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Abstract: Tassel is an important part of the maize plant. The automatic detection and counting of
tassels using unmanned aerial vehicle (UAV) imagery can promote the development of intelligent
maize planting. However, the actual maize field situation is complex, and the speed and accuracy of
the existing algorithms are difficult to meet the needs of real-time detection. To solve this problem,
this study constructed a large high-quality maize tassel dataset, which contains information from
more than 40,000 tassel images at the tasseling stage. Using YOLOv7 as the original model, a Tassel-
YOLO model for the task of maize tassel detection is proposed. Our model adds a global attention
mechanism, adopts GSConv convolution and a VoVGSCSP module in the neck part, and improves
the loss function to a SIoU loss function. For the tassel detection task, the mAP@0.5 of Tassel-YOLO
reaches 96.14%, with an average prediction time of 13.5 ms. Compared with YOLOv7, the model
parameters and computation cost are reduced by 4.11 M and 11.4 G, respectively. The counting
accuracy has been improved to 97.55%. Experimental results show that the overall performance of
Tassel-YOLO is better than other mainstream object detection algorithms. Therefore, Tassel-YOLO
represents an effective exploration of the YOLO network architecture, as it satisfactorily meets the
requirements of real-time detection and presents a novel solution for maize tassel detection based on
UAV aerial images.

Keywords: UAV; maize tassel; object detection; YOLO; computer vision; attention mechanism;
intelligent agriculture

1. Introduction

As one of the four major crops, maize has been a primary staple food for humans
for a long time. According to the statistical data from the United States Department
of Agriculture, the global maize production in 2022 was 1,147,522,000 metric tons [1].
The economic benefits of maize directly affect national food security and agricultural
production development. During the growth process of maize, the tassel is one of its
important reproductive organs and a significant component of the maize plant. The
accurate measurement and detection of its quantity and morphology play a crucial role in
evaluating maize yields and selecting varieties. The traditional method for detecting maize
tassels relies mainly on manual inspection. However, the actual conditions in maize fields
are characterized by complexity, where challenges commonly arise during the detection
process, including tassel overlapping, variations in tassel size and shape, changes in tassel
posture due to environmental factors, and difficulties in identification caused by low light
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intensity [2]. Manual methods exhibit low efficiency and are prone to errors, and are thus
incapable of meeting the demands for large-scale and efficient maize yield assessment.
Therefore, an intelligent and efficient method for detecting maize tassels is needed to
promote the development of the maize industry towards precision and automation.

Object detection is an important task in the field of computer vision. With the devel-
opment of deep learning, significant progress has been made in object detection techniques,
which has promoted the widespread application of artificial intelligence technology. In
2023, Chen et al. improved the attention mechanism and loss function based on YOLOv7
to reduce information diffusion and amplify global interactive representation in the model.
The improved model improves mAP@0.5 to 95.1% in the task of wetland bird detection [3].
Zhao et al. proposed a multi-scale UAV image object detection model called MS-YOLOv7,
which combines the Swin Transformer unit and integrates a new pyramid pooling module
called SPPFS into the network. Compared with the original model YOLOv7, MS-YOLOv7
has an mAP improvement of 6%, which improves the performance of object detection in
UAV aerial imaging [4].

In recent years, many researchers have applied deep learning and computer vision
techniques to the detection of maize tassels. In 2020, Zou et al. established the maize
tassel detection and counting dataset and proposed the TasselNet model reconstructed
with ResNet34 as the backbone network, achieving promising counting performance [5].
Liu et al. created a dataset using images of different resolutions collected using drones,
smartphones, and independent datasets and evaluated the accuracy of detecting maize
tassels using an improved Faster R-CNN algorithm [6]. In 2021, Ji et al. proposed a
coarse-to-fine mechanism for detecting maize tassels, which was implemented through
continuous image acquisition and applied to a large area, providing new ideas for tassel
detection [7]. Mirnezami et al. captured close-up images of maize tassels and utilized
a deep learning algorithm for tassel detection, classification, and segmentation. Then,
they employed image processing techniques to crop the main spikelets of the tassel for
tracking reproductive development [8]. Falahat et al. proposed a maize tassel detection and
counting technique based on an improved YOLOv5n network, which includes applying an
attention mechanism to the backbone and using deep convolution at the neck to enable
the model to learn more complex features and to better detect tassels; the improved model
increased the mAP@0.5 by 6.67% [9]. The work of the aforementioned researchers has, to
some extent, propelled the intelligent development of agriculture, as it has presented their
insights in various aspects such as datasets, detection methods, and algorithm optimization.
However, the actual situation in maize fields is complex, and a more precise, lightweight,
and faster model has always been the pursuit of object detection. Therefore, there is still
room for improvement in the current maize tassel detection work.

This paper presents a large and high-quality dataset containing over 40,000 individual
images of maize tassels at the tasseling stage for the purpose of tassel detection. The dataset
comprises diverse tassel states, including overlapping, varied poses, and low-lighting
conditions. We applied the fast and accurate features of YOLOv7 to the detection of maize
tassels and incorporated the global attention mechanism into its neck part [10]. In addition,
we adopted GSConv lightweight convolution and a VoVGSCSP module and improved the
loss function to SIoU [11], proposing a novel model named Tassel-YOLO. The experimental
results demonstrate that the Tassel-YOLO has achieved favorable performance in terms of
detection, counting, and inference speed, validating the effectiveness of the model in the
task of maize tassel detection.

2. Related Work
2.1. YOLO Model

The YOLO (You Only Look Once) series algorithms are a typical type of one-stage
object detection algorithms that combine classification and object localization regression
problems using anchor boxes, achieving high efficiency, flexibility, and good generalization
performance, as illustrated in Figure 1 [12]. The YOLO series algorithms represent a
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milestone in the history of one-stage object detection, and their subsequent improved
versions have further enhanced detection performance. The YOLOv7 algorithm, proposed
by Chien-Yao Wang et al. in July 2022, has achieved favorable results in terms of both
speed and accuracy and is currently one of the mainstream object detection algorithms [13].
Considering the high density of maize planting and the requirement for real-time detection,
we have chosen the advanced YOLOv7 model for experiments.
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2.2. Global Attention Mechanism

In computer vision, the attention mechanism is a technique that mimics the human
visual system by learning and adaptively selecting feature regions relevant to the current
task, thus enhancing the feature extraction ability of the model in complex backgrounds [14].
The Global Attention Mechanism (GAM), proposed by Yichao Liu et al. in 2021, consists of
channel attention and spatial attention, as shown in Figure 2 [10]. The channel-attention
submodule calculates the importance of each channel of the input image through the net-
work [15], thereby improving the feature representation ability, while the spatial-attention
submodule accurately analyzes the spatial data of the image, helping the machine to un-
derstand the content and spatial structure of the visual image [16]. The GAM introduces
multi-layer perceptrons and three-dimensional convolutional spatial and channel-attention
submodules, reducing information dispersion and amplifying global interaction represen-
tation, thereby improving the overall performance of the model. However, this also leads
to the disadvantage of high computational complexity.
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The main process of the channel-attention submodule is illustrated in Figure 3. For
the input feature map, the first step is to perform dimension transformation, utilizing a 3D
arrangement to retain information across three dimensions. The dimension-transformed
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feature map is then fed into a two-layer Multi-Layer Perceptron (MLP) with a reduction
ratio of r, implemented as an encoder–decoder structure. The output of the MLP processing
is transformed back to the original dimensions and finally passed through a Sigmoid
function to obtain the final output.
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The main process of the spatial-attention submodule is illustrated in Figure 4. The
input feature map is initially subjected to a 7 × 7 convolution operation to reduce the
number of channels, employing the same reduction ratio r as the channel attention, to
facilitate spatial information fusion. Subsequently, a convolution operation with a kernel
size of 7 is applied to maintain consistency in the number of channels. Finally, the output is
obtained by applying a Sigmoid function. In this process, to prevent information loss and
further preserve feature maps, the max pooling operation is excluded.
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In this study, we additionally utilized the SE attention mechanism and the CBAM
attention mechanism for performance comparison. The SE attention mechanism operates by
sequentially applying squeeze and excitation operations to the input feature maps, enabling
the model to learn the relationships among different channels of the output feature map
and obtain weights for individual channels [17]. These weights are then multiplied with
the original feature maps to derive the final features. This mechanism allows the model to
focus more on the features of channels with higher information content. The advantage of
the SE attention mechanism lies in its high computational efficiency and its applicability
to networks of various scales. However, the SE attention mechanism only considers the
feature relationships in the channel dimension and may not be able to finely adjust the
information in the spatial dimension. Similar to the GAM module, CBAM consists of a
channel-attention submodule and a spatial-attention submodule [18]. Upon the input of the
feature maps, it first undergoes channel attention. This involves performing global average
pooling and global maximum pooling based on the width and height of the feature maps,
followed by a multi-layer perceptron to obtain attention weights for the channels. These
weights are then normalized using the sigmoid function to obtain normalized attention
weights. Finally, the original input feature maps are channel-wise weighted through
element-wise multiplication and added to the original input feature maps, completing the
re-calibration of the original features with channel attention. The advantage of the CBAM
attention mechanism is the ability to effectively extract relevant features in both spatial and
channel dimensions, thereby enhancing the network’s attention to target regions. However,
CBAM has a relatively high demand for computational resources, which may increase
the computational complexity of the network and result in performance bottlenecks for
large-scale networks and high-resolution images.
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2.3. Gsconv

Typically, the design of lightweight networks tends to favor the use of Depthwise
Separable Convolutions (DSC), which offer high computational efficiency [19]. However,
during computation, DSC separates channel information from the input image, leading to
a significant reduction in the feature extraction and fusion capabilities of DSC. To address
this issue, this paper draws on related research on lightweight networks and introduces a
hybrid convolution method called GSConv [20]. Compared with the regular convolution,
the advantage of GSConv lies in preserving the hidden connections between channels to
the maximum extent while maintaining a low time complexity, reducing information loss,
and accelerating the computation speed. As a result, it achieves the unified solution of
standard convolution (SC) and DSC. However, the disadvantage is that it may cause certain
information loss.

The GSconv module is primarily composed of the Conv module, DWConv module,
Concat module, and Shuffle module. As shown in Figure 5, let the number of channels in
the input feature map be C1. Deep depthwise separable convolution is applied to half of
the channels, while regular convolution is applied to the other half. The outputs of both
convolutions are concatenated for feature fusion. Subsequently, the information generated
by SC is permeated through shuffle to various parts of the information generated by DSC.
Finally, the output channel number in the feature map is C2. The mathematical expression
of the GSconv module is given by Equation (1).

Xout = fshuffle(cat(fconv(Xin), fdsc(fconv(Xin)))) (1)
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3. Methods
3.1. Tassel-YOLO Model Architecture

As one of the current mainstream object detection algorithms, YOLOv7 has achieved
favorable results in terms of both speed and accuracy. Considering the high density of
maize planting and the requirement for real-time detection, we chose YOLOv7 as the base
model for our study. The design philosophy of YOLOv7 is similar to those of YOLOv4 and
YOLOv5 [21], in which the size of the input images will be compressed to the same size
before being fed into the network. In the backbone part, the CBS module, ELAN module,
and MP module are employed for feature extraction. The neck part mainly consists of a Path
Aggregation Feature Pyramid Network (PAFPN) structure and an SPPCSP module, where
the SPPCSP module includes a concatenation operation after the SPP module to fuse the
feature maps before the SPP module, enriching the feature information [22]. The network
performs bidirectional fusion in both top-down and bottom-up directions to accelerate
the information interaction across different layers, thus achieving the efficient fusion of
features at different levels, and outputting three feature maps with different shapes. Finally,
the feature maps are fed into the head part to obtain prediction results.



Drones 2023, 7, 492 6 of 19

Tassel-YOLO is an improved model based on YOLOv7 for the task of maize tassel
detection, and its specific structure is shown in Figure 6. The basic framework of Tassel-
YOLO can be divided into four parts: Input, Backbone, Neck, and Head.
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The input section of the Tassel-YOLO network is mainly responsible for image scaling,
data augmentation, adaptive anchor calculation, and adaptive image scaling. The default
input image size is 640 × 640 × 3. The backbone section consists of CBS modules, ELAN
modules, and MP modules. The CBS module includes convolutional layers, batch normal-
ization (BN) layers, and SiLU activation functions. The input image first passes through
four CBS modules, and then alternates through four ELAN modules and three MP modules
to achieve feature extraction. Due to the large computational resources consumed by tradi-
tional convolutional algorithms, which are not conducive to the lightweight deployment
of the model, in the neck section of the network, we replaced the ordinary convolutional
layers originally in the neck section of YOLOv7 with lightweight GSConv convolutional
layers, effectively reducing the model’s parameters and computational complexity. Our
experiments indicate that using GSConv throughout the entire network significantly in-
creases the network depth and reduces the model’s inference speed. Therefore, it is a better
choice to use GSConv only at the neck, where the channel information dimension is the
largest and the spatial information dimension is the smallest [23]. The original CBS mod-
ule is replaced by the new GBS module, which consists of GSConv convolutional layers,
batch normalization layers, and SiLU activation functions. Using the same improvement
method, we improved the CBS module in the original MP module to the GBS module,
forming the new MG module. In the feature fusion stage, we introduced the VoVGSCSP
module to replace the ELAN-W module in the original model, whose structure is shown in
Figure 7. VoVGSCSP is an improvement on the GSConv, where the input feature map is
divided into two parts based on the channel number. One part extracts features through
the cross structure of Conv and GSConv, while the other part is convolved through a single
Conv, acting as a residual connection [20]. Finally, the two parts are fused and connected
to the output through Conv convolution. The special structure of VoVGSCSP can easily
change the dimension and achieve feature dimensionality reduction, reducing computation.



Drones 2023, 7, 492 7 of 19

VoVGSCSP has a stronger nonlinear representation than ELAN-W, improving learning
efficiency and solving the problems of gradient vanishing and exploding.
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To further improve the accuracy of the model, we added the GAM module to the
neck part of Tassel-YOLO, with the specific added position shown in Figure 6. The GAM
is a type of global attention mechanism that introduces multi-layer perceptron and three-
dimensional convolutional spatial-attention and channel-attention submodules. By empha-
sizing global information related to tassels and reducing information dispersion, the ability
of the network to extract tassel features is enhanced, enabling the successful detection of
tassels in various environments. In the head part of Tassel-YOLO, we employed the Rep-
Conv structure before the head, which was inspired by RepVGG. During training, special
residual structures were introduced to assist in training, while in actual prediction, the com-
plex residual structures could be equivalently simplified to a regular convolution, thereby
reducing the complexity of the network without compromising its prediction performance.
Figure 6 provides a detailed illustration of the network architecture of Tassel-YOLO, while
Figure 7 shows the specific composition of the main modules in the network.

3.2. Siou Loss Function

In machine learning, the definition of the loss function plays a crucial role. As a form
of penalty, it needs to be minimized during training. The smaller the value of the loss
function, the closer the model’s predicted results are to the true results, indicating the better
performance of the model. In the field of object detection, traditional IoU losses such as
DIoU, CIoU, and GIoU only consider distance, overlap area, and aspect ratio information,
while ignoring factors such as shape, angle, and proportion [24]. Therefore, there is a slight
overlap between the predicted and target bounding boxes, and the convergence speed is
slow [25]. The SIoU loss function has been improved in this aspect by incorporating various
penalty terms [11]. Tassel-YOLO adopts the SIoU loss function, and experiments show
that SIoU effectively improves the training speed and inference accuracy. The SIoU loss
function consists of four components: angle loss, distance loss, shape loss, and IoU loss.
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3.2.1. Angle Cost

The angle cost is primarily used to assist in calculating the distance between two
bounding boxes and its relationship graph is illustrated in Figure 8a. The definition of
angular loss is given by Equation (2).

Λ = 1− 2× sin2
(

arcsin
(ch
σ

)
− π

4

)
(2)

where ch represents the difference in height between the predicted box and the ground
truth box along the y-axis, and σ represents the Euclidean distance between the predicted
box and the ground truth box center points. Their respective definitions are given in
Equations (3) and (4):

ch = max
(

bgt
cy, bcy

)
−min

(
bgt

cy, bcy

)
(3)

σ =

√(
bgt

cx − bcx

)2
+
(

bgt
cy − bcy

)2
(4)

where
(

bgt
cx, bgt

cy

)
and

(
bcx, bcy

)
represent the centroid coordinates of the ground truth box

and the center coordinates of the predicted box, respectively.
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3.2.2. Distance Cost

Given the definition of angle cost provided above, the distance cost is redefined
as follows:

∆ = ∑t=x,y

(
1− e−γρt) = 2− e−γρx − e−γρy (5)

ρx =

(
bgt

cx − bcx

cw

)2

, ρy =

(
bgt

cy − bcy

ch

)2

,γ = 2−Λ (6)

where cw represents the distance difference between the predicted box and the ground truth
box along the x-axis, and γ is associated with the angle loss between the two bounding
boxes. It can be observed that the contribution of the distance cost decreases when α→ 0 ;
conversely, the contribution of the distance cost increases when α→ π

4 .

3.2.3. Shape Cost

The shape cost between two bounding boxes is defined as Equation (7).

Ω = ∑t=w,h

(
1− e−wt)θ (7)
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ww =
|w−wgt|

max(w, wgt)
, wh =

∣∣h− hgt∣∣
max

(
h, hgt) (8)

where w and h represent the width and height of the predicted bounding box, wgt and hgt

represent the width and height of the ground truth bounding box, and θ controls the degree
of emphasis on the shape cost.

3.2.4. IoU Cost

The definition of the IoU cost is given by Equation (9).

IoU =

∣∣∣B∩ BGT
∣∣∣∣∣∣B∪ BGT
∣∣∣ (9)

The equation indicates that the value of IoU is equal to the ratio of the intersection area
between the ground truth box and the predicted box to the union area of the two boxes, as
shown in Figure 8b.

3.2.5. SIoU Cost

In conclusion, the SIoU loss is defined as shown in Equation (10). Where IoU represents
the IoU cost, ∆ represents the distance cost, and Ω represents the shape cost.

LossSIoU = 1− IoU +
∆ + Ω

2
(10)

4. Experimental Material
4.1. The Establishment of the Dataset

The growth stages of the maize tassel include multiple periods such as the tasseling
stage, the reproductive stage, and the flowering stage. Among them, the tassel in the
tasseling stage appears radial in the aerial image, and in maize fields with higher planting
density, the image features of the maize tassel in the tasseling stage are the most obvious
and easiest to be manually labeled. Therefore, in our study, the two data collections of
the dataset were both completed during the tasseling stage. The dataset used in this
study was collected from the maize field located at the Modern Agricultural Research
and Development Base of Sichuan Agricultural University in Chengdu, Sichuan Province,
China. In June and July 2022, RGB video frame data were captured via an onboard camera
of the DJI Mavic drone during two aerial surveys at heights of 5 m and 10 m above ground
level. The drone was equipped with a 12-megapixel camera, and the filming path was
manually set. The specifications of the video are detailed in Table 1.

Table 1. Video Capture Conditions.

Date Weather Device Resolution FPS Image Sensor

16 June 2022 Sunny DJI Mavic drone 12 MP 24@1080P 1-inch CMOS
2 July 2022 Sunny DJI Mavic drone 12 MP 24@1080P 1-inch CMOS

The RGB video frames were converted into image frames using the OpenCV library.
Every 48 frames, one image frame was captured, and after removing images that did
not meet the requirements and performing image segmentation, a total of 960 original
datasets with a resolution of 1920 × 1080 were obtained. It should be noted that during
the detection phase, the image size will be resized to 640 × 640. After testing, using the
OpenCV library to resize a 12 MP and a 1920 × 1080-sized image to 640 × 640 resulted
in output images with processing times of 0.812 milliseconds and 0.484 milliseconds,
respectively. This indicates that the time required to adjust the image size is very small for
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images of different resolutions, which meets the real-time detection time requirements. We
preprocessed the acquired original dataset using various image preprocessing techniques,
including brightness enhancement, contrast enhancement, and image segmentation. Image
preprocessing can highlight the features of the images, enable the network to learn more
detailed features, and improve the accuracy and speed of the model. Four workers used the
graphical image annotation tool LabelImg to draw bounding boxes around the maize tassels
in the images [26], with all the pixels of the maize tassels contained within the rectangular
boundary. Maize tassels that are indistinguishable by the human eye and have an occlusion
area larger than 90% were not labeled. Finally, we obtained a raw dataset consisting of
960 images containing 41,232 maize tassels. To improve the training performance of our
model, we performed data augmentation on the dataset.

4.2. Data Augmentation

Data augmentation is a technique in deep learning that expands the original dataset
by generating new training data from existing data [27]. In this study, to simulate the
real-world environment and enable the network to learn more features, data augmentation
was applied to the original dataset. Traditional geometric transformations (rotation, scaling,
etc.) and color transformations (color jittering, contrast enhancement, etc.) were used in
this experiment [28]. In addition, two multi-image fusion methods, Mosaic and Mixup [21],
were employed.

Mosaic was proposed in the YOLOv4 paper, and its principle is as follows: First,
four images are randomly selected from the dataset and subjected to data augmentation
operations such as flipping, scaling, and color-space transformation. The resulting images
are then placed in the upper-left, upper-right, lower-left, and lower-right positions of a
larger image with a specified size. Based on the transformation applied to each image,
the mapping is correspondingly applied to the image labels. Finally, the large image is
stitched together according to the specified coordinates, and the resulting image is used
for model training. Mosaic data augmentation can enhance model robustness, augment
training data diversity, and alleviate overfitting, leading to improved model performance
and generalization capability. The specific process of Mosaic is illustrated in Figure 9.
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The process of Mixup involves randomly selecting two samples from the training set
and performing a simple random weighted sum on them, while the labels of the samples are
correspondingly weighted [29]. Assuming batchx1 is a batch of samples and batchy1 is the
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corresponding labels, batchx2 is another batch of samples and batchy2 is the corresponding
labels. λ is the mixing parameter calculated from the Beta distribution with parameters α
and β, and the principal formula of Mixup is obtained accordingly.

λ = Beta(α,β) (11)

mixed_batchx = λ× batchx1 + (1− λ)× batchx2 (12)

mixed_batchy = λ× batchy1 + (1− λ)× batchy2 (13)

The term Beta refers to the Beta distribution, mixed_batchx refers to the mixed batch
samples, and mixed_batchy refers to the corresponding labels. Mixup data augmentation
increases the diversity of the training set by performing linear interpolation between
different images and labels to generate new training data.

By employing offline augmentation, the dataset was expanded to a total of 1848
images. In the experiment, we randomly partitioned the dataset into training, testing, and
validation sets, following an 8:1:1 ratio. The effects of the relevant data augmentation are
shown in Figure 10.
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5. Experiment Results
5.1. Experimental Platform and Evaluation Indicators

The experiments in this paper were conducted on a computer running an Ubuntu
18.04.5 operating system, with an NVIDIA GeForce RTX 3090 24G GPU and a 15-core
Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60GHz. The software environment includes
PyTorch 1.8.1, Python 3.8, and Cuda 11.1. For the object detection model, the input size
of the images in this study was uniformly set to 640 × 640. The other main parameters
were as follows: the initial learning rate was set to 0.01, the momentum was 0.937, the
optimizer adopted SGD [30], the weight decay value was 0.0005, the batch size was 8, and
the maximum number of iterations was set to 200 rounds.



Drones 2023, 7, 492 12 of 19

In this experiment, we evaluated the performance of the algorithm using a series
of metrics. Floating Point Operations (FLOPs) were used to measure the complexity of
the model, while Frames Per Second (FPS) served as an indicator of detection speed,
representing how many images the model can detect per second. To assess the accuracy of
tassel detection, relevant metrics were employed for evaluation, with the specific formula
as follows:

P =
TP

TP + FP
× 100% (14)

R =
TP

TP + FN
× 100% (15)

where TP represents true positives, FP represents false positives, FN represents false
negatives, and P represents precision, which refers to the probability that the model correctly
detects maize tassels among the objects detected. R represents recall, which measures the
ability of the model to detect all the correct maize tassels. F1_Score represents the combined
performance of P and R, defined as Equation (16):

F1 = 2
PR

P + R
× 100% (16)

AP stands for average precision, which is obtained by integrating the Precision–Recall
curve. The AP value is used to evaluate the performance of a model in each class. mAP
stands for mean average precision, which represents the average value of AP across all
classes. In this study, since there is only one class for maize tassel, therefore n = 1 and
AP = mAP; the specific formula is as follows:

AP =
∫ 1

0
P(R)dR× 100% (17)

mAP =
1
n∑n

i=1 APi × 100% (18)

To evaluate the performance of the algorithm in terms of counting accuracy, we denote
the ground truth of the number of maize tassels as the Number of Manual Counts (NMC)
and the counted value by the algorithm as the Number of Algorithm Counts (NAC) [31].
We define CA as the Counting Accuracy, and MRE as the Mean Relative Error [32], as
defined in Equations (19) and (20), respectively.

CA =
min(NMC, NAC)

max(NMC, NAC)
(19)

MRE =
1
n∑n

i=1
|NAC−NMC|

NMC
(20)

5.2. Training Comparison with Other Models

To evaluate the performance of the Tassel-YOLO network, a series of experiments
were designed and conducted for validation. The selected comparative networks included
YOLOv8, YOLOv7, YOLOv5, and YOLOv4 [33]. The evaluation of model training effective-
ness was based on the mean average precision at an intersection over union (IoU) threshold
of 0.5 (mAP@0.5), which served as the evaluation metric. Based on experimental data, a
line graph, as shown in Figure 11, was plotted. It can be observed from the graph that as
the number of training epochs increases, the mAP@0.5 of various YOLO models gradually
increases, reaching its upper limit at around 40 epochs, and the curve stabilizes. It can be
observed that Tassel-YOLO achieves significantly higher accuracy compared with other
models. Table 2 presents a comparison of experimental results among different models.
Tassel-YOLO outperforms the original model YOLOv7, with an improvement of 1.43% in
the mAP@0.5 and 1.15% in the F1 score. In addition, FPS, Precision, and Recall values also
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show corresponding improvements. The detection accuracy of YOLOv8 is slightly inferior
to YOLOv7 but superior to YOLOv5. YOLOv8 shows a rapid increase in mAP@0.5 during
the early stages of training, but it plateaus around the 40th epoch. YOLOv5 demonstrates
the highest detection speed, but its mAP@0.5 is relatively lower. YOLOv4 lags behind other
models in both accuracy and inference speed. Overall, Tassel-YOLO demonstrates excellent
performance in the maize tassel detection task, indicating the effectiveness of our model in
the experiments.
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Table 2. The comparison of several detectors in our experiments.

Model mAP@0.5 Precision Recall F1 FPS

YOLOv4 89.10% 88.01% 85.92% 86.95% 55
YOLOv5 93.42% 91.23% 89.13% 90.17% 86
YOLOv7 94.71% 92.32% 91.74% 92.03% 69
YOLOv8 94.26% 92.14% 92.92% 92.53% 75

Tassel-YOLO 96.14% 93.16% 93.21% 93.18% 74

5.3. Counting and Detection Results

We selected images of maize tassels of varying scales in the test set to simulate images
captured by drones at different flying altitudes, in order to evaluate the detection and count-
ing capabilities of different models. It should be noted that a multi-scale training method
was adopted during the training process, which resulted in good detection training and
performance for maize tassels of different sizes. We conducted four groups of experiments
based on the different scales of tassels in the test images, with tassel count distribution
ranges of 11~52, 54~96, 102~146, and 149~189, respectively, to simulate the effects of drone
imaging at different heights. Each group of experiments consisted of 10 test images. Firstly,
the true count of maize tassels on each image was obtained through manual counting and
then inputted into different network models to obtain detection and counting results [34].
Table 3 presents the experimental results of the counting performance evaluations for differ-
ent models. Compared with other YOLO models, Tassel-YOLO exhibits the best counting
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performance with an average accuracy of 97.55% and the lowest MRE value, indicating
lower counting errors compared with other models. It can be observed that as the scale of
tassels in the image decreases, the counting accuracy increases. We attribute this to the fact
that the tassels in the training images are generally small, which leads to better recognition
performance of smaller tassels by the model [33]. Figure 12 displays the partial detection
results of the Tassel-YOLO model. It should be noted that Figure 12a,b both show the
detection of tassels in a single image captured, with the difference being that the tassels in
Figure 12a are larger in size than those in Figure 12b. Note that the image in Figure 12b is
not a fusion image of the image in Figure 12a. As shown in the figure, the majority of the
maize tassels in the images are accurately detected and assigned high confidence scores,
while a few tassels were not recognized due to irregular shapes, large areas occluded by
leaves, and significant overlap between adjacent tassels.

Table 3. Counting effect evaluation experiment.

Tassel-YOLO YOLOv8 YOLOv7 YOLOv5 YOLOv4

Group NMC NAC CA MRE
(%) NAC CA MRE

(%) NAC CA MRE
(%) NAC CA MRE

(%) NAC CA MRE
(%)

1 380 368 96.8% 0.32 359 94.5% 0.55 364 95.8% 0.42 358 94.2% 0.58 347 91.3% 0.87

2 791 771 97.5% 0.25 756 95.6% 0.44 763 96.5% 0.35 754 95.3% 0.47 729 92.2% 0.78

3 1248 1221 97.8% 0.22 1211 97.0% 0.30 1209 96.9% 0.31 1193 95.6% 0.44 1158 92.8% 0.72

4 1682 1650 98.1% 0.19 1639 97.4% 0.26 1633 97.1% 0.29 1615 96.0% 0.40 1569 93.3% 0.67
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5.4. Contrast Experiment Results of Introducing Attention Mechanism

To evaluate the effectiveness of the GAM module, we conducted comparative ex-
periments using the SE attention mechanism and the CBAM attention mechanism. We
incorporated three different attention mechanisms at the same locations for experimen-
tation, resulting in models named GAM-YOLOv7, SE-YOLOv7, and CBAM-YOLOv7,
as shown in Table 4. It can be observed that compared with the original model, both
SE-YOLOv7 and CBAM-YOLOv7 exhibit an increase in model parameters. However,
CBAM-YOLOv7 achieves an mAP@0.5 of 94.83%, which is higher than SE-YOLOv7 and the
original model. We believe this is because, compared with the SE module, the CBAM mod-
ule incorporates spatial-attention submodules and an additional parallel max pooling layer
in its channel-attention submodule. This augmentation of information encoding enhances
the comprehensiveness of the obtained information, leading to improved performance [18].

Table 4. Comparative experiments on attention mechanisms.

Attention Mechanism
Precision Recall F1 mAP@0.5 FLOPs Parameters

SE CBAM GAM

× × × 92.32% 91.74% 92.03% 94.71% 103.2 G 36.48 M√
× × 92.92% 89.48% 91.17% 94.33% 103.3 G 36.62 M

×
√

× 93.57% 91.24% 92.39% 94.83% 103.9 G 37.63 M
× ×

√
92.84% 92.86% 92.85% 95.84% 111.5 G 43.98 M

GAM-YOLOv7 achieved the highest accuracy with an mAP@0.5 of 95.84%, surpassing
CBAM-YOLOv7 and the original model by 1.01% and 1.13%, respectively. We attribute
this improvement to the fact that compared with the CBAM module, the GAM module
considers the importance of cross-dimensional interactions, enhances the interaction be-
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tween channels and spatial dimensions, and preserves cross-dimensional information. The
GAM incorporates attention mechanisms that capture important features across all three
dimensions, which inevitably leads to an increase in model parameters. Compared with
the original model, the FLOPs and parameters increased by 8.3 G and 7.5 M, respectively.
Therefore, it is necessary to pursue lightweight improvements in the model.

5.5. Ablation Experiment

In order to further demonstrate the effectiveness of the proposed enhancement method
on the Tassel-YOLO model, we conducted ablation experiments using YOLOv7 as the base-
line model. As shown in Table 5, YOLOv7 + GAM represents a model that is obtained by
incorporating the GAM module into the YOLOv7 model. It can be observed that adding
the GAM module can effectively improve model accuracy, with mAP@0.5 and F1 scores
increasing by 1.13% and 0.82%, respectively, compared with YOLOv7, making the model
more attentive to the tassel regions in the images. However, the model parameters and
inference time increased accordingly. YOLOv7 + Slim Neck refers to the incorporation
of GSConv lightweight convolution and a VoVGSCSP module into the neck section of
YOLOv7. GSConv provides similar computational effectiveness as regular convolution
while reducing the model’s parameters [20]. The VoVGSCSP module enhances the model’s
nonlinear function expression capability, improving inference speed and detection accuracy
without increasing computational cost. Compared with YOLOv7, YOLOv7 + Slim Neck
reduces flops and the number of parameters by 20.3 G and 9.79 M, respectively, decreases
inference time by 2.2 ms, and increases mAP@0.5 by 0.5%. Changing the loss function
to SIoU does not significantly affect model parameters or inference speed but increases
mAP@0.5 by 0.21%. Additionally, in experiments, SIoU was found to accelerate model
convergence during training and shorten training time. The Tassel-YOLO model integrates
the above improvements and achieves excellent performance in the task of maize tassel
detection. Compared with YOLOv7, Tassel-YOLO demonstrates a higher detection ac-
curacy, with an increase of 1.43% in mAP@0.5 and 1.15% in F1 score. In terms of model
lightweighting, Tassel-YOLO reduces FLOPs by 11.4 G and Parameters by 4.11 M, resulting
in faster inference speed and facilitating lightweight deployment in practical applications.
Overall, Tassel-YOLO achieves a balance between high accuracy and model lightweighting,
making our improvements worthwhile.

Table 5. Ablation Experiment of Tassel-YOLO on our dataset.

Methods mAP@0.5 F1 FLOPs Parameters Inference
Time (ms)

YOLOv7 94.71% 92.03% 103.2 G 36.48 M 14.5
YOLOv7 + GAM 95.84% 92.85% 111.5 G 43.98 M 15.6

YOLOv7 + Slim Neck 95.21% 91.87% 82.9 G 26.69 M 12.3
YOLOv7 + SIoU 94.92% 92.16% 103.2 G 36.48 M 14.5

Tassel-YOLO 96.14% 93.18% 91.8 G 32.37 M 13.5

6. Conclusions and Future Work

This study applies deep learning to the process of maize tassel detection and counting.
Firstly, a high-quality dataset of aerial images of maize tassels at the tasseling stage was
constructed by preprocessing aerial video data captured by unmanned aerial vehicles. To
address the current challenges of low accuracy and slow inference speeds in tassel detection,
we propose the Tassel-YOLO network model, achieved by improving the original YOLOv7
model. GSConv convolution is used in the neck part of the network to effectively reduce
the model’s parameters. The original ELAN-W module is improved to the VoVGSCSP
module, enhancing the network’s nonlinear expression ability. A GAM module is added to
the neck part, introducing multi-layer perceptrons and convolutional spatial attention with
the three-dimensional arrangement and channel-attention submodules, which enhances
the network’s ability to extract tassel features. Furthermore, Tassel-YOLO employs an
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efficient loss function SIoU, which comprehensively constructs penalty factors, resulting in
improved training speeds and inference accuracies. For the task of maize tassel detection,
Tassel-YOLO achieves an mAP@0.5 of 96.14%, an F1 score of 93.18%, and a counting
accuracy of 97.55%, showing significant performance improvement compared with the
original YOLOv7. Our model can detect one image in only 13.5 ms, and the number of
FLOPs and parameters have been reduced to 91.8 G and 32.37 M, respectively. Therefore, it
can be directly deployed on embedded devices of UAV for real-time detection. The output
information, including detected images, counting results, etc., can be transmitted to the
control platform or server for further data analysis. In summary, Tassel-YOLO represents
an effective exploration of the YOLO network architecture and can meet the practical needs
of application. It has a certain value for the actual application in corn cultivation, providing
new insights for related intelligent agricultural production.

Our study has achieved certain accomplishments, but there is still some work that
needs to be improved and supplemented in the future.

1. This study focuses on the research and development of real-time detection tasks for
maize tassels. In the future, as more data become available for various plant species
and quantities, we will continue to optimize Tassel-YOLO and apply our model to
broader fields, such as wheatear detection and ears of millet detection.

2. Hyperspectral images can provide richer spectral information, and using hyperspec-
tral images for tassel detection can provide more comprehensive and accurate data
support. This is also a future research direction worth exploring.

3. During the growth process of maize, which includes multiple growth stages, this
study only investigated the detection and counting of the tasseling stage. In the future,
we will experimentally analyze images from other growth stages to obtain a more
comprehensive assessment of maize quantity.

4. This study achieved the counting of tassels at a local position of a field represented by
a single image. However, calculating the tassel count of the entire maize field through
image overlap also has certain research significance.
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