
Citation: Hou, D.; Su, Q.; Song, Y.;

Yin, Y. Research on Drone Fault

Detection Based on Failure Mode

Databases. Drones 2023, 7, 486.

https://doi.org/10.3390/

drones7080486

Academic Editors: Bo Li, Chunwei

Tian, Daqing Chen and Ming Yan

Received: 27 June 2023

Revised: 22 July 2023

Accepted: 24 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Research on Drone Fault Detection Based on Failure
Mode Databases
Defei Hou 1, Qingran Su 2,* , Yi Song 3 and Yongfeng Yin 4

1 School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China; 230199096@seu.edu.cn
2 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
3 School of Reliability and System Engineering, Beihang University, Beijing 100191, China;

1641208406@buaa.edu.cn
4 School of Software, Beihang University, Beijing 100191, China; yyf@buaa.edu.cn
* Correspondence: suqingran@buaa.edu.cn; Tel.: +86-18810723977

Abstract: Drones are widely used in a number of key fields and are having a profound impact on all
walks of life. Working out how to improve drone safety through fault detection is key to ensuring the
smooth execution of tasks. At present, most research focuses on fault detection at the component
level as it is not possible to locate faults quickly from the global system state of a UAV. Moreover,
most methods are offline detection methods, which cannot achieve real-time monitoring of UAV
faults. To remedy this, this paper proposes a fault detection method based on a fault mode database
and runtime verification. Firstly, a large body of historical fault information is analyzed to generate
a summary of fault modes, including fault modes at the system level. The key safety properties of
UAVs during operation are further studied in terms of system-level fault modes. Next, a monitor
generation algorithm and code instrumentation framework are designed to monitor whether a certain
safety attribute is violated during the operation of a UAV in real time. The experimental results show
that the fault detection method proposed in this paper can detect abnormal situations in a timely and
accurate manner.

Keywords: drone safety; software failure mode databases; runtime verification

1. Introduction

Drones have become an indispensable component of modern equipment systems,
and as the number of components in these systems continues to increase, so does their
complexity. Consequently, the requirements for system quality—particularly reliability,
maintainability, and functionality—are also becoming increasingly stringent [1]. In recent
years, there have been numerous instances of serious consequences and economic losses
caused by quality problems in aerospace and other fields. As a result, safety and reliability
have become key areas of focus when it comes to drones [2]. Sensor data fusion [3], fault
detection [4], fault-tolerant estimation [5], and fault-tolerant control [6] are all important
means of ensuring UAV safety. Among these methods, researchers tend to place particular
emphasis on fault detection, which can be broadly divided into two categories: model-based
approaches and data-driven approaches [7].

The traditional way to detect drone failures is through model-based approaches that
use mathematical models to analyze UAV safety. These models can be further subdivided
into qualitative or quantitative methods (Table 1). However, because model-based ap-
proaches often focus only on specific components, they may not always detect failures
in other parts of the system. This means that, if an unmanned aerial system suddenly
fails due to its complexity, resulting in higher costs, multiple model pairs may need to be
deployed. Therefore, in this study, we mainly study faults at the system level. Building a
fault mode database using a large amount of fault data can facilitate the analysis of fault
modes and fault propagation processes at the system level. The analysis process can help

Drones 2023, 7, 486. https://doi.org/10.3390/drones7080486 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7080486
https://doi.org/10.3390/drones7080486
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-1488-900X
https://orcid.org/0000-0001-9432-3051
https://doi.org/10.3390/drones7080486
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7080486?type=check_update&version=2

Drones 2023, 7, 486 2 of 24

fault diagnosis personnel quickly locate the problem and save diagnostic time. At present,
the research on failure mode databases lacks depth. Drone systems are complex systems
with multiple tasks and configurable elements. There are both common and unique failure
modes among different systems. The evaluation center where the authors of the current
study work has a large body of failure data. However, due to the lack of organization and
induction of these data, there has been no in-depth analysis of the mechanisms of common
faults. How to use historical fault data to generate fault mode databases and utilize these
databases to better achieve fault detection is a problem worth studying.

Table 1. Model-based approaches to Fault Detection.

Authors Year Fault Location Used Methods

D’Amato et al. [8] 2021 sensor sensor fusion algorithm based on
particle filter

Fu et al. [9] 2021 sensor, actuator adaptive observer to realize sensor
and brake fault detection

Maqsood et al. [10] 2021 sensor sensor fault detection and isolation
method for quadrotor aircraft

Miao et al. [11] 2021 sensor adaptive nonlinear proportional
integral (PI) observer

Nejati et al. [12] 2021 actuator three-level central difference
Kalman filter (RThSCDKF)

Sun et al. [13] 2021 pitot tube two identical synthetic air
data systems

Cao et al. [14] 2022 actuator interval observer and extended
state observer

Gai et al. [15] 2022
elevator,

event-triggered
intervals

dynamic event-triggered Hi/H∞
optimization method

Lin et al. [16] 2022 sensor crash probability density (CPD)

Another typical method used for drone fault detection is the data-based method.
In recent years, the reduction in the difficulty of data collection and analysis has driven
the development of the field of data analysis. With the support of various high-speed
processors, the means of mining required information from data have become increasingly
powerful. Similarly, data-based methods can be divided into two categories: quantitative
and qualitative. Quantitative methods include those based on statistical theory and neural
networks. Qualitative methods typically include expert systems, fuzzy logic, pattern
recognition, and qualitative trend analysis. Table 2 lists some typical studies, including the
location of fault detection and the methods used.

Table 2. Data-driven approaches to Fault Detection.

Authors Year Fault Location Used Methods

Altinors et al. [17] 2021 motor, propeller
method combining statistical

feature extraction and
machine learning

Park et al. [18] 2021
GPS spoofing, DoS attack,

rudder, elevator,
aileron, engine

unsupervised learning

Souza et al. [19] 2021 motor signal analysis technique based
on chaos

Zheng et al. [20] 2022 actuator, aero engine,
equipment

data assembly annotation method
based on flight data and

BIT records
Cabahug et al. [21] 2022 actuator k-means clustering algorithm

Drones 2023, 7, 486 3 of 24

Working out how to optimize the original data or improve the relevant algorithms
has also become a major research trend in recent years. Zhang et al. [22] proposed a robust
deformed denoising CNN (RDDCNN) to solve the offset pixels of feature maps from
noisy images. This approach can effectively improve data quality and support data-based
UAV fault diagnosis. Tian et al. [23] proposed a multi-stage image denoising CNN with
a wavelet transform (MWDCNN) via three stages. A dynamic convolution is used in a
CNN to address the limitations in depth and width of lightweight CNNs to achieve good
denoising performance.

The performance of data-based methods mainly depends on the quality of the original
data. The fault data of drones is often multi-level linkage and cross-influence data, which
is not conducive to analyzing complex types of faults. In addition, data-based methods are
often offline and difficult to analyze in real time. This method cannot support the real-time
safety monitoring of drones. It is more of a means of analysis after accidents, and cannot
detect and handle abnormal situations during the operation of drones. Therefore, this
method cannot guarantee the safety of drones during operation.

The above two methods mainly focus on component-level fault detection, rather than
system-level fault analysis and localization. In this study, our goal is to fully explore and
utilize drone fault data accumulated over the past year to gain a deeper understanding of
drone system-level fault mechanisms. The aims of this study are: (1) To fully utilize a large
amount of drone fault data, establish a fault mode database, and identify the occurrence
and propagation modes of drone faults. To further extract fault features and attributes
from fault modes and condense them into safety attributes during drone operation for
subsequent runtime verification processes. (2) To design and implement a monitoring
generation algorithm and code detection framework for real-time monitoring of whether
drones violate a certain safety attribute during operation. By using the runtime monitoring
method, the operation process of unmanned aerial vehicles can be monitored in real time
and faults can be quickly detected.

The rest of the paper is organized as follows: Section 2 presents the related works about
failure mode databases and runtime verification. Research on security detection based on
failure mode databases is included in Section 3. Section 4 describes the implementation
of a monitor generation framework and linear timing logic extension. The Clang-based
code instrumentation framework is explained in Section 5. Experimental design and
methodological evaluation are described in Section 6. Finally, Section 7 concludes the paper.

2. Related Works
2.1. Failure Mode Databases

In recent years, failure mode databases have become a research hot spot in database
system engineering, knowledge engineering, and other fields, and this approach has been
applied in many fields. Failure mode databases are structured, easy-to-use, comprehensive,
and organized failure clusters—a collection of interrelated patterns stored, organized,
managed, and used in computer memory in a certain way in order to solve the needs of
problems in some fields. These failure modes include theoretical knowledge related to
the domain, factual data, and heuristic knowledge derived from expert experience. UAV
failure mode databases are of great significance to the study of reliability trends. How to
form a real scientific failure mode database is one of the key contents of the research.

A common solution to this problem is to extract UAV failure patterns from the records
contained in a UAV accident database by cleaning, parsing, and normalizing the fault data.
For example, by obtaining accident records from different countries and analyzing the
causes of accidents. Suitable data sources include:

• NASA and the FAA Aviation Safety Reporting System (ASRS) [24];
• U.S. Aviation Safety Communique (SAFECOM) data [25];
• Australian Transport Safety Bureau (ATSB) aviation safety investigations and re-

ports [26];
• UK Air Accident Investigation Branch (AAIB) data [27].

Drones 2023, 7, 486 4 of 24

The attribute fields in the database should include the data source, accident year,
month, location, flight phase, aircraft model, flight hour history, flight time of the mission
prior to the accident, altitude, weather, mission being performed, root cause, and accident
outcome. At present, the research on UAV accident databases mainly focuses on the
collection and analysis of accident data. Wild et al. [28] collected and analyzed 152 incident
and accident records, but only 40 records deal with UAV accidents, and the data date back
to 2006–2015. More recently, a total of 160 accident reports from 2015 to 2020 were collected
and documented in an integrated database [29].

At present, the study of failure mode databases lacks depth. UAV systems are complex
systems with multiple tasks and configurable elements. There are both common and unique
failure modes among different systems. In addition, the reliability level of UAVs in different
regions varies greatly due to manufacturing differences. The evaluation center where the
authors of this current study work has a large amount of fault data of various types of
UAVs in China, but these data have not been sorted and summarized and the mechanisms
of common faults have not been thoroughly analyzed. How to make use of historical fault
data to generate a fault mode database and realize fault detection better is a problem worth
studying. UAVs face the following major problems:

(1) There has been a lack of unified analysis and summarizing of accumulated equipment
failure data and underutilization of the advantages of historical data.

(2) Lack of effective fault identification, characterization, and matching methods to
provide guidance for the whole life cycle activities of UAVs. Implementing such
methods could effectively avoid the introduction of software defects and avoid the
occurrence of failures, thus improving the reliability of unmanned aerial systems.

In this paper, the construction of a fault module database provides a set of solutions
from cause analysis to normalized fault representation. Based on this database, we can
have a deeper understanding of the development trends and failure modes of UAVs and
improve the reliability and safety of UAVs.

2.2. Runtime Verification

Runtime verification techniques are formal verification techniques, which use logical
formulas to describe properties and transform them into formal structures. Runtime
verification tends to check that there is a poor path, that is, up to the current time, whether
the system’s running path is within safety parameters. After being proposed, this method
has received continuous attention from academia and industry. One of its characteristics is
that it plays a role in the system software—it is in the real run environment used to monitor
the system—so it can find potential defects that the traditional software testing method
misses. It complements classical verification techniques (for example, theorem proving
and model checking) and provides a more practical method for the verification of system
running trajectories. At the cost of limited execution coverage, runtime validation provides
accurate information about the runtime behavior of the monitored system for subsequent
analysis. The object of action can be a software system, a hardware or information physical
system, a sensor network, or any system where dynamic behavior can be observed. The
following is a brief overview of some recent research on runtime validation.

Abbas et al. [30] introduced private runtime verification. Liu et al. [31] introduced the
idea of incremental verification and proposed an incremental probabilistic model-checking
method based on heuristics. Y-Rozier et al. [32] explore the connection and difference
between simulation and runtime verification. Stockmann et al. [33] proposed architecture
runtime verification. Teixeira et al. [34] studied the properties of a runtime verification-
specified API and wrote a minimalist specification language. Bicevskis et al. [35] discuss
data quality checking during the execution of a business process by using runtime ver-
ification. Lee et al. [36] developed an effective model-checking method for IoT system
operation verification. Legunsen et al. [37] proposed an aware runtime verification tech-
nique. Geng et al. [38] introduced a new smart tagging method to verify the completion of
tasks involving one-to-many and many-to-one dependencies. Ring et al. [39] significantly

Drones 2023, 7, 486 5 of 24

reduced the size of the state space of the verification process and reduced the complexity
of the detection process. Ye et al. [40] proposed an adaptive runtime verification method
based on multi-agent systems. Tsigkanos et al. [41] proposed a service-oriented software
architecture and technical framework to support the runtime verification of decentralized
edge-dense systems. Hu et al. [42] proposed a runtime verification method based on the
Robotic Operating System (ROS). Tracy et al. [43] introduced an open-source framework
to achieve efficient and high-performance runtime monitoring. Ye et al. [44] developed a
new approach based on approximate computation to achieve sufficiently fast and accurate
repeated execution of security verification. Kong et al. [45] proposed a method aimed at
monitoring traces that reveal the runtime state of the software. Jung et al. [46] proposed an
automatic runtime prioritization method based on a classification tree. Miranda et al. [47]
proposed a method to automatically detect whether the errors reported by the monitor are
real errors. The authors of [48] proposed the concept of UAV safe operation monitoring
and the operational limits to be monitored. A prominent example of such operational
limitations is geofencing. Geofencing uses virtual fencing to prevent drones from entering
restricted airspace. Felipe et al. [49] proposed a solution based on stream runtime verifi-
cation, which offers a high-level declarative language to describe sophisticated monitors
together with guarantees on execution time and memory usage. They showed how moni-
tors can be combined with temporal planning not only to monitor assumptions but also
to support mitigation and remediation in UAV missions. Bonnah et al. [50] presented a
rewriting-based algorithm for runtime monitoring of safety requirements expressed in
TWTL for specifying time-bounded serial tasks.

Runtime verification is widely used in academia and industry to ensure the reliability
and security of the system, whether it is before deployment, testing, verifying, debugging,
or after deployment. However, the setting of monitoring conditions still lacks a solid
basis. Therefore, this paper intends to analyze the failure mechanism of UAVs through the
UAV failure mode database to extract the monitoring conditions. According to the above
monitoring conditions, the UAV is monitored in real time to improve its reliability.

3. Research on Safety Detection Based on Failure Mode Databases

Drones play a vital role in modern equipment, showing the characteristics of increasing
scale and complexity. In the face of more serious quality and reliability problems, the
guarantee of equipment software presents new challenges. Therefore, in order to give
full play to the value of existing fault data, this paper collects and analyzes UAV faults
based on the collected fault data, generates a fault mode database, and identifies and
locates the faults during the operation of the UAV by combining this database with runtime
verification technology.

The overall research framework of this paper is shown in Figure 1.

Drones 2023, 7, x FOR PEER REVIEW 6 of 26

tabase. In this paper, fault mechanism analysis is carried out to summarize the fail-

ure causes and fault propagation modes of unmanned aerial vehicle systems. Then,

the failure mode feature identification method is used to extract the failure charac-

teristics. Finally, the method of characterizing the failure mode characteristics is

studied. After extracting the attributes of each characteristic, the features of each

attribute of the fault data are described. According to the results of the above pro-

cess, the safety attributes that must be observed during the operation of the UAV

are derived and the detection content is provided for use by the verification process

during the subsequent operation.

(2) Second, runtime verification is implemented. To achieve this, linear time logic is

used to describe safety attributes. Spot is used to complete the conversion process

from LTL to the monitor, with some modifications being made to Spot according to

actual needs. When combined with the safety attribute description derived in the

failure mode database building step, this process allows the running state of the

UAV to be monitored in real time.

Failure mechanism
analysis

Large amount of
failure data

Failure mode
feature

identification

Failure mode
characteristic

characterization

Failure mode database
generation module

Runtime data Target object

Monitor Analysis result

Runtime verification
module

Figure 1. Overall frame diagram.

3.1. Failure Mechanism Analysis

A system defect is a condition in which the system does not conform to specified

requirements and behaves in ways inconsistent with the desired way of use. System de-

fects, which are introduced by human errors, are static inherent properties of the system

and are present across the whole system life cycle. During system execution, defects are

activated under certain conditions. A system fault is an abnormal condition in a compo-

nent, device, or subsystem. System failure occurs when a system fault cannot be handled

by fault-tolerant technology, resulting in the loss of all or part of the functions of the sys-

tem during operation and deviation from the expected normal state.

According to the process of occurrence, three necessary and sufficient conditions for

system failure caused by system defects can be described:

• The actual input the system receives causes the system defect to be executed;

• An executed defect causes a change in the state of the data after the location of the

system defect (failure is triggered);

• Faulty system data is passed as a result (the user perceives a fault).

These three necessary and sufficient conditions also reflect the whole process of the

fault produced by the defect. This process is sequential, after the system executes a defect,

the defect causes the data state after the defect to be infected, and finally, after several

iterations, the wrong data is output by the system. Figure 2 describes the mechanism of

system failure and reflects the conditions of fault identification and discovery. These three

conditions correspond to the probability that the input leads to the execution of the posi-

tion (execution probability), the probability that the position mutation leads to the change

of the data state, (contagion probability), and the probability that the changed data state

leads to a change in the program output (propagation probability). Only when these three

conditions are met can the defect produce a fault and be identified.

Figure 1. Overall frame diagram.

(1) First, a software-based failure mode database is constructed. The evaluation center at
which the authors of the current study work has a large body of fault data; in order to
better realize its value, it is necessary to summarize it into a fault mode database. In

Drones 2023, 7, 486 6 of 24

this paper, fault mechanism analysis is carried out to summarize the failure causes and
fault propagation modes of unmanned aerial vehicle systems. Then, the failure mode
feature identification method is used to extract the failure characteristics. Finally, the
method of characterizing the failure mode characteristics is studied. After extracting
the attributes of each characteristic, the features of each attribute of the fault data are
described. According to the results of the above process, the safety attributes that must
be observed during the operation of the UAV are derived and the detection content is
provided for use by the verification process during the subsequent operation.

(2) Second, runtime verification is implemented. To achieve this, linear time logic is used
to describe safety attributes. Spot is used to complete the conversion process from
LTL to the monitor, with some modifications being made to Spot according to actual
needs. When combined with the safety attribute description derived in the failure
mode database building step, this process allows the running state of the UAV to be
monitored in real time.

3.1. Failure Mechanism Analysis

A system defect is a condition in which the system does not conform to specified
requirements and behaves in ways inconsistent with the desired way of use. System
defects, which are introduced by human errors, are static inherent properties of the system
and are present across the whole system life cycle. During system execution, defects are
activated under certain conditions. A system fault is an abnormal condition in a component,
device, or subsystem. System failure occurs when a system fault cannot be handled by
fault-tolerant technology, resulting in the loss of all or part of the functions of the system
during operation and deviation from the expected normal state.

According to the process of occurrence, three necessary and sufficient conditions for
system failure caused by system defects can be described:

• The actual input the system receives causes the system defect to be executed;
• An executed defect causes a change in the state of the data after the location of the

system defect (failure is triggered);
• Faulty system data is passed as a result (the user perceives a fault).

These three necessary and sufficient conditions also reflect the whole process of the
fault produced by the defect. This process is sequential, after the system executes a defect,
the defect causes the data state after the defect to be infected, and finally, after several
iterations, the wrong data is output by the system. Figure 2 describes the mechanism of
system failure and reflects the conditions of fault identification and discovery. These three
conditions correspond to the probability that the input leads to the execution of the position
(execution probability), the probability that the position mutation leads to the change of the
data state, (contagion probability), and the probability that the changed data state leads to a
change in the program output (propagation probability). Only when these three conditions
are met can the defect produce a fault and be identified.

Drones 2023, 7, x FOR PEER REVIEW 7 of 26

Drones
System
Defect

Non-execution

Execution

Non-stimulation

Stimulation

Non-Perception

Perception

Defect

Non-defect

Figure 2. System failure mechanism.

3.2. Failure Mode Feature Identification

The system fault pattern feature identification process needs requires a features anal-

ysis of function, execution, interface, and related constraints. Through functional analysis,

execution analysis, and interface analysis, the understanding of the identified features is

strengthened, which lays a foundation for improving the accuracy of system fault pattern

matching. Failure data description begins with original attribute extraction.

The complete system properties are extracted using the method given in the IEEE

1044–2009 standard. At the same time, the ideas of the GJB 437-88, GJB/Z 1391-2006, and

GJB 841-90 standards are referenced. The attributes are modified from the perspective of

fault control and management. The extracted attributes are normalized so that modifying

one attribute does not affect other attributes. Finally, attribute fields that consider effi-

ciency and quality that are accurate and easy to reuse later are extracted.

First, the fault ID and fault description attributes in IEEE 1044–2009 are used and the

system (subsystem and subsystem), product model, product batch, and collection date are

added as the basic information of fault data. Second, the fault state attribute is used to give

the overall expression of the fault. The severity and impact attributes are used and then

changed to fault-level and potential-impact attributes. If the type attribute is used, it is

changed to a fault-type attribute. Third, the injection activity and discovery activity attrib-

utes are used. From the perspective of fault discovery and introduction, it is modified into

the attributes of the fault discovery and introduction stages. Next, the fault or failure per-

formance, modification content, and modification measure attribute are given. Finally, the

root cause of a fault is considered and the attribute of the cause of the fault is added. A list

of the attributes generated from fault data is given in Table 3.

Table 3. Attribute extraction of system fault data representation.

Number Attribute Definition

1 ID The unique number of the fault

2 Affiliation System to which the fault belongs

3 Description Overall description of the fault

4 Discovery
System development phase

in which faults are found

5 Introduction The system development phase of introducing faults

6 Factor Human factors that introduce faults

7 Type A type defined for the characteristics of the system

8 Level Severity of the fault

9 Manifestation System failure caused by fault excitation

10 Potential impact Danger or effect caused by failure

Figure 2. System failure mechanism.

Drones 2023, 7, 486 7 of 24

3.2. Failure Mode Feature Identification

The system fault pattern feature identification process needs requires a features analy-
sis of function, execution, interface, and related constraints. Through functional analysis,
execution analysis, and interface analysis, the understanding of the identified features is
strengthened, which lays a foundation for improving the accuracy of system fault pattern
matching. Failure data description begins with original attribute extraction.

The complete system properties are extracted using the method given in the IEEE
1044–2009 standard. At the same time, the ideas of the GJB 437-88, GJB/Z 1391-2006, and
GJB 841-90 standards are referenced. The attributes are modified from the perspective of
fault control and management. The extracted attributes are normalized so that modifying
one attribute does not affect other attributes. Finally, attribute fields that consider efficiency
and quality that are accurate and easy to reuse later are extracted.

First, the fault ID and fault description attributes in IEEE 1044–2009 are used and the
system (subsystem and subsystem), product model, product batch, and collection date are
added as the basic information of fault data. Second, the fault state attribute is used to
give the overall expression of the fault. The severity and impact attributes are used and
then changed to fault-level and potential-impact attributes. If the type attribute is used,
it is changed to a fault-type attribute. Third, the injection activity and discovery activity
attributes are used. From the perspective of fault discovery and introduction, it is modified
into the attributes of the fault discovery and introduction stages. Next, the fault or failure
performance, modification content, and modification measure attribute are given. Finally,
the root cause of a fault is considered and the attribute of the cause of the fault is added. A
list of the attributes generated from fault data is given in Table 3.

Table 3. Attribute extraction of system fault data representation.

Number Attribute Definition

1 ID The unique number of the fault
2 Affiliation System to which the fault belongs
3 Description Overall description of the fault

4 Discovery System development phase
in which faults are found

5 Introduction The system development phase of introducing faults
6 Factor Human factors that introduce faults
7 Type A type defined for the characteristics of the system
8 Level Severity of the fault
9 Manifestation System failure caused by fault excitation
10 Potential impact Danger or effect caused by failure

3.3. System Failure Mode Characteristic Characterization Method

According to the characteristics of different system fault patterns, measurement pa-
rameters, data acquisition methods, and deviation thresholds are designed. These provide
the basis for accurate system fault pattern matching.

After extracting the characteristic attributes, the features of each attribute of the
fault data must be described. The attributes are the same from data entry to data entry,
but the characteristics of each attribute are different. Below, we describe the model and
standardized description of system fault data.

For specific fault attributes, the attribute’s characteristics must be described and the
attribute’s value range must be specified. The characteristics determined in this process
should be consistent with the run characteristics of the system and can reflect the charac-
teristics of system faults. How to improve reusability and meet the use needs of various
developers should also be considered.

The existing feature description method of system fault data is mainly natural lan-
guage, but this approach is prone to subjectivity. Due to differences in how individuals
think, fault descriptions have a high degree of individuation and poor portability. In this

Drones 2023, 7, 486 8 of 24

paper, formalized and normalized expressions are developed to describe the characteristics
of attributes. The different ways of describing attribute characteristics are given in Table 4.

Table 4. Attribute description of system fault data.

Number Attribute Definition

1 ID DT—“Acquisition date”—“Serial number”
2 Affiliation Which system

3 Description Semi-formal description: “ZZ faults were introduced into YY
by XX”.

4 Discovery (Requirement analysis/Design/Coding implementation/Test
verification/Use and maintenance) phase

5 Introduction (Requirement/Design/Coding) phase

6 Factor Redundancy/Negligence/Forgetting/
Inadequate consideration

7 Type Input class/Output class/Processing logic class/Working
status class

8 Level Key/Important/Ordinary/Other
9 Manifestation The fault was triggered at XX, resulting in XXXX.
10 Potential impact The failure caused by this fault may cause XXXX.

Attribute description is the key to fault description. Through the feature description
method, the ambiguity caused by the use of over-subjective natural language is solved,
which is conducive to the quantitative analysis of data and improvement of the value of
fault data utilization. The main contribution of fault data attribute feature definition to fault
data description is the provision of fault type features based on input class, output class,
processing logic class, and working state class. These four classes are also the core and
main features of any fault description, which is conducive to improving the efficiency of
collecting and managing subsequent fault data. Finally, after fault data attribute extraction
and provision of the feature description method, the system fault data description method
is provided. The system fault pattern library is sorted according to the fault description
method and subsequent management becomes rule-based. Table 5 provides the failure
modes related to drone functions. Due to space constraints, only some of the failure
modules are listed here as an illustration.

Table 5. Failure modules at the functional level.

Faulty Module Fault Submodule

Power
safety

management

Fuel pump control
Fuel monitoring and handling

Oil delivery monitoring and handling
Aerial stop
Aerial start
Engine off

Pitch control

Electrical
safety

management

Radio altimeter power control
Emergency power control

Grid-connected control of transmission network
Electrical fault handling

Flight
safety

management

Critical fault handling
Destroyed key processing

Link redundancy management
Link status judgment and processing

Switch of right of control
Sensor Management

Flight control computer management
Aircraft weight management

Drones 2023, 7, 486 9 of 24

4. Monitor Generation Framework Based on Linear Temporal Logic

In this study, we take unmanned aerial vehicle systems as the research object, focusing
on safety monitoring technology based on runtime verification, with a focus on solving the
problem of how to generate the required monitors and how to connect them with source
code. This section focuses on the former, which is how to generate monitors and achieve
target monitoring operations. Figure 3 shows the overall flowchart of the framework.

Drones 2023, 7, x FOR PEER REVIEW 9 of 26

Table 5. Failure modules at the functional level.

Faulty Module Fault Submodule

Power

safety

management

Fuel pump control

Fuel monitoring and handling

Oil delivery monitoring and handling

Aerial stop

Aerial start

Engine off

Pitch control

Electrical

safety

management

Radio altimeter power control

Emergency power control

Grid-connected control of transmission network

Electrical fault handling

Flight

safety

management

Critical fault handling

Destroyed key processing

Link redundancy management

Link status judgment and processing

Switch of right of control

Sensor Management

Flight control computer management

Aircraft weight management

4. Monitor Generation Framework Based on Linear Temporal Logic

In this study, we take unmanned aerial vehicle systems as the research object, focus-

ing on safety monitoring technology based on runtime verification, with a focus on solv-

ing the problem of how to generate the required monitors and how to connect them with

source code. This section focuses on the former, which is how to generate monitors and

achieve target monitoring operations. Figure 3 shows the overall flowchart of the frame-

work.

Define extension
methods

Adding extensions
to logical formulas

Extension of
logical formulas

Design Formula
Tree Structure

Define operation
priority

Recognition and storage
 of formulas

Define extension
methods

Design conversion
process

Conversion of formulas

Define node
members

Implement the
generation process

Monitor generation

Design stored
procedures

Figure 3. Monitor Generation Framework.

The entire framework can be divided into four parts. First, based on the different test

objects and requirements documents, the properties that the tested system should meet

during runtime are organized and described in natural language. In order for computers

to handle these safety requirements, they need to be transformed into formal descriptions.

In this study, we chose to use linear temporal logic to describe safety attributes, and we

extended LTL to enhance its expressive ability, achieving the effect of using more concise

forms to describe richer meanings and enhancing the accuracy of property descriptions.

Figure 3. Monitor Generation Framework.

The entire framework can be divided into four parts. First, based on the different test
objects and requirements documents, the properties that the tested system should meet
during runtime are organized and described in natural language. In order for computers to
handle these safety requirements, they need to be transformed into formal descriptions.
In this study, we chose to use linear temporal logic to describe safety attributes, and we
extended LTL to enhance its expressive ability, achieving the effect of using more concise
forms to describe richer meanings and enhancing the accuracy of property descriptions.
Second, in this study, we define a formula tree structure and corresponding conversion
algorithms, which will be used by computers to store formulas after reading them. Once
again, the conversion rules for extended LTL formulas were defined and the extended
formulas were simplified according to this rule to obtain the transformed LTL formula tree.
Next, the conversion algorithm is used to convert the logical formula into the corresponding
security requirement monitor. The monitor will receive data from the tested object for
analysis and perform state migration based on the analysis results. If the data meet the
safety requirements, the monitor can execute the task smoothly. If the data violate the
safety requirements, the monitor will discover this issue and issue a warning. The purpose
of a warning is to draw the attention of the operator, who can promptly view system
information, handle problems, and reduce the probability of accidents.

The following sections will introduce the approach in detail: Section 4.1 describes
the extension of the meaning of linear temporal logic, Section 4.2 describes the formula
recognition and storage process, Section 4.3 describes the formula conversion process, and
Section 4.4 describes the monitor generation process.

4.1. Extension of Linear Temporal Logic

There are four commonly used logical connectives in linear temporal logic, namely, G,
F, U, and X. G is a unary operator, indicating that the formula must be constant; F is a unary
operator, indicating that the formula will be established in the future; X is a unary operator,
indicating that the next cycle formula needs to be established; and U is a binary operator,
which means that the formula on the left should always be true until the formula on the
right is true. In order to enhance the expressive power of LTL, in this study, we extend
LTL to express richer meanings with more refined formulas and increase the flexibility and
accuracy of the formulas. In this study, we add a time point or interval after the temporal

Drones 2023, 7, 486 10 of 24

operators G, F, U, and X. The meaning of [i] is that the operator should hold in the i-th cycle,
while [i: j] means that the operator should hold at the beginning of a cycle and continue for
j cycles. For ease of understanding, the following specific examples are given:

(1) After expansion, the expression ability of the formula has been improved and more
concise formulas can be used to express richer meanings; the flexibility has also
been improved.

(1) Assuming a represents an event, then a must hold true in all states, which is
somewhat like an intersection. Only when a holds true in all states can it be
considered true and as long as a does not hold true in one state, it does not
hold true. Operators have their usage scenarios, but they may not be as flexible.
If you want a to hold true in the next three states, it doesn’t matter if the other
states hold true, as the G operator cannot.

(2) However, after adding a time interval, G[1:3]a can be used to indicate that a
holds in the next three states. If traditional LTL is used, this must be represented
with Xa&XXa&XXXa. If there are more than three states, the length difference
of the formula will be even greater.

(2) After expansion, the expression accuracy of the formula has also been improved.

(1) Fa indicates that a will always hold in the future, which is somewhat like a
union. As long as a holds in one state, then Fa holds. The problem with the F
operator is that it has a high degree of uncertainty. We request that a be true
in the future, but we don’t know when it will be true—it may be the 100th or
1000th state, etc.

(2) However, after adding a time interval, it is possible to define a time range and
require that the F formula be valid within that time range. F[1:4]a means that
a should hold at least once in the following four states for the F formula to
hold. With time constraints, the meaning of the formula becomes clearer and
effectively improves the uncertainty of the F operator.

It can be seen that the extended LTL formula can express richer meanings with shorter
formulas, increase the accuracy of the formula, and be more intuitive to use. Because
the writing of logical formulas requires manual completion, this extension can reduce the
burden on operators, reduce the difficulty of formula writing, and make the process of
formula writing easier to complete.

4.2. Recognition and Storage of Formulas

The property specification in this study is represented by LTL, which has been ex-
tended in the previous section to simplify the writing difficulty of LTL formulas. How the
LTL formula is processed is described below. To accomplish this, in this study, we define
an LTL formula tree and corresponding conversion algorithm.

When obtaining an LTL formula, it is necessary to first store it for subsequent op-
erations. Choosing a suitable data structure to store the formula can make subsequent
processing more convenient. The operators in the LTL formula include logical operators
and temporal operators and there is an order of priority to their execution. In addition,
parentheses can also be used in the LTL formula to express high priority. The operation
results of high-priority subformulas may serve as input variables for other subformulas.
Based on the above points, this paper selects a tree structure to store formulas and defines a
formula tree structure. All leaf nodes of the tree are propositional variables and all non-leaf
nodes are operators. Because trees naturally have classification properties, they are suitable
for splitting formulas, and the root node of one subtree is the leaf node of another subtree,
which is similar to the “operation results of high-priority subformulas will serve as input
variables for other subformulas” mentioned earlier.

Before executing the storage algorithm, you need to define the priority of the logical
connective and temporal operator in the LTL formula to avoid priority conflicts during
algorithm execution. Operator priority follows the following three rules:

Drones 2023, 7, 486 11 of 24

(1) The priority of a unary operator is higher than that of a binary operator.
(2) The unary logical connective has the same priority as the unary temporal operator and

the binary logical connective has the same priority as the binary temporal operator.
(3) Operators within parentheses have higher priority than those outside parentheses.

The more layers of parentheses, the higher the priority.

Based on the above rules, in this study, we provide a ranking of priorities, as shown in
Table 6. The priority of the three tables decreases from top to bottom, with operators in the
same table having the same priority. Whatever operator has the highest relative position,
has the highest priority.

(1) If the currently read object is a propositional variable, add it to the propositional
variable stack.

(2) If the currently read object is an operator, compare the symbol priority of that operator
with the top of the operator stack.

(1) If the top of the stack is empty, the current operator is directly pushed onto
the stack.

(2) If the priority of the operator is higher than or equal to the top of the stack
operator, then the operator is added to the operator stack.

(3) If the priority of the operator is lower than the top of the stack operator, the
top of the stack operator will exit the stack.

(1) If the outbound operator is a unary operator, take an object from the
propositional variable stack and construct a subtree. Using a unary
operator as the parent node and an object as the right child node. Add
the subtree to the propositional variable stack and repeat step (2) until
the operator is added to the stack.

(2) If the outbound operator is a binary operator, take two objects from
the propositional variable stack and construct a subtree. The binary
operator is used as the parent node, the object that first exits the stack
is used as the right child node and the object that exits the stack later is
used as the left child node. Add the subtree to the propositional variable
stack and repeat step (2) until the operator is added to the stack.

(3) If the current operator is a left parenthesis, it is directly pushed onto the stack.
(4) If the current operator is a right parenthesis, the top of the stack operator will exit

the stack.

(1) If the stack operator is a left parenthesis, the current round of processing ends
and the next object is read in

(2) If the stack out operator is a unary operator, take an object from the proposi-
tional variable stack and construct a subtree. Using a unary operator as the
parent node and an object as the right child node. Add the subtree to the
propositional variable stack and repeat step (4) until (4.1) is established.

(3) If the outbound operator is a binary operator, take an object from the proposi-
tional variable stack and construct a subtree. The binary operator is used as
the parent node, the object that first exits the stack is used as the right child
node and the object that exits the stack later is used as the left child node. Add
the subtree to the propositional variable stack and repeat step (4) until (4.1)
is established.

After the above process, the tree representation structure corresponding to the LTL
formula can be generated.

Drones 2023, 7, 486 12 of 24

Table 6. Operator precedence.

Prioritization

High
↑

Low

¬ (Negation)
G (Global)
F (Future)
X (Next)
U (Until)

R (Release)
∧ (And)
∨ (Or)

→ (Contain)

4.3. Conversion of Formulas

In the previous section, an LTL formula tree was used to store extended LTL formulas.
The description of how the formula is transformed to reduce the complexity of the temporal
operators is given below.

Table 7 gives the conversion rules applied in this study. In the table, f1 is the category
of formulas to be converted and f2 is the specific conversion operation. The conversion
process is to operate on the LTL formula tree generated in the previous section. The rules in
this study are defined recursively and the tree structure naturally has recursive properties,
so the two are easy to combine.

Table 7. Conversion rules.

Conversion Rules

f1 = G[i]a
f1 = F[i]a

f2 =

{
X(F[i− 1]a) when i > 0
a when i = 0

f1 = X[i]a

f2 =

{
X(X[i− 1]a) when i > 0
a when i = 0

f1 = a U[i] b

f2 =

{
X(U[i− 1]a) when i > 0
a ∨ b when i = 0

f1 = G[i : j]a

f2 =

{
X(G[i− 1 : j]a) when i > 0

a∧ X(G[0 : j− 1]a) when i = 0∧ j > 0
f1 = F[i : j]a

f2 =

{
X(F[i− 1 : j]a) when i > 0

a∨ X(F[0 : j− 1]a) when i = 0∧ j > 0
f1 = X[i : j]a

f2 =

{
X(X[i− 1 : j]a) when i > 0

X(X[0 : j− 1]a) when i = 0∧ j > 0
f1 = a U[i : j] b

f2 = ¬G[i : j]¬b∧G[0 : i]a∧G[i : i](((a U b) ∨Ga) ∧ ¬G¬b)

To explain the G[i] conversion process, the following example is provided:
For formula G[i], when i is greater than 0, the formula needs to wait for i cycles to be

established. In this study, we deal with i through recursion, adding an x operator before
the formula to be processed each time and then recursing through the i − 1 layer until the
recursion is completed when i = 0. The corresponding operation in the tree is to generate a
node representing the X operator to replace G[i] with G[i− 1] as its right child node and
then recursively process the right child node.

Drones 2023, 7, 486 13 of 24

4.4. Monitor Generation

In the previous process, the conversion of the formula was completed. Next, it is
necessary to convert the LTL formula into a monitor. In this study, formulas are processed
from the outside to the inside, where ‘inside’ and ‘outside’ refers to priority, with external
operators having lower priority and internal operators having higher priority. Correspond-
ingly, in the formula tree, the lower the level of an operator node, the closer it is to the
outside, while the higher the level, the closer it is to the inside. For a subformula, the
outermost operator is the root node of the corresponding subtree, and accessing the root
node is simpler than accessing the left and right subtrees, indicating that the LTL formula
tree plays a positive role.

In this study, we use ⇐ to assign values to each member of a node. For example,
New⇐ {ϕ} means adding formula ϕ to the New list of the current node. The program
processes the Nodes list structure accordingly, where the nodes in Nodes and a special
node init together form all the states of the monitor. Here, init is the initial state of the
monitor, and Nodes is initialized as empty. In the following algorithm, function new_ID()
creates a unique node ID value every time it is called. Function Neg() is taken as the
Inverse function, Neg(A) = ¬A, Neg(¬A) = A, Neg(True) = False, Neg(False) = True,
where A is a proposition. Figure 4 shows the process of generating a monitor.

Drones 2023, 7, x FOR PEER REVIEW 14 of 26

Figure 4. Monitor Generation Process.

5. Clang-Based Code Instrumentation Framework

This section introduces the relevant content of the code instrumentation framework,

and the overall process is shown in Figure 5. First, a definition of instrumentation require-

ments is required. This process involves writing instrumentation requirements files that

describe the characteristics of the functions to be instrumented and the content to be in-

strumented. The second step is to match the insertion position, which requires writing a

suitable matcher based on the insertion requirements. The matcher’s function is to find

the insertion point that meets the requirements given in the target program. Finally, the

execution of the instrumentation action will add interception functions at the matched

instrumentation points and modify function calls in the target program. The process is

detailed below. Section 5.1 introduces the definition of pile insertion requirements and

Section 5.2 introduces the matching of pile insertion positions.

Figure 4. Monitor Generation Process.

5. Clang-Based Code Instrumentation Framework

This section introduces the relevant content of the code instrumentation framework,
and the overall process is shown in Figure 5. First, a definition of instrumentation re-
quirements is required. This process involves writing instrumentation requirements files
that describe the characteristics of the functions to be instrumented and the content to be
instrumented. The second step is to match the insertion position, which requires writing a
suitable matcher based on the insertion requirements. The matcher’s function is to find

Drones 2023, 7, 486 14 of 24

the insertion point that meets the requirements given in the target program. Finally, the
execution of the instrumentation action will add interception functions at the matched
instrumentation points and modify function calls in the target program. The process is
detailed below. Section 5.1 introduces the definition of pile insertion requirements and
Section 5.2 introduces the matching of pile insertion positions.

Drones 2023, 7, x FOR PEER REVIEW 15 of 26

Define the
characteristics of
the function to be

inserted

Define insertion
content

Definition of Insertion
Requirements

Matching of insertion
positions

Add interception
function

Modify function
calls

Figure 5. Code instrumentation framework.

5.1. Definition of Stake Insertion Requirements

The instrumentation requirement file needs to include several elements. First, the

characteristic of the function to be instrumented (return value type, name, parameter)

needs to be included. This is used to locate the relevant position in the source code. The

more detail included about the feature, the more accurate the matching position will be.

Second, the content and the corresponding location of the pile to be inserted need to be

included. The content refers to the specific code to be inserted and the pile location refers

to the code that can be inserted before and after the pile insertion point.

In this study, we investigated two methods of stake insertion: 1) to directly stake the

definition of the objective function, and 2) to plug in a brand new function, which will call

the target function and modify the call statement of the target function to the call state-

ment of the new function to achieve interception of the target function. The first method

involves directly modifying the function code—if you need to modify the logic of the func-

tion itself, you can consider using this method. The second method does not directly mod-

ify the original function code, but instead wraps the function in a layer and adds some

statements before and after the function call to achieve certain functions, which are not

strongly related to the target function itself. If there is such a requirement, then the second

method is more suitable. Due to the purpose of instrumentation in this study being to pass

relevant information about function calls to the monitor, the function of sending messages

does not belong to the internal logic of the function. Therefore, this study chose to use the

second method for instrumentation in the source code.

The specific format is shown in Table 8. The first line describes the characteristics of

the objective function, that is, the desired return value type is return_ Type, while func-

tion_name is function_ Intercept functions with name and parameters as parameters. The

function body is divided into three parts. The first part is parameter information, which

is used to record the additional parameters required for the interception function. The

second part is the code that needs to be instrumented before executing the target function.

The third part is the code that needs to be instrumented after executing the target function.

The call to the target function occurs between the second and third parts. If the target

function has a return value, it will be converted into a temporary variable to save the re-

turn value, which will be returned after the interception function is executed.

Figure 5. Code instrumentation framework.

5.1. Definition of Stake Insertion Requirements

The instrumentation requirement file needs to include several elements. First, the
characteristic of the function to be instrumented (return value type, name, parameter) needs
to be included. This is used to locate the relevant position in the source code. The more
detail included about the feature, the more accurate the matching position will be. Second,
the content and the corresponding location of the pile to be inserted need to be included.
The content refers to the specific code to be inserted and the pile location refers to the code
that can be inserted before and after the pile insertion point.

In this study, we investigated two methods of stake insertion: (1) to directly stake
the definition of the objective function, and (2) to plug in a brand new function, which
will call the target function and modify the call statement of the target function to the
call statement of the new function to achieve interception of the target function. The first
method involves directly modifying the function code—if you need to modify the logic
of the function itself, you can consider using this method. The second method does not
directly modify the original function code, but instead wraps the function in a layer and
adds some statements before and after the function call to achieve certain functions, which
are not strongly related to the target function itself. If there is such a requirement, then the
second method is more suitable. Due to the purpose of instrumentation in this study being
to pass relevant information about function calls to the monitor, the function of sending
messages does not belong to the internal logic of the function. Therefore, this study chose
to use the second method for instrumentation in the source code.

The specific format is shown in Table 8. The first line describes the characteristics
of the objective function, that is, the desired return value type is return_ Type, while
function_name is function_ Intercept functions with name and parameters as parameters.
The function body is divided into three parts. The first part is parameter information, which
is used to record the additional parameters required for the interception function. The
second part is the code that needs to be instrumented before executing the target function.
The third part is the code that needs to be instrumented after executing the target function.
The call to the target function occurs between the second and third parts. If the target
function has a return value, it will be converted into a temporary variable to save the return
value, which will be returned after the interception function is executed.

Drones 2023, 7, 486 15 of 24

Table 8. Format of Stake Insertion Requirements File.

Format

Return_type function_name (parameters) {
// new params
Define the parameters required for instrumentation
// before
Specifies the items to be inserted before function name is executed
// after
Specifies the items to be inserted after function name is executed
}

Table 9 gives a simple example of defining the requirements for instrumentation. In
the table, lines 1–4 are the objective functions, 6–15 are the content of the instrumentation
requirements file, and 16–22 are the interception functions. For example, there is a function
func1 that prints “The func1 is called.” (lines 1–4) when called. Now, it needs to be
intercepted. The first line of the instrumentation requirement provides that the return value
type of the current instrumentation’s objective function is int, named func1, and has no
formal parameters (line 5). The empty statement in the new params section indicates that
the interceptor function does not require additional parameters (line 8). The before section
is a print statement that will be executed before func1 is called (line 12). The after section is
a print statement that will be executed after func1 is called (line 14). After obtaining this
information, the instrumentation module will generate an interception function. The name
of the interception function is the target function name preceded by “new_”, indicating that
this is an interception function for func1 (line 17). The return value type of the interceptor
function is consistent with that of the target function. The parameters include at least the
formal parameters of the target function and the Function pointer of the target function.
The return value type of the interception function is consistent with the target function. If
the target function has a return value, a temporary variable will be used to store its return
value when calling the target function. After the interception function is executed, the value
will be returned. In addition, the instrumentation function will replace the call statement of
the target function in the source code with the call statement of the intercepting function to
achieve interception of the target function.

Table 9. Example of Definition of Stake Insertion Requirements.

Example

1. int func1(){
2. printf(“The funcl is called.”);
3. return 0;
4. }
5. int funcl(){
6. // before
7. printf(“Before funcl is called.”);
8. // after
9. printf(“After funcl is called.”);
10. }
11. int new funcl(int (*func1)()){
12. printf(“Before funcl is called.”); // before
13. int result = funcl();
14. printf(“After funcl is called.”); // after
15. return result;
16. }

After obtaining the requirement file, it is necessary to read it for parsing, including
checking for any errors and extracting the instrumentation information from it. Due to
the fact that the format of the instrumentation requirement file in this study references the

Drones 2023, 7, 486 16 of 24

writing method of the C programming language, it is possible to use the Clang compiler
to perform grammar checks on the requirement file. If an error is found, the information
will not be extracted and the error needs to be corrected first. This is because, if an
erroneous requirement is parsed, it may introduce errors into subsequent instrumentation
and monitoring processes, affecting the correct execution of subsequent processes. If no
errors are detected, the parsing module will extract the instrumentation information for
storage and provide it to the instrumentation execution module.

5.2. Matching of Pile Insertion Positions
5.2.1. Selection of Matching Methods

Code written using AST Matcher is more streamlined and has higher readability; the
matching logic is also more natural. Therefore, in this study, we chose the AST Matcher
method for node matching. The class diagram of node matching and code instrumentation
using the AST Matcher method used in this study is shown in Figure 6. There are three core
classes. The MyFrontendAction class is obtained by inheriting ASTFrontendAction, the
MyASTConsumer object is created by the CreateASTConsumer method of the parent class,
and the Member variable of the Rewriter class is declared. MyASTConsumer inherits from
the ASTConsumer class and uses the HandleTranslationUnit method to obtain translation
units. At the same time, it is declared that the Member variable of the MatchFinder class
is used to match the insertion position and the Member variable of the MyHandler class
is used for code insertion. The MyHandler class inherits from the MatchCallback class
and processes the position matched by the MatchFinder object by calling the parent class
run method.

Drones 2023, 7, x FOR PEER REVIEW 17 of 26

After obtaining the requirement file, it is necessary to read it for parsing, including

checking for any errors and extracting the instrumentation information from it. Due to the

fact that the format of the instrumentation requirement file in this study references the

writing method of the C programming language, it is possible to use the Clang compiler

to perform grammar checks on the requirement file. If an error is found, the information

will not be extracted and the error needs to be corrected first. This is because, if an erro-

neous requirement is parsed, it may introduce errors into subsequent instrumentation and

monitoring processes, affecting the correct execution of subsequent processes. If no errors

are detected, the parsing module will extract the instrumentation information for storage

and provide it to the instrumentation execution module.

5.2. Matching of Pile Insertion Positions

5.2.1. Selection of Matching Methods

Code written using AST Matcher is more streamlined and has higher readability; the

matching logic is also more natural. Therefore, in this study, we chose the AST Matcher

method for node matching. The class diagram of node matching and code instrumentation

using the AST Matcher method used in this study is shown in Figure 6. There are three

core classes. The MyFrontendAction class is obtained by inheriting ASTFrontendAction,

the MyASTConsumer object is created by the CreateASTConsumer method of the parent

class, and the Member variable of the Rewriter class is declared. MyASTConsumer inher-

its from the ASTConsumer class and uses the HandleTranslationUnit method to obtain

translation units. At the same time, it is declared that the Member variable of the Match-

Finder class is used to match the insertion position and the Member variable of the

MyHandler class is used for code insertion. The MyHandler class inherits from the Match-

Callback class and processes the position matched by the MatchFinder object by calling

the parent class run method.

Figure 6. Code instrumentation class diagram.

5.2.2. Implementation of Pile Insertion Action

In the previous section, the matching of the target nodes has been achieved and their

positions in the AST have been found. Now, they must be staked. Clang’s Rewriter class

provides the ability to add, delete, and replace source code, making it possible for code

Figure 6. Code instrumentation class diagram.

5.2.2. Implementation of Pile Insertion Action

In the previous section, the matching of the target nodes has been achieved and their
positions in the AST have been found. Now, they must be staked. Clang’s Rewriter class
provides the ability to add, delete, and replace source code, making it possible for code
instrumentation and refactoring. When using the AST Matcher method, matching and
processing nodes often occur in pairs. A matcher is added through addMatcher in the AST
Consumer to find the desired node. At the same time, developers need to derive their own

Drones 2023, 7, 486 17 of 24

ASTNodeHandler from the MatchFinder:: MatchCallback class, override the run method
of the parent class, and implement node processing.

Taking the Func. c file as an example, the definition and call section of the Func1
function have been successfully matched in the previous section. Next, we will intercept it
through instrumentation. The main process is to generate a new interceptor function, with
“new_” added before the original function name to indicate that it is a newly generated
interceptor function. The parameters of the interceptor function need to include all the
parameters of the original function and the Function pointer of the original function so that
the original function can be called inside the interceptor function. The function body of
the interception function is divided into three parts: The first part is the before part of the
instrumentation requirement file. The second part is the call to the original function. If
the original function has a return value, a temporary variable will be used to temporarily
store its return value and it will be returned at the end of the intercepting function. The
third part is the after section of the instrumentation requirements document. At the same
time, all calls to the original function in the source code need to be replaced by calls to the
interceptor function and the Function pointer of the original function needs to be passed as
a parameter to the interceptor function.

6. Experimental Analysis
6.1. Experiment Settings

The object under test in this paper is a certain type of digital drone, which includes
drone code and console code. The basic attributes of the drone can be set to simulate
different flight tasks, such as airport altitude, drone weight, and flight path. The drone
system fault mode database contains many types of faults. We select four fault categories
of fault to test in this experimental study, with each category representing a safety attribute.
The categories are common attribute faults, an abnormal state, external interference, and
combined faults. The common attribute experiment tests whether the drones can follow the
flight plan to fly, that is, whether it can enter the specified flight stage within the specified
time range and maintain its flight state. The abnormal state experiment tests whether some
of the drone sensors are abnormal, which may be due to component failure or vulnerability
attack. The external interference experiment tests whether the signals received by some
sensors of the drones are affected by external interference, which would lead to abnormal
sensor data. The combined faults experiment is a comprehensive experiment that considers
multiple safety-requirement-triggering conditions. These four safety attributes are trans-
lated into LTL formulas and then implemented as monitors to analyze the characteristics of
the drone during each flight cycle. Upon completion of the flight, sensor data and monitor
status throughout the flight are displayed in graphical form, with time on the horizontal
axis and sensor data or monitor status on the vertical axis.

6.2. Extraction of Drone Safety Requirements

Before monitoring a drone flight, it is necessary to first extract the safety requirements
related to the drone, namely, the conditions and states that the drone should satisfy during
operation. This study is based on using the fault mode database to extract safety require-
ments related to drone functionality. In this study, we summarize the power, electrical,
power system, engine, communication link, and other aspects closely related to the safety
of unmanned aerial vehicles during the ground start, takeoff, and flight stages. A total
of 26 categories and about 80 safety requirements are proposed and corresponding safety
requirement formulas are written. Due to space limitations, Table 10 only lists some typical
safety requirements that affect drone safety.

Drones 2023, 7, 486 18 of 24

Table 10. Drone safety requirements.

Operation Phase Security Requirements Description

Ground waiting

The ground waiting phase enters the takeoff ground segment
when the following conditions are met simultaneously:

The route and airport altitude have been bound;
Received takeoff instructions.

G((phase = 0 & air_line = 1 & pressure_altitude = 1 & takeoff)
→ phase = 1)

Takeoff ground segment

In the takeoff ground segment, when the airspeed is greater
than 30 m/s and the altitude is greater than 15 m, turn to the

takeoff departure zone.
G((phase = 1 & airspeed > 30 & height > 15)→ phase = 2)

Takeoff departure zone
In the takeoff departure zone, when the flight altitude is

greater than the safe altitude of 80 m, enter the climb phase 1.
G((phase = 2 & height > 80)→ phase = 3)

Some common attributes of the drone need to be changed to ensure that the drone
can fly safely and complete its mission successfully. Therefore, in this study, we define
some protocols to detect whether the drone is flying normally according to the expected
plan. Taking the altitude data as an example, the safety attribute is defined. After taking
off, the drones should reach the flight height of 200 m within 900 cycles and keep to
this altitude within the range of (195,205) m for the rest of the flight until the flight state
becomes “descending”. In addition, another highly related safety requirement is tested
simultaneously. When the altitude of the drone is less than 300 m, the radio altimeter must
be activated and remain active (altitude status value is 2). The formal formula is as follows.

G(F[0, 900](height ≥ 200)&(phase = fixed_height→ ((195 ≤ height ≤ 205) U (phase
= descent)))); G(height < 300→ height_state = radio)

Figure 7 shows the altitude data, altimeter status, and monitor results during a com-
mon attributes test flight. As can be seen, the drone did not reach a height of 200 m after
900 cycles and the monitor detected an anomaly (setting the result to 1). Then, during the
level flight phase, the altitude of the drone remained around 200 m, so the monitor did
not detect any abnormalities. The drone remained at an altitude of less than 300 m during
flight, so the radio altimeter remained active and met safety requirements. The monitor did
not detect any abnormalities.

6.3. Abnormal State Experiment

During the operation of drones, they may encounter some abnormal situations, includ-
ing internal component failures or machine vulnerabilities that are exploited by a hostile
actor and maliciously attacked, resulting in unexpected results in the range or trend of
drone sensor data, leading to abnormal flight status and ultimately to the drone crashing.

The drone obtains altitude data through altitude sensors. If the sensor malfunctions
or is subjected to external attacks (attackers constantly send incorrect altitude data to
the drone, causing it to make incorrect judgments about the current altitude), the drone
will continuously adjust its pitch angle to achieve the desired altitude. Therefore, this
experiment detects whether the drone is experiencing abnormal conditions by determining
the fluctuation of the drone’s pitch angle. The safety attributes are defined as, when the
drone is in level flight, the variance of the pitch angle data for the first 300 cycles ending
with the current cycle must be calculated and its value should not continue to exceed 5.
The formal formula is as follows.

G((state = fixed_height)→ (VAR300(pitch) < 5))

Drones 2023, 7, 486 19 of 24Drones 2023, 7, x FOR PEER REVIEW 20 of 26

Figure 7. Height and monitor results of a common attributes test flight.

6.3. Abnormal State Experiment

During the operation of drones, they may encounter some abnormal situations, in-

cluding internal component failures or machine vulnerabilities that are exploited by a hos-

tile actor and maliciously attacked, resulting in unexpected results in the range or trend

of drone sensor data, leading to abnormal flight status and ultimately to the drone crash-

ing.

The drone obtains altitude data through altitude sensors. If the sensor malfunctions

or is subjected to external attacks (attackers constantly send incorrect altitude data to the

drone, causing it to make incorrect judgments about the current altitude), the drone will

continuously adjust its pitch angle to achieve the desired altitude. Therefore, this experi-

ment detects whether the drone is experiencing abnormal conditions by determining the

fluctuation of the drone’s pitch angle. The safety attributes are defined as, when the drone

is in level flight, the variance of the pitch angle data for the first 300 cycles ending with the

current cycle must be calculated and its value should not continue to exceed 5. The formal

formula is as follows.

G((state = fixed_height) → (VAR300(pitch) < 5))

Figure 8 shows the pitch angle data, variance, and monitor detection results during

the flight. It can be seen that the pitch angle oscillates at about 5000 cycles, its variance

exceeds 5 at about 5100 cycles, and the monitor value detects an abnormal situation after

the pitch angle variance is greater than 5 for 300 consecutive cycles.

Figure 7. Height and monitor results of a common attributes test flight.

Figure 8 shows the pitch angle data, variance, and monitor detection results during
the flight. It can be seen that the pitch angle oscillates at about 5000 cycles, its variance
exceeds 5 at about 5100 cycles, and the monitor value detects an abnormal situation after
the pitch angle variance is greater than 5 for 300 consecutive cycles.

Drones 2023, 7, x FOR PEER REVIEW 21 of 26

Figure 8. Pitch angle and monitor results for an abnormal state test flight.

6.4. External Interference Experiment

Currently, under normal circumstances, many drones will use GPS navigation to lo-

cate their position to realize flight path planning and control. Therefore, the flight process

of drones is closely related to GPS data. If the GPS signal is interfered with, the normal

flight of drones will be affected. The use of GPS decoys is a type of attack that interferes

with the normal flight of drones by preventing them from receiving real GPS signals and

making them receive false GPS signals. A jammer intercepts the real GPS signal and emits

many false GPS signals. Since a drone always selects GPS signals from the strongest

source, the real signal can be drowned in noise if the fake signal from the jammer is strong

enough. So the drone can only receive false signals, which indirectly control the drone’s

navigation system and trick the drone into flying to the wrong place. If the drone deviates

from its normal course, its roll angle changes, so roll angle data can be analyzed to detect

GPS jamming attacks. In this experiment, several positioning points are set for the drone.

After the drone reaches the positioning point in a straight flight, it will turn and after the

direction is adjusted, it will fly in a straight line again to the next positioning point.

A drone’s GPS receiver is vulnerable to external attack, but other sensors such as gy-

roscopes, levels, and barometric altimeters are generally difficult to attack. Changes in

gyroscope roll can determine when a drone veers off course after a GPS decoy attack. Since

the roll angle of the drone will not change greatly when it flies along a straight line, it will

change only when it turns to the navigation point after some time. Therefore, the follow-

ing safety attributes are defined. When the drone is flying, it will be given 1000 cycles to

adjust the direction after reaching a navigation point. Then the absolute value of the roll

angle of the drones shall be less than 5 until it reaches the next anchor point. The formal

formula is shown as follows:

G(arrive ⟶ (X[1000]G(−5 < rool < 5) U arrive))

Figure 9 shows the roll angle data and monitor detection results during the flight

process, with four positioning points reaching approximately 1000, 3000, 9000, and 10,000

cycles. It can be seen that, in the interval between the drone reaching the positioning point

for 1000 cycles and reaching the next positioning point, when the absolute value of the roll

Figure 8. Pitch angle and monitor results for an abnormal state test flight.

6.4. External Interference Experiment

Currently, under normal circumstances, many drones will use GPS navigation to locate
their position to realize flight path planning and control. Therefore, the flight process of
drones is closely related to GPS data. If the GPS signal is interfered with, the normal flight
of drones will be affected. The use of GPS decoys is a type of attack that interferes with the
normal flight of drones by preventing them from receiving real GPS signals and making

Drones 2023, 7, 486 20 of 24

them receive false GPS signals. A jammer intercepts the real GPS signal and emits many
false GPS signals. Since a drone always selects GPS signals from the strongest source, the
real signal can be drowned in noise if the fake signal from the jammer is strong enough. So
the drone can only receive false signals, which indirectly control the drone’s navigation
system and trick the drone into flying to the wrong place. If the drone deviates from its
normal course, its roll angle changes, so roll angle data can be analyzed to detect GPS
jamming attacks. In this experiment, several positioning points are set for the drone. After
the drone reaches the positioning point in a straight flight, it will turn and after the direction
is adjusted, it will fly in a straight line again to the next positioning point.

A drone’s GPS receiver is vulnerable to external attack, but other sensors such as
gyroscopes, levels, and barometric altimeters are generally difficult to attack. Changes in
gyroscope roll can determine when a drone veers off course after a GPS decoy attack. Since
the roll angle of the drone will not change greatly when it flies along a straight line, it will
change only when it turns to the navigation point after some time. Therefore, the following
safety attributes are defined. When the drone is flying, it will be given 1000 cycles to adjust
the direction after reaching a navigation point. Then the absolute value of the roll angle of
the drones shall be less than 5 until it reaches the next anchor point. The formal formula is
shown as follows:

G(arrive→ (X[1000]G(−5 < rool < 5) U arrive))

Figure 9 shows the roll angle data and monitor detection results during the flight
process, with four positioning points reaching approximately 1000, 3000, 9000, and 10,000 cy-
cles. It can be seen that, in the interval between the drone reaching the positioning point
for 1000 cycles and reaching the next positioning point, when the absolute value of the roll
angle is greater than 5 (approximately over 12,000 cycles), the monitor detects an abnormal
situation. When the absolute value of the roll angle is less than 5, the monitor returns to
normal.

Drones 2023, 7, x FOR PEER REVIEW 22 of 26

angle is greater than 5 (approximately over 12,000 cycles), the monitor detects an abnor-

mal situation. When the absolute value of the roll angle is less than 5, the monitor returns

to normal.

Figure 9. Roll angle and monitor results for external interference test flight.

6.5. Combined Faults Experiment

During the flight of unmanned aerial vehicles, some changes in safety status cannot

be judged by a single condition, but require the monitoring of a combination of multiple

conditions and the corresponding safety requirements are also composed of multiple

events. For example, the following safety requirements exist to determine whether the

drones can normally enter the air stop state when the conditions are met:

(1) The speed is less than 1000 RPM;

(2) The lubricating oil pressure is less than 1.5 bar;

(3) The landing gear is in a compressed state;

(4) Flight altitude greater than 60 m;

(5) The flight phase is not a ground hold.

When all the above conditions are met simultaneously, then

(1) Judge the engine’s air stop;

(2) When the flight phase is before glide down 1, place a falling flag.

The corresponding security requirement formula is:

G((rotate_speed < 1000 & oil_press < 1.5 & undercarriage = 0 & height > 60

& phase ≠ ground_wait) → (engine_status

= (flameout_air | pre_start | start | start_estimate) & phase = drift))

Figure 10 shows the values of various attributes and monitor results in the air parking

monitoring experiment. From the graph, it can be seen that for around 3000 cycles, the

data of the preconditions met the requirements for air parking. At this time, the value of

the engine status changed to 1 (air parking sign), but the value during the flight phase did

not change to 13 (falling sign). Therefore, the monitor discovered an abnormal situation.

Subsequently, the engine was restarted and after the successful restart, the engine status

returned to normal. The preconditions were no longer met and the monitor returned to

normal.

Figure 9. Roll angle and monitor results for external interference test flight.

6.5. Combined Faults Experiment

During the flight of unmanned aerial vehicles, some changes in safety status cannot
be judged by a single condition, but require the monitoring of a combination of multiple
conditions and the corresponding safety requirements are also composed of multiple events.
For example, the following safety requirements exist to determine whether the drones can
normally enter the air stop state when the conditions are met:

(1) The speed is less than 1000 RPM;
(2) The lubricating oil pressure is less than 1.5 bar;
(3) The landing gear is in a compressed state;
(4) Flight altitude greater than 60 m;
(5) The flight phase is not a ground hold.

When all the above conditions are met simultaneously, then

Drones 2023, 7, 486 21 of 24

(1) Judge the engine’s air stop;
(2) When the flight phase is before glide down 1, place a falling flag.

The corresponding security requirement formula is:

G((rotate_speed < 1000 & oil_press < 1.5 & undercarriage = 0 & height > 60

& phase 6= ground_wait)→ (engine_status
= (flameout_air | pre_start | start | start_estimate) & phase = drift))

Figure 10 shows the values of various attributes and monitor results in the air parking
monitoring experiment. From the graph, it can be seen that for around 3000 cycles, the
data of the preconditions met the requirements for air parking. At this time, the value of
the engine status changed to 1 (air parking sign), but the value during the flight phase did
not change to 13 (falling sign). Therefore, the monitor discovered an abnormal situation.
Subsequently, the engine was restarted and after the successful restart, the engine status
returned to normal. The preconditions were no longer met and the monitor returned
to normal.

Drones 2023, 7, x FOR PEER REVIEW 23 of 26

Figure 10. Airborne parking monitoring results.

7. Conclusions

UAVs are widely used in various fields and their safety and reliability are of great

concern. In order to improve the safety of UAVs, in this paper, we propose a fault detection

mechanism based on a combination of a fault mode database and runtime verification.

According to the fault type of the UAV identified from the fault mode database, the key

safety requirements and attributes of the UAV during operation can be extracted. Com-

bining this information with runtime verification, the key safety attributes of the UAV

during operation are monitored to achieve real-time monitoring and monitoring. Experi-

mental results show that the proposed method is valid and effective. It can realize efficient

and automated real-time monitoring of a drone in flight, timely detect abnormal condi-

tions of the drone, and provide early warning. The method proposed in this paper can

effectively improve the efficiency of safety monitoring in the process of UAV operation to

significantly improve the safety level of UAVs. In future research, the extraction process

of security attributes will be further enriched. Working out how to extract a safety attrib-

ute that is closer to the specific fault type experienced by the drone is a shortcoming of

this paper. At present, only system-level security attributes can be monitored and it is still

very difficult to analyze the causes of anomalies. In the future, fault modes at the subsys-

tem level will be analyzed to extract more detailed security attributes. Safety attributes

will also be combined with more accurate fault location, as it is of great importance to

realize accurate fault location alongside rapid anomaly detection.

Figure 10. Airborne parking monitoring results.

7. Conclusions

UAVs are widely used in various fields and their safety and reliability are of great
concern. In order to improve the safety of UAVs, in this paper, we propose a fault detection
mechanism based on a combination of a fault mode database and runtime verification.
According to the fault type of the UAV identified from the fault mode database, the
key safety requirements and attributes of the UAV during operation can be extracted.
Combining this information with runtime verification, the key safety attributes of the
UAV during operation are monitored to achieve real-time monitoring and monitoring.

Drones 2023, 7, 486 22 of 24

Experimental results show that the proposed method is valid and effective. It can realize
efficient and automated real-time monitoring of a drone in flight, timely detect abnormal
conditions of the drone, and provide early warning. The method proposed in this paper
can effectively improve the efficiency of safety monitoring in the process of UAV operation
to significantly improve the safety level of UAVs. In future research, the extraction process
of security attributes will be further enriched. Working out how to extract a safety attribute
that is closer to the specific fault type experienced by the drone is a shortcoming of this
paper. At present, only system-level security attributes can be monitored and it is still very
difficult to analyze the causes of anomalies. In the future, fault modes at the subsystem
level will be analyzed to extract more detailed security attributes. Safety attributes will
also be combined with more accurate fault location, as it is of great importance to realize
accurate fault location alongside rapid anomaly detection.

Author Contributions: Conceptualization, D.H. and Q.S.; methodology, Q.S.; software, Y.S.; valida-
tion, D.H., Q.S. and Y.S.; investigation, Y.S.; resources, Y.Y.; data curation, D.H.; writing—original draft
preparation, Q.S.; writing—review and editing, Q.S.; visualization, Q.S.; supervision, Y.Y.; project
administration, Y.Y.; funding acquisition, Y.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tian, C.; Zhang, X.; Lin, J.C.W.; Zuo, W.; Zhang, Y.; Lin, C.W. Generative adversarial networks for image super-resolution: A

survey. arXiv 2022, arXiv:2204.13620.
2. Jiang, Y.; Gao, Y.; Song, W.; Li, Y.; Quan, Q.U.A.N. Bibliometric analysis of drones swarms. J. Syst. Eng. Electron. 2022, 32, 55–67.
3. Restás, A. Drone Applications Fighting COVID-19 Pandemic—Towards Good Practices. Drones 2022, 6, 15. [CrossRef]
4. Sibanda, M.; Mutanga, O.; Chimonyo, V.G.P.; Clulow, A.D.; Shoko, C.; Mazvimavi, D.; Dube, T.; Mabhaudhi, T. Application of

Drone Technologies in Surface Water Resources Monitoring and Assessment: A Systematic Review of Progress, Challenges and
Opportunities in the Global South. Drones 2021, 5, 84. [CrossRef]

5. Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M.
Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–48634.
[CrossRef]

6. Doherty, P.; Rudol, P. A UAVs search and rescue scenario with human body detection and geolocalization. In AI 2007: Advances in
Artificial Intelligence; Orgun, M.A., Thornton, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–13.

7. Puchalski, R.; Giernacki, W. UAVs fault detection methods, state-of-the-art. Drones 2022, 6, 330. [CrossRef]
8. D’Amato, E.; Nardi, V.A.; Notaro, I.; Scordamaglia, V. A Particle Filtering Approach for Fault Detection and Isolation of UAVs

IMU Sensors: Design, Implementation and Sensitivity Analysis. Sensors 2021, 21, 3066. [CrossRef]
9. Fu, X.; Geng, X. Fault Estimation and Robust Fault-tolerant Control for Singular Markov Switching Systems with Mixed

Time-Delays and UAVs Applications. J. Control Eng. Appl. Inform. 2021, 23, 53–66.
10. Maqsood, H.; Taimoor, M.; Ullah, Z.; Ali, N.; Sohail, M. Novel Sensor Fault Detection and Isolation for an Unmanned Aerial

Vehicle. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad,
Pakistan, 12–16 January 2021; pp. 486–493.

11. Miao, Q.; Wei, J.; Wang, J.; Chen, Y. Fault Diagnosis Algorithm Based on Adjustable Nonlinear PI State Observer and Its
Application in UAVs Fault Diagnosis. Algorithms 2021, 14, 119. [CrossRef]

12. Nejati, Z.; Faraji, A.; Abedi, M. Robust Three Stage Central Difference Kalman Filter for Helicopter Unmanned Aerial Vehicle
Actuators Fault Estimation. Int. J. Eng. 2021, 34, 1290–1296.

13. Sun, K.; Gebre-Egziabher, D. Air data fault detection and isolation for small UAS using integrity monitoring framework.
Navigation 2021, 68, 577–600. [CrossRef]

14. Cao, L.; Yang, X.; Wang, G.; Liu, Y.; Hu, Y. Fault detection based on extended state observer and interval observer for UAVs.
Aircr. Eng. Aerosp. Technol. 2022, 71, 1759–1771. [CrossRef]

15. Gai, W.; Li, S.; Zhang, J.; Zheng, Y.; Zhong, M. Dynamic Event-Triggered Hi/H∞ Optimization Approach to Fault Detection for
Unmanned Aerial Vehicles. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [CrossRef]

16. Lin, C.E.; Shao, P.C. Failure analysis for an unmanned aerial vehicle using safe path planning. J. Aerosp. Inf. Syst. 2020, 17, 358–369.
[CrossRef]

https://doi.org/10.3390/drones6010015
https://doi.org/10.3390/drones5030084
https://doi.org/10.1109/ACCESS.2019.2909530
https://doi.org/10.3390/drones6110330
https://doi.org/10.3390/s21093066
https://doi.org/10.3390/a14040119
https://doi.org/10.1002/navi.440
https://doi.org/10.1108/AEAT-05-2021-0164
https://doi.org/10.1109/TIM.2022.3169165
https://doi.org/10.2514/1.I010795

Drones 2023, 7, 486 23 of 24

17. Altinors, A.; Yol, F.; Yaman, O. A sound based method for fault detection with statistical feature extraction in UAVs motors.
Appl. Acoust. 2021, 183, 108325. [CrossRef]

18. Park, K.H.; Park, E.; Kim, H.K. Unsupervised Fault Detection on Unmanned Aerial Vehicles: Encoding and Thresholding
Approach. Sensors 2021, 21, 2208. [CrossRef]

19. Souza, J.S.; Bezerril, M.C.; Silva, M.A.; Veras, F.C.; Lima-Filho, A.; Ramos, J.G.; Brito, A.V. Motor speed estimation and failure
detection of a small UAVs using density of maxima. Front. Inf. Technol. Electron. Eng. 2021, 22, 1002–1009. [CrossRef]

20. Zheng, K.; Jia, G.; Yang, L.; Wang, J. A Compound Fault Labeling and Diagnosis Method Based on Flight Data and BIT Record of
UAVs. Appl. Sci. 2021, 11, 5410. [CrossRef]

21. Cabahug, J.; Eslamiat, H. Failure Detection in Quadcopter UAVs Using K-Means Clustering. Sensors 2022, 22, 6037. [CrossRef]
22. Zhang, Q.; Xiao, J.; Tian, C.; Chun-Wei Lin, J.; Zhang, S. A robust deformed convolutional neural network (CNN) for image

denoising. CAAI Trans. Intell. Technol. 2022, 8, 331–342. [CrossRef]
23. Tian, C.; Zheng, M.; Zuo, W.; Zhang, B.; Zhang, Y.; Zhang, D. Multi-stage image denoising with the wavelet transform.

Pattern Recognit. 2023, 134, 109050. [CrossRef]
24. Aviation Safety Reporting System. NASA, FAA. Available online: https://asrs.arc.nasa.gov/ (accessed on 20 February 2022).
25. Aviation Safety Reporting System. The Department of the Interior (DOI) and the U.S. Forest Service (USFS). Available online:

https://www.safecom.gov/about (accessed on 20 February 2022).
26. Australian Transport Safety Bureau (ATSB). Available online: https://www.atsb.gov.au/ (accessed on 20 July 2023).
27. Air Accidents Investigation Branch (AAIB). Available online: https://www.gov.uk/government/organisations/air-accidents-

investigation-branch (accessed on 20 July 2023).
28. Wild, G.; Murray, J.; Baxter, G. Exploring civil drone accidents and incidents to help prevent potential air disasters. Aerospace

2016, 3, 22. [CrossRef]
29. Real-World Faults and Their Injection into Autonomous Unmanned Aerial Vehicles. Available online: https://haotianchen.net/

project/adfi (accessed on 20 July 2023).
30. Abbas, H. Work-in-Progress: Private Runtime Verification. In Proceedings of the 2019 International Conference on Embedded

Software (EMSOFT), New York, NY, USA, 13–18 October 2019; pp. 1–2.
31. Liu, Y.; He, C. A Heuristics-Based Incremental Probabilistic Model Checking at Runtime. In Proceedings of the 2020 IEEE 11th

International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 16–18 October 2020; pp. 355–358.
32. Rozier, K.Y. From Simulation to Runtime Verification and Back: Connecting Single-Run Verification Techniques. In Proceedings

of the 2019 Spring Simulation Conference (SpringSim), Tucson, AZ, USA, 29 April–2 May 2019; pp. 1–10.
33. Stockmann, L.; Laux, S.; Bodden, E. Architectural Runtime Verification. In Proceedings of the 2019 IEEE International Conference

on Software Architecture Companion (ICSA-C), Hamburg, Germany, 25–26 March 2019; pp. 77–84.
34. Teixeira, L.; Miranda, B.; Rebêlo, H.; d’Amorim, M. Demystifying the Challenges of Formally Specifying API Properties for

Runtime Verification. In Proceedings of the 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST),
Porto de Galinhas, Brazil, 12–16 April 2021; pp. 82–93.

35. Bicevskis, J.; Bicevska, Z.; Nikiforova, A.; Oditis, I. Towards Data Quality Runtime Verification. In Proceedings of the 2019
Federated Conference on Computer Science and Information Systems (FedCSIS), Leipzig, Germany, 1–4 September 2019; pp. 639–643.

36. Lee, E.; Seo, Y.-D.; Kim, Y.-G. A Cache-Based Model Abstraction and Runtime Verification for the Internet-of-Things Applications.
IEEE Internet Things J. 2020, 7, 8886–8901. [CrossRef]

37. Legunsen, O.; Zhang, Y.; Hadzi-Tanovic, M.; Rosu, G.; Marinov, D. Techniques for Evolution-Aware Runtime Verification. In
Proceedings of the 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST), Xi’an, China, 22–27 April
2019; pp. 300–311.

38. Geng, T.; Njilla, L.; Huang, C.-T. Smart Markers in Smart Contracts: Enabling Multiway Branching and Merging in Blockchain for
Decentralized Runtime Verification. In Proceedings of the 2021 IEEE Conference on Dependable and Secure Computing (DSC),
Aizuwakamatsu, Japan, 30 January–2 February 2021; pp. 1–8.

39. Ring, M.; Bornebusch, F.; Luth, C.; Wille, R.; Drechsler, R. Verification Runtime Analysis: Get the Most Out of Partial Verification.
In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March
2020; pp. 873–878.

40. Ye, X.; Liu, W.; Wang, N. Runtime Verification of Multi-Agent Self-Adaptive System. In Proceedings of the 2021 IEEE 24th
International Conference on Computer Supported Cooperative Work in Design (CSCWD), Dalian, China, 5–7 May 2021; pp. 12–17.

41. Tsigkanos, C.; Bersani, M.M.; Frangoudis, P.A.; Dustdar, S. Edge-Based Runtime Verification for the Internet of Things. IEEE
Trans. Serv. Comput. 2021, 15, 16.

42. Hu, C.; Dong, W.; Yang, Y.; Shi, H.; Zhou, G. Runtime Verification on Hierarchical Properties of ROS-Based Robot Swarms.
IEEE Trans. Reliab. 2020, 69, 674–689. [CrossRef]

43. Tracy, T.; Tabajara, L.M.; Vardi, M.; Skadron, K. Runtime Verification on FPGAs with LTLf Specifications; TU Wien Academic Press:
Vienna, Austria, 2020; pp. 36–46.

44. Ye, M.; Feng, X.; Wei, S. Runtime Hardware Security Verification Using Approximate Computing: A Case Study on Video Motion
Detection. In Proceedings of the 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Xi’an, China, 16–17
December 2019; pp. 1–6.

https://doi.org/10.1016/j.apacoust.2021.108325
https://doi.org/10.3390/s21062208
https://doi.org/10.1631/FITEE.2000149
https://doi.org/10.3390/app11125410
https://doi.org/10.3390/s22166037
https://doi.org/10.1049/cit2.12110
https://doi.org/10.1016/j.patcog.2022.109050
https://asrs.arc.nasa.gov/
https://www.safecom.gov/about
https://www.atsb.gov.au/
https://www.gov.uk/government/organisations/air-accidents-investigation-branch
https://www.gov.uk/government/organisations/air-accidents-investigation-branch
https://doi.org/10.3390/aerospace3030022
https://haotianchen.net/project/adfi
https://haotianchen.net/project/adfi
https://doi.org/10.1109/JIOT.2020.2996663
https://doi.org/10.1109/TR.2019.2923681

Drones 2023, 7, 486 24 of 24

45. Kong, S.; Lu, M.; Li, L.; Gao, L. Runtime Monitoring of system Execution Trace: Method and Tools. IEEE Access 2020, 8, 114020–114036.
[CrossRef]

46. Jung, B.; Kruse, P.M. Runtime Prioritization with the Classification Tree Method for Test Automation. In Proceedings of the
2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, 24–28
October 2020; pp. 376–379.

47. Miranda, B.; Lima, I.; Legunsen, O.; d’Amorim, M. Prioritizing Runtime Verification Violations. In Proceedings of the 2020
IEEE 13th International Conference on Software Testing, Validation and Verification (ICST), Porto, Portugal, 24–28 October 2020;
pp. 297–308.

48. Schirmer, S.; Torens, C. Safe operation monitoring for specific category unmanned aircraft. In Automated Low-Altitude Air Delivery:
Towards Autonomous Cargo Transportation with Drones; Springer: Berlin/Heidelberg, Germany, 2021; pp. 393–419.

49. Gorostiaga, F.; Zudaire, S.; Sánchez, C.; Schneider, G.; Uchitel, S. Assumption monitoring of temporal task planning using stream
runtime verification. In International Symposium on Leveraging Applications of Formal Methods; Springer: Cham, Switzerland, 2022;
pp. 397–414.

50. Bonnah, E.; Hoque, K.A. Runtime monitoring of time window temporal logic. IEEE Robot. Autom. Lett. 2022, 7, 5888–5895.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.3003087
https://doi.org/10.1109/LRA.2022.3160592

	Introduction
	Related Works
	Failure Mode Databases
	Runtime Verification

	Research on Safety Detection Based on Failure Mode Databases
	Failure Mechanism Analysis
	Failure Mode Feature Identification
	System Failure Mode Characteristic Characterization Method

	Monitor Generation Framework Based on Linear Temporal Logic
	Extension of Linear Temporal Logic
	Recognition and Storage of Formulas
	Conversion of Formulas
	Monitor Generation

	Clang-Based Code Instrumentation Framework
	Definition of Stake Insertion Requirements
	Matching of Pile Insertion Positions
	Selection of Matching Methods
	Implementation of Pile Insertion Action

	Experimental Analysis
	Experiment Settings
	Extraction of Drone Safety Requirements
	Abnormal State Experiment
	External Interference Experiment
	Combined Faults Experiment

	Conclusions
	References

