environmental disturbances and possible system failures or anomalies. It is crucial to
recognize that the outcomes obtained in a controlled simulation may not directly translate
to practical applications without accounting for these uncertainties and challenges. In fur-
ther research, the application of reinforcement learning in more complex scenarios in the
TRUAV flight control deserves to be explored and refined.
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