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Abstract: Drones are widely used in a number of key fields and are having a profound impact on 

all walks of life. Working out how to improve drone safety through fault detection is key to ensuring 

the smooth execution of tasks. At present, most research focuses on fault detection at the component 

level as it is not possible to locate faults quickly from the global system state of a UAV. Moreover, 

most methods are offline detection methods, which cannot achieve real-time monitoring of UAV 

faults. To remedy this, this paper proposes a fault detection method based on a fault mode database 

and runtime verification. Firstly, a large body of historical fault information is analyzed to generate 

a summary of fault modes, including fault modes at the system level. The key safety properties of 

UAVs during operation are further studied in terms of system-level fault modes. Next, a monitor 

generation algorithm and code instrumentation framework are designed to monitor whether a cer-

tain safety a�ribute is violated during the operation of a UAV in real time. The experimental results 

show that the fault detection method proposed in this paper can detect abnormal situations in a 

timely and accurate manner. 
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1. Introduction 

Drones have become an indispensable component of modern equipment systems, 

and as the number of components in these systems continues to increase, so does their 

complexity. Consequently, the requirements for system quality—particularly reliability, 

maintainability, and functionality—are also becoming increasingly stringent [1]. In recent 

years, there have been numerous instances of serious consequences and economic losses 

caused by quality problems in aerospace and other fields. As a result, safety and reliability 

have become key areas of focus when it comes to drones [2]. Sensor data fusion [3], fault 

detection [4], fault-tolerant estimation [5], and fault-tolerant control [6] are all important 

means of ensuring UAV safety. Among these methods, researchers tend to place particular 

emphasis on fault detection, which can be broadly divided into two categories: model-

based approaches and data-driven approaches [7]. 

The traditional way to detect drone failures is through model-based approaches that 

use mathematical models to analyze UAV safety. These models can be further subdivided 

into qualitative or quantitative methods (Table 1). However, because model-based ap-

proaches often focus only on specific components, they may not always detect failures in 

other parts of the system. This means that, if an unmanned aerial system suddenly fails 

due to its complexity, resulting in higher costs, multiple model pairs may need to be de-

ployed. Therefore, in this study, we mainly study faults at the system level. Building a 

fault mode database using a large amount of fault data can facilitate the analysis of fault 
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modes and fault propagation processes at the system level. The analysis process can help 

fault diagnosis personnel quickly locate the problem and save diagnostic time. At present, 

the research on failure mode databases lacks depth. Drone systems are complex systems 

with multiple tasks and configurable elements. There are both common and unique failure 

modes among different systems. The evaluation center where the authors of the current 

study work has a large body of failure data. However, due to the lack of organization and 

induction of these data, there has been no in-depth analysis of the mechanisms of common 

faults. How to use historical fault data to generate fault mode databases and utilize these 

databases to be�er achieve fault detection is a problem worth studying. 

Table 1. Model-based approaches to Fault Detection. 

Authors Year Fault Location Used Methods 

D’Amato et al. 

[8] 
2021 sensor sensor fusion algorithm based on particle filter 

Fu et al. [9] 2021  sensor, actuator 
adaptive observer to realize sensor and brake 

fault detection 

Maqsood et al. 

[10] 
2021 sensor 

sensor fault detection and isolation method for 

quadrotor aircraft 

Miao et al. [11] 2021 sensor 
adaptive nonlinear proportional integral (PI) ob-

server 

Nejati et al. 

[12] 
2021 actuator 

three-level central difference Kalman filter 

(RThSCDKF) 

Sun et al. [13] 2021 pitot tube two identical synthetic air data systems 

Cao et al. [14] 2022 actuator interval observer and extended state observer 

Gai et al. [15] 2022 

elevator, event-

triggered 

intervals 

dynamic event-triggered Hi/H∞ optimization 

method 

Lin et al. [16] 2022 sensor crash probability density (CPD) 

Another typical method used for drone fault detection is the data-based method. In 

recent years, the reduction in the difficulty of data collection and analysis has driven the 

development of the field of data analysis. With the support of various high-speed proces-

sors, the means of mining required information from data have become increasingly pow-

erful. Similarly, data-based methods can be divided into two categories: quantitative and 

qualitative. Quantitative methods include those based on statistical theory and neural net-

works. Qualitative methods typically include expert systems, fuzzy logic, pa�ern recog-

nition, and qualitative trend analysis. Table 2 lists some typical studies, including the lo-

cation of fault detection and the methods used. 

Table 2. Data-driven approaches to Fault Detection. 

Authors Year Fault Location Used Methods 

Altinors et al. 

[17] 
2021 motor, propeller 

method combining statistical feature ex-

traction and machine learning 

Park et al. [18] 2021 

GPS spoofing, DoS at-

tack, rudder, elevator, 

aileron, engine 

unsupervised learning 

Souza et al. 

[19] 
2021  motor signal analysis technique based on chaos 

Zheng et al. 

[20] 
2022 

actuator, aero engine, 

equipment 

data assembly annotation method based 

on flight data and BIT records 
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Cabahug et al. 

[21] 
2022 actuator k-means clustering algorithm 

Working out how to optimize the original data or improve the relevant algorithms 

has also become a major research trend in recent years. Zhang et al. [22] proposed a robust 

deformed denoising CNN (RDDCNN) to solve the offset pixels of feature maps from 

noisy images. This approach can effectively improve data quality and support data-based 

UAV fault diagnosis. Tian et al. [23] proposed a multi-stage image denoising CNN with a 

wavelet transform (MWDCNN) via three stages. A dynamic convolution is used in a CNN 

to address the limitations in depth and width of lightweight CNNs to achieve good de-

noising performance. 

The performance of data-based methods mainly depends on the quality of the origi-

nal data. The fault data of drones is often multi-level linkage and cross-influence data, 

which is not conducive to analyzing complex types of faults. In addition, data-based meth-

ods are often offline and difficult to analyze in real time. This method cannot support the 

real-time safety monitoring of drones. It is more of a means of analysis after accidents, and 

cannot detect and handle abnormal situations during the operation of drones. Therefore, 

this method cannot guarantee the safety of drones during operation. 

The above two methods mainly focus on component-level fault detection, rather than 

system-level fault analysis and localization. In this study, our goal is to fully explore and 

utilize drone fault data accumulated over the past year to gain a deeper understanding of 

drone system-level fault mechanisms. The aims of this study are: (1) To fully utilize a large 

amount of drone fault data, establish a fault mode database, and identify the occurrence 

and propagation modes of drone faults. To further extract fault features and a�ributes 

from fault modes and condense them into safety a�ributes during drone operation for 

subsequent runtime verification processes. (2) To design and implement a monitoring 

generation algorithm and code detection framework for real-time monitoring of whether 

drones violate a certain safety a�ribute during operation. By using the runtime monitor-

ing method, the operation process of unmanned aerial vehicles can be monitored in real 

time and faults can be quickly detected. 

The rest of the paper is organized as follows: Section 2 presents the related works 

about failure mode databases and runtime verification. Research on security detection 

based on failure mode databases is included in Section 3. Section 4 describes the imple-

mentation of a monitor generation framework and linear timing logic extension. The 

Clang-based code instrumentation framework is explained in Section 5. Experimental de-

sign and methodological evaluation are described in Section 6. Finally, Section 7 concludes 

the paper. 

2. Related Works 

2.1. Failure Mode Databases 

In recent years, failure mode databases have become a research hot spot in database 

system engineering, knowledge engineering, and other fields, and this approach has been 

applied in many fields. Failure mode databases are structured, easy-to-use, comprehen-

sive, and organized failure clusters—a collection of interrelated pa�erns stored, orga-

nized, managed, and used in computer memory in a certain way in order to solve the 

needs of problems in some fields. These failure modes include theoretical knowledge re-

lated to the domain, factual data, and heuristic knowledge derived from expert experi-

ence. UAV failure mode databases are of great significance to the study of reliability 

trends. How to form a real scientific failure mode database is one of the key contents of 

the research. 

A common solution to this problem is to extract UAV failure pa�erns from the rec-

ords contained in a UAV accident database by cleaning, parsing, and normalizing the fault 
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data. For example, by obtaining accident records from different countries and analyzing 

the causes of accidents. Suitable data sources include: 

 NASA and the FAA Aviation Safety Reporting System (ASRS) [24]; 

 U.S. Aviation Safety Communique (SAFECOM) data [25]; 

 Australian Transport Safety Bureau (ATSB) aviation safety investigations and reports 

[26]; 

 UK Air Accident Investigation Branch (AAIB) data [27]. 

The a�ribute fields in the database should include the data source, accident year, 

month, location, flight phase, aircraft model, flight hour history, flight time of the mission 

prior to the accident, altitude, weather, mission being performed, root cause, and accident 

outcome. At present, the research on UAV accident databases mainly focuses on the col-

lection and analysis of accident data. Wild et al. [28] collected and analyzed 152 incident 

and accident records, but only 40 records deal with UAV accidents, and the data date back 

to 2006–2015. More recently, a total of 160 accident reports from 2015 to 2020 were col-

lected and documented in an integrated database [29]. 

At present, the study of failure mode databases lacks depth. UAV systems are com-

plex systems with multiple tasks and configurable elements. There are both common and 

unique failure modes among different systems. In addition, the reliability level of UAVs 

in different regions varies greatly due to manufacturing differences. The evaluation center 

where the authors of this current study work has a large amount of fault data of various 

types of UAVs in China, but these data have not been sorted and summarized and the 

mechanisms of common faults have not been thoroughly analyzed. How to make use of 

historical fault data to generate a fault mode database and realize fault detection be�er is 

a problem worth studying. UAVs face the following major problems: 

(1) There has been a lack of unified analysis and summarizing of accumulated equip-

ment failure data and underutilization of the advantages of historical data. 

(2) Lack of effective fault identification, characterization, and matching methods to pro-

vide guidance for the whole life cycle activities of UAVs. Implementing such methods 

could effectively avoid the introduction of software defects and avoid the occurrence 

of failures, thus improving the reliability of unmanned aerial systems. 

In this paper, the construction of a fault module database provides a set of solutions 

from cause analysis to normalized fault representation. Based on this database, we can 

have a deeper understanding of the development trends and failure modes of UAVs and 

improve the reliability and safety of UAVs. 

2.2. Runtime Verification 

Runtime verification techniques are formal verification techniques, which use logical 

formulas to describe properties and transform them into formal structures. Runtime ver-

ification tends to check that there is a poor path, that is, up to the current time, whether 

the system’s running path is within safety parameters. After being proposed, this method 

has received continuous a�ention from academia and industry. One of its characteristics 

is that it plays a role in the system software—it is in the real run environment used to 

monitor the system—so it can find potential defects that the traditional software testing 

method misses. It complements classical verification techniques (for example, theorem 

proving and model checking) and provides a more practical method for the verification 

of system running trajectories. At the cost of limited execution coverage, runtime valida-

tion provides accurate information about the runtime behavior of the monitored system 

for subsequent analysis. The object of action can be a software system, a hardware or in-

formation physical system, a sensor network, or any system where dynamic behavior can 

be observed. The following is a brief overview of some recent research on runtime valida-

tion. 
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Abbas et al. [30] introduced private runtime verification. Liu et al. [31] introduced the 

idea of incremental verification and proposed an incremental probabilistic model-check-

ing method based on heuristics. Y-Rozier et al. [32] explore the connection and difference 

between simulation and runtime verification. Stockmann et al. [33] proposed architecture 

runtime verification. Teixeira et al. [34] studied the properties of a runtime verification-

specified API and wrote a minimalist specification language. Bicevskis et al. [35] discuss 

data quality checking during the execution of a business process by using runtime verifi-

cation. Lee et al. [36] developed an effective model-checking method for IoT system oper-

ation verification. Legunsen et al. [37] proposed an aware runtime verification technique. 

Geng et al. [38] introduced a new smart tagging method to verify the completion of tasks 

involving one-to-many and many-to-one dependencies. Ring et al. [39] significantly re-

duced the size of the state space of the verification process and reduced the complexity of 

the detection process. Ye et al. [40] proposed an adaptive runtime verification method 

based on multi-agent systems. Tsigkanos et al. [41] proposed a service-oriented software 

architecture and technical framework to support the runtime verification of decentralized 

edge-dense systems. Hu et al. [42] proposed a runtime verification method based on the 

Robotic Operating System (ROS). Tracy et al. [43] introduced an open-source framework 

to achieve efficient and high-performance runtime monitoring. Ye et al. [44] developed a 

new approach based on approximate computation to achieve sufficiently fast and accurate 

repeated execution of security verification. Kong et al. [45] proposed a method aimed at 

monitoring traces that reveal the runtime state of the software. Jung et al. [46] proposed 

an automatic runtime prioritization method based on a classification tree. Miranda et al. 

[47] proposed a method to automatically detect whether the errors reported by the moni-

tor are real errors. The authors of [48] proposed the concept of UAV safe operation moni-

toring and the operational limits to be monitored. A prominent example of such opera-

tional limitations is geofencing. Geofencing uses virtual fencing to prevent drones from 

entering restricted airspace. Felipe et al. [49] proposed a solution based on stream runtime 

verification, which offers a high-level declarative language to describe sophisticated mon-

itors together with guarantees on execution time and memory usage. They showed how 

monitors can be combined with temporal planning not only to monitor assumptions but 

also to support mitigation and remediation in UAV missions. Bonnah et al. [50] presented 

a rewriting-based algorithm for runtime monitoring of safety requirements expressed in 

TWTL for specifying time-bounded serial tasks. 

Runtime verification is widely used in academia and industry to ensure the reliability 

and security of the system, whether it is before deployment, testing, verifying, debugging, 

or after deployment. However, the se�ing of monitoring conditions still lacks a solid basis. 

Therefore, this paper intends to analyze the failure mechanism of UAVs through the UAV 

failure mode database to extract the monitoring conditions. According to the above mon-

itoring conditions, the UAV is monitored in real time to improve its reliability. 

3. Research on Safety Detection Based on Failure Mode Databases 

Drones play a vital role in modern equipment, showing the characteristics of increas-

ing scale and complexity. In the face of more serious quality and reliability problems, the 

guarantee of equipment software presents new challenges. Therefore, in order to give full 

play to the value of existing fault data, this paper collects and analyzes UAV faults based 

on the collected fault data, generates a fault mode database, and identifies and locates the 

faults during the operation of the UAV by combining this database with runtime verifica-

tion technology. 

The overall research framework of this paper is shown in Figure 1. 

(1) First, a software-based failure mode database is constructed. The evaluation center 

at which the authors of the current study work has a large body of fault data; in 

order to be�er realize its value, it is necessary to summarize it into a fault mode da-
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tabase. In this paper, fault mechanism analysis is carried out to summarize the fail-

ure causes and fault propagation modes of unmanned aerial vehicle systems. Then, 

the failure mode feature identification method is used to extract the failure charac-

teristics. Finally, the method of characterizing the failure mode characteristics is 

studied. After extracting the a�ributes of each characteristic, the features of each 

a�ribute of the fault data are described. According to the results of the above pro-

cess, the safety a�ributes that must be observed during the operation of the UAV 

are derived and the detection content is provided for use by the verification process 

during the subsequent operation. 

(2) Second, runtime verification is implemented. To achieve this, linear time logic is 

used to describe safety a�ributes. Spot is used to complete the conversion process 

from LTL to the monitor, with some modifications being made to Spot according to 

actual needs. When combined with the safety a�ribute description derived in the 

failure mode database building step, this process allows the running state of the 

UAV to be monitored in real time. 

Failure mechanism 
analysis

Large amount of 
failure data

Failure mode 
feature 

identification

Failure mode 
characteristic 

characterization

Failure mode database 
generation module

Runtime data Target object

Monitor Analysis result

Runtime verification 
module

 

Figure 1. Overall frame diagram. 

3.1. Failure Mechanism Analysis 

A system defect is a condition in which the system does not conform to specified 

requirements and behaves in ways inconsistent with the desired way of use. System de-

fects, which are introduced by human errors, are static inherent properties of the system 

and are present across the whole system life cycle. During system execution, defects are 

activated under certain conditions. A system fault is an abnormal condition in a compo-

nent, device, or subsystem. System failure occurs when a system fault cannot be handled 

by fault-tolerant technology, resulting in the loss of all or part of the functions of the sys-

tem during operation and deviation from the expected normal state. 

According to the process of occurrence, three necessary and sufficient conditions for 

system failure caused by system defects can be described: 

 The actual input the system receives causes the system defect to be executed; 

 An executed defect causes a change in the state of the data after the location of the 

system defect (failure is triggered); 

 Faulty system data is passed as a result (the user perceives a fault). 

These three necessary and sufficient conditions also reflect the whole process of the 

fault produced by the defect. This process is sequential, after the system executes a defect, 

the defect causes the data state after the defect to be infected, and finally, after several 

iterations, the wrong data is output by the system. Figure 2 describes the mechanism of 

system failure and reflects the conditions of fault identification and discovery. These three 

conditions correspond to the probability that the input leads to the execution of the posi-

tion (execution probability), the probability that the position mutation leads to the change 

of the data state, (contagion probability), and the probability that the changed data state 

leads to a change in the program output (propagation probability). Only when these three 

conditions are met can the defect produce a fault and be identified. 
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Figure 2. System failure mechanism. 

3.2. Failure Mode Feature Identification 

The system fault pa�ern feature identification process needs requires a features anal-

ysis of function, execution, interface, and related constraints. Through functional analysis, 

execution analysis, and interface analysis, the understanding of the identified features is 

strengthened, which lays a foundation for improving the accuracy of system fault pa�ern 

matching. Failure data description begins with original a�ribute extraction. 

The complete system properties are extracted using the method given in the IEEE 

1044–2009 standard. At the same time, the ideas of the GJB 437-88, GJB/Z 1391-2006, and 

GJB 841-90 standards are referenced. The a�ributes are modified from the perspective of 

fault control and management. The extracted a�ributes are normalized so that modifying 

one a�ribute does not affect other a�ributes. Finally, a�ribute fields that consider effi-

ciency and quality that are accurate and easy to reuse later are extracted. 

First, the fault ID and fault description a�ributes in IEEE 1044–2009 are used and the 

system (subsystem and subsystem), product model, product batch, and collection date are 

added as the basic information of fault data. Second, the fault state a�ribute is used to give 

the overall expression of the fault. The severity and impact a�ributes are used and then 

changed to fault-level and potential-impact a�ributes. If the type a�ribute is used, it is 

changed to a fault-type a�ribute. Third, the injection activity and discovery activity a�rib-

utes are used. From the perspective of fault discovery and introduction, it is modified into 

the a�ributes of the fault discovery and introduction stages. Next, the fault or failure per-

formance, modification content, and modification measure a�ribute are given. Finally, the 

root cause of a fault is considered and the a�ribute of the cause of the fault is added. A list 

of the a�ributes generated from fault data is given in Table 3. 

Table 3. A�ribute extraction of system fault data representation. 

Number A�ribute Definition 

1 ID The unique number of the fault 

2 Affiliation System to which the fault belongs 

3 Description Overall description of the fault 

4 Discovery 
System development phase  

in which faults are found 

5 Introduction The system development phase of introducing faults 

6 Factor Human factors that introduce faults 

7 Type A type defined for the characteristics of the system 

8 Level Severity of the fault 

9 Manifestation System failure caused by fault excitation 

10 Potential impact Danger or effect caused by failure 
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3.3. System Failure Mode Characteristic Characterization Method 

According to the characteristics of different system fault pa�erns, measurement pa-

rameters, data acquisition methods, and deviation thresholds are designed. These provide 

the basis for accurate system fault pa�ern matching. 

After extracting the characteristic a�ributes, the features of each a�ribute of the fault 

data must be described. The a�ributes are the same from data entry to data entry, but the 

characteristics of each a�ribute are different. Below, we describe the model and standard-

ized description of system fault data. 

For specific fault a�ributes, the a�ribute’s characteristics must be described and the 

a�ribute’s value range must be specified. The characteristics determined in this process 

should be consistent with the run characteristics of the system and can reflect the charac-

teristics of system faults. How to improve reusability and meet the use needs of various 

developers should also be considered. 

The existing feature description method of system fault data is mainly natural lan-

guage, but this approach is prone to subjectivity. Due to differences in how individuals 

think, fault descriptions have a high degree of individuation and poor portability. In this 

paper, formalized and normalized expressions are developed to describe the characteris-

tics of a�ributes. The different ways of describing a�ribute characteristics are given in Ta-

ble 4. 

Table 4. A�ribute description of system fault data. 

Number A�ribute Definition 

1 ID DT—“Acquisition date”—“Serial number” 

2 Affiliation Which system 

3 Description 
Semi-formal description: “ZZ faults were introduced 

into YY by XX”. 

4 Discovery 
(Requirement analysis/Design/Coding implementa-

tion/Test verification/Use and maintenance) phase 

5 Introduction (Requirement/Design/Coding) phase 

6 Factor 
Redundancy/Negligence/Forgetting/Inadequate consid-

eration 

7 Type 
Input class/Output class/Processing logic class/Working 

status class 

8 Level Key/Important/Ordinary/Other 

9 Manifestation The fault was triggered at XX, resulting in XXXX. 

10 Potential impact The failure caused by this fault may cause XXXX. 

A�ribute description is the key to fault description. Through the feature description 

method, the ambiguity caused by the use of over-subjective natural language is solved, 

which is conducive to the quantitative analysis of data and improvement of the value of 

fault data utilization. The main contribution of fault data a�ribute feature definition to 

fault data description is the provision of fault type features based on input class, output 

class, processing logic class, and working state class. These four classes are also the core 

and main features of any fault description, which is conducive to improving the efficiency 

of collecting and managing subsequent fault data. Finally, after fault data a�ribute extrac-

tion and provision of the feature description method, the system fault data description 

method is provided. The system fault pa�ern library is sorted according to the fault de-

scription method and subsequent management becomes rule-based. Table 5 provides the 

failure modes related to drone functions. Due to space constraints, only some of the failure 

modules are listed here as an illustration. 
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Table 5. Failure modules at the functional level. 

Faulty Module Fault Submodule 

Power  

safety  

management 

Fuel pump control 

Fuel monitoring and handling 

Oil delivery monitoring and handling 

Aerial stop 

Aerial start 

Engine off 

Pitch control 

Electrical  

safety  

management 

Radio altimeter power control 

Emergency power control 

Grid-connected control of transmission network 

Electrical fault handling 

Flight  

safety  

management 

Critical fault handling 

Destroyed key processing 

Link redundancy management 

Link status judgment and processing 

Switch of right of control 

Sensor Management 

Flight control computer management 

Aircraft weight management 

4. Monitor Generation Framework Based on Linear Temporal Logic 

In this study, we take unmanned aerial vehicle systems as the research object, focus-

ing on safety monitoring technology based on runtime verification, with a focus on solv-

ing the problem of how to generate the required monitors and how to connect them with 

source code. This section focuses on the former, which is how to generate monitors and 

achieve target monitoring operations. Figure 3 shows the overall flowchart of the frame-

work. 

Define extension 
methods

Adding extensions 
to logical formulas

Extension of 
logical formulas

Design Formula 
Tree Structure

Define operation 
priority

Recognition and storage
 of formulas

Define extension 
methods

Design conversion 
process

Conversion of formulas

Define node 
members

Implement the 
generation process

Monitor generation

Design stored 
procedures

 

Figure 3. Monitor Generation Framework. 

The entire framework can be divided into four parts. First, based on the different test 

objects and requirements documents, the properties that the tested system should meet 

during runtime are organized and described in natural language. In order for computers 

to handle these safety requirements, they need to be transformed into formal descriptions. 

In this study, we chose to use linear temporal logic to describe safety a�ributes, and we 

extended LTL to enhance its expressive ability, achieving the effect of using more concise 

forms to describe richer meanings and enhancing the accuracy of property descriptions. 
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Second, in this study, we define a formula tree structure and corresponding conversion 

algorithms, which will be used by computers to store formulas after reading them. Once 

again, the conversion rules for extended LTL formulas were defined and the extended 

formulas were simplified according to this rule to obtain the transformed LTL formula 

tree. Next, the conversion algorithm is used to convert the logical formula into the corre-

sponding security requirement monitor. The monitor will receive data from the tested ob-

ject for analysis and perform state migration based on the analysis results. If the data meet 

the safety requirements, the monitor can execute the task smoothly. If the data violate the 

safety requirements, the monitor will discover this issue and issue a warning. The purpose 

of a warning is to draw the a�ention of the operator, who can promptly view system in-

formation, handle problems, and reduce the probability of accidents. 

The following sections will introduce the approach in detail: Section 4.1 describes the 

extension of the meaning of linear temporal logic, Section 4.2 describes the formula recog-

nition and storage process, Section 4.3 describes the formula conversion process, and Sec-

tion 4.4 describes the monitor generation process. 

4.1. Extension of Linear Temporal Logic 

There are four commonly used logical connectives in linear temporal logic, namely, 

G, F, U, and X. G is a unary operator, indicating that the formula must be constant; F is a 

unary operator, indicating that the formula will be established in the future; X is a unary 

operator, indicating that the next cycle formula needs to be established; and U is a binary 

operator, which means that the formula on the left should always be true until the formula 

on the right is true. In order to enhance the expressive power of LTL, in this study, we 

extend LTL to express richer meanings with more refined formulas and increase the flex-

ibility and accuracy of the formulas. In this study, we add a time point or interval after the 

temporal operators G, F, U, and X. The meaning of [i] is that the operator should hold in 

the i-th cycle, while [i: j] means that the operator should hold at the beginning of a cycle 

and continue for j cycles. For ease of understanding, the following specific examples are 

given: 

(1) After expansion, the expression ability of the formula has been improved and more 

concise formulas can be used to express richer meanings; the flexibility has also been 

improved. 

(1) Assuming a represents an event, then a must hold true in all states, which is 

somewhat like an intersection. Only when a holds true in all states can it be con-

sidered true and as long as a does not hold true in one state, it does not hold 

true. Operators have their usage scenarios, but they may not be as flexible. If you 

want a to hold true in the next three states, it doesn’t ma�er if the other states 

hold true, as the G operator cannot. 

(2) However, after adding a time interval, G[1: 3]a can be used to indicate that a 

holds in the next three states. If traditional LTL is used, this must be represented 

with Xa&XXa&XXXa. If there are more than three states, the length difference of 

the formula will be even greater. 

(2) After expansion, the expression accuracy of the formula has also been improved. 

(1) Fa indicates that a will always hold in the future, which is somewhat like a un-

ion. As long as a holds in one state, then Fa holds. The problem with the F oper-

ator is that it has a high degree of uncertainty. We request that a be true in the 

future, but we don’t know when it will be true—it may be the 100th or 1000th 

state, etc. 

(2) However, after adding a time interval, it is possible to define a time range and 

require that the F formula be valid within that time range. F[1: 4]a means that 

a should hold at least once in the following four states for the F formula to hold. 

With time constraints, the meaning of the formula becomes clearer and effec-

tively improves the uncertainty of the F operator. 
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It can be seen that the extended LTL formula can express richer meanings with 

shorter formulas, increase the accuracy of the formula, and be more intuitive to use. Be-

cause the writing of logical formulas requires manual completion, this extension can re-

duce the burden on operators, reduce the difficulty of formula writing, and make the pro-

cess of formula writing easier to complete. 

4.2. Recognition and Storage of Formulas 

The property specification in this study is represented by LTL, which has been ex-

tended in the previous section to simplify the writing difficulty of LTL formulas. How the 

LTL formula is processed is described below. To accomplish this, in this study, we define 

an LTL formula tree and corresponding conversion algorithm. 

When obtaining an LTL formula, it is necessary to first store it for subsequent opera-

tions. Choosing a suitable data structure to store the formula can make subsequent pro-

cessing more convenient. The operators in the LTL formula include logical operators and 

temporal operators and there is an order of priority to their execution. In addition, paren-

theses can also be used in the LTL formula to express high priority. The operation results 

of high-priority subformulas may serve as input variables for other subformulas. Based 

on the above points, this paper selects a tree structure to store formulas and defines a 

formula tree structure. All leaf nodes of the tree are propositional variables and all non-

leaf nodes are operators. Because trees naturally have classification properties, they are 

suitable for spli�ing formulas, and the root node of one subtree is the leaf node of another 

subtree, which is similar to the “operation results of high-priority subformulas will serve 

as input variables for other subformulas” mentioned earlier. 

Before executing the storage algorithm, you need to define the priority of the logical 

connective and temporal operator in the LTL formula to avoid priority conflicts during 

algorithm execution. Operator priority follows the following three rules: 

(1) The priority of a unary operator is higher than that of a binary operator. 

(2) The unary logical connective has the same priority as the unary temporal operator 

and the binary logical connective has the same priority as the binary temporal oper-

ator. 

(3) Operators within parentheses have higher priority than those outside parentheses. 

The more layers of parentheses, the higher the priority. 

Based on the above rules, in this study, we provide a ranking of priorities, as shown 

in Table 6. The priority of the three tables decreases from top to bo�om, with operators in 

the same table having the same priority. Whatever operator has the highest relative posi-

tion, has the highest priority. 

Table 6. Operator precedence. 

Prioritization 

High  
↑  

Low 

﹁ (Negation) 

G (Global) 

F (Future) 

X (Next) 

U (Until) 

R (Release) 

∧ (And) 

∨ (Or) 

→ (Contain) 

(1) If the currently read object is a propositional variable, add it to the propositional var-

iable stack. 
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(2) If the currently read object is an operator, compare the symbol priority of that oper-

ator with the top of the operator stack. 

(1) If the top of the stack is empty, the current operator is directly pushed onto the 

stack. 

(2) If the priority of the operator is higher than or equal to the top of the stack oper-

ator, then the operator is added to the operator stack. 

(3) If the priority of the operator is lower than the top of the stack operator, the top 

of the stack operator will exit the stack. 

(1) If the outbound operator is a unary operator, take an object from the prop-

ositional variable stack and construct a subtree. Using a unary operator as 

the parent node and an object as the right child node. Add the subtree to 

the propositional variable stack and repeat step (2) until the operator is 

added to the stack. 

(2) If the outbound operator is a binary operator, take two objects from the 

propositional variable stack and construct a subtree. The binary operator is 

used as the parent node, the object that first exits the stack is used as the 

right child node and the object that exits the stack later is used as the left 

child node. Add the subtree to the propositional variable stack and repeat 

step (2) until the operator is added to the stack. 

(3) If the current operator is a left parenthesis, it is directly pushed onto the stack. 

(4) If the current operator is a right parenthesis, the top of the stack operator will exit the 

stack. 

(1) If the stack operator is a left parenthesis, the current round of processing ends 

and the next object is read in. 

(2) If the stack out operator is a unary operator, take an object from the proposi-

tional variable stack and construct a subtree. Using a unary operator as the par-

ent node and an object as the right child node. Add the subtree to the proposi-

tional variable stack and repeat step (4) until (4.1) is established. 

(3) If the outbound operator is a binary operator, take an object from the proposi-

tional variable stack and construct a subtree. The binary operator is used as the 

parent node, the object that first exits the stack is used as the right child node 

and the object that exits the stack later is used as the left child node. Add the 

subtree to the propositional variable stack and repeat step (4) until (4.1) is estab-

lished. 

After the above process, the tree representation structure corresponding to the LTL 

formula can be generated. 

4.3. Conversion of Formulas 

In the previous section, an LTL formula tree was used to store extended LTL formu-

las. The description of how the formula is transformed to reduce the complexity of the 

temporal operators is given below. 

Table 7 gives the conversion rules applied in this study. In the table, f� is the category 

of formulas to be converted and f� is the specific conversion operation. The conversion 

process is to operate on the LTL formula tree generated in the previous section. The rules 

in this study are defined recursively and the tree structure naturally has recursive prop-

erties, so the two are easy to combine. 

Table 7. Conversion rules. 

Conversion Rules 

f� = G[i]a 
f� = F[i]a 

f� = �
X(F[i − 1]a)    when i > 0
a                     when i =  0
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f� = X[i]a 

f� = �
X(X[i − 1]a)    when i > 0
a                     when i =  0

 

f� = a U[i] b 

f� = �
X(U[i − 1]a)    when i > 0
a ∨  b            when i =  0

 

f� = G[i: j]a 

f� = �
X(G[i − 1: j]a)          when i > 0

a ∧ X(G[0: j − 1]a)    when i = 0 ∧ j > 0
 

f� = F[i: j]a 

f� = �
X(F[i − 1: j]a)          when i > 0

a ∨ X(F[0: j − 1]a)    when i = 0 ∧ j > 0
 

f� = X[i: j]a 

f� = �
X(X[i − 1: j]a)          when i > 0

X(X[0: j − 1]a)    when i = 0 ∧ j > 0
 

f� = a U[i: j] b 
f� = ¬G[i: j]¬b ∧ G[0: i]a ∧ G[i: i](((a U b) ∨ Ga) ∧ ¬G¬b) 

To explain the G[i] conversion process, the following example is provided: 

For formula G[i], when i is greater than 0, the formula needs to wait for i cycles to be 

established. In this study, we deal with i through recursion, adding an x operator before 

the formula to be processed each time and then recursing through the i-1 layer until the 

recursion is completed when i = 0. The corresponding operation in the tree is to generate 

a node representing the X operator to replace G[i] with G[i − 1] as its right child node 

and then recursively process the right child node. 

4.4. Monitor Generation 

In the previous process, the conversion of the formula was completed. Next, it is nec-

essary to convert the LTL formula into a monitor. In this study, formulas are processed 

from the outside to the inside, where ‘inside’ and ‘outside’ refers to priority, with external 

operators having lower priority and internal operators having higher priority. Corre-

spondingly, in the formula tree, the lower the level of an operator node, the closer it is to 

the outside, while the higher the level, the closer it is to the inside. For a subformula, the 

outermost operator is the root node of the corresponding subtree, and accessing the root 

node is simpler than accessing the left and right subtrees, indicating that the LTL formula 

tree plays a positive role. 

In this study, we use ⟸ to assign values to each member of a node. For example, 

New ⟸ {φ} means adding formula φ to the New list of the current node. The program 

processes the Nodes list structure accordingly, where the nodes in Nodes and a special 

node init together form all the states of the monitor. Here, init is the initial state of the 

monitor, and Nodes  is initialized as empty. In the following algorithm, function 

new_ID() creates a unique node ID value every time it is called. Function Neg() is taken 

as the Inverse function, Neg(A) = ¬A, Neg(¬A) = A, Neg(True) = False, Neg(False) = True, 

where A is a proposition. Figure 4 shows the process of generating a monitor. 
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Figure 4. Monitor Generation Process. 

5. Clang-Based Code Instrumentation Framework 

This section introduces the relevant content of the code instrumentation framework, 

and the overall process is shown in Figure 5. First, a definition of instrumentation require-

ments is required. This process involves writing instrumentation requirements files that 

describe the characteristics of the functions to be instrumented and the content to be in-

strumented. The second step is to match the insertion position, which requires writing a 

suitable matcher based on the insertion requirements. The matcher’s function is to find 

the insertion point that meets the requirements given in the target program. Finally, the 

execution of the instrumentation action will add interception functions at the matched 

instrumentation points and modify function calls in the target program. The process is 

detailed below. Section 5.1 introduces the definition of pile insertion requirements and 

Section 5.2 introduces the matching of pile insertion positions. 
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Figure 5. Code instrumentation framework. 

5.1. Definition of Stake Insertion Requirements 

The instrumentation requirement file needs to include several elements. First, the 

characteristic of the function to be instrumented (return value type, name, parameter) 

needs to be included. This is used to locate the relevant position in the source code. The 

more detail included about the feature, the more accurate the matching position will be. 

Second, the content and the corresponding location of the pile to be inserted need to be 

included.  The content refers to the specific code to be inserted and the pile location refers 

to the code that can be inserted before and after the pile insertion point. 

In this study, we investigated two methods of stake insertion: 1) to directly stake the 

definition of the objective function, and 2) to plug in a brand new function, which will call 

the target function and modify the call statement of the target function to the call state-

ment of the new function to achieve interception of the target function. The first method 

involves directly modifying the function code—if you need to modify the logic of the func-

tion itself, you can consider using this method. The second method does not directly mod-

ify the original function code, but instead wraps the function in a layer and adds some 

statements before and after the function call to achieve certain functions, which are not 

strongly related to the target function itself. If there is such a requirement, then the second 

method is more suitable. Due to the purpose of instrumentation in this study being to pass 

relevant information about function calls to the monitor, the function of sending messages 

does not belong to the internal logic of the function. Therefore, this study chose to use the 

second method for instrumentation in the source code. 

The specific format is shown in Table 8. The first line describes the characteristics of 

the objective function, that is, the desired return value type is return_ Type, while func-

tion_name is function_ Intercept functions with name and parameters as parameters. The 

function body is divided into three parts. The first part is parameter information, which 

is used to record the additional parameters required for the interception function. The 

second part is the code that needs to be instrumented before executing the target function. 

The third part is the code that needs to be instrumented after executing the target function. 

The call to the target function occurs between the second and third parts. If the target 

function has a return value, it will be converted into a temporary variable to save the re-

turn value, which will be returned after the interception function is executed. 
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Table 8. Format of Stake Insertion Requirements File. 

Format 

Return_type function_name (parameters) { 

// new params 

Define the parameters required for instrumentation 

// before 

Specifies the items to be inserted before function name is executed 

// after 

Specifies the items to be inserted after function name is executed 

} 

Table 9 gives a simple example of defining the requirements for instrumentation. In 

the table, lines 1–4 are the objective functions, 6–15 are the content of the instrumentation 

requirements file, and 16–22 are the interception functions. For example, there is a func-

tion func1 that prints “The func1 is called.” (lines 1–4) when called. Now, it needs to be 

intercepted. The first line of the instrumentation requirement provides that the return 

value type of the current instrumentation’s objective function is int, named func1, and has 

no formal parameters (line 5). The empty statement in the new params section indicates 

that the interceptor function does not require additional parameters (line 8). The before 

section is a print statement that will be executed before func1 is called (line 12). The after 

section is a print statement that will be executed after func1 is called (line 14). After ob-

taining this information, the instrumentation module will generate an interception func-

tion. The name of the interception function is the target function name preceded by 

“new_”, indicating that this is an interception function for func1 (line 17). The return value 

type of the interceptor function is consistent with that of the target function. The parame-

ters include at least the formal parameters of the target function and the Function pointer 

of the target function. The return value type of the interception function is consistent with 

the target function. If the target function has a return value, a temporary variable will be 

used to store its return value when calling the target function. After the interception func-

tion is executed, the value will be returned. In addition, the instrumentation function will 

replace the call statement of the target function in the source code with the call statement 

of the intercepting function to achieve interception of the target function. 

Table 9. Example of Definition of Stake Insertion Requirements. 

Example 

1. int func1(){ 

2. printf(“The funcl is called.”); 

3. return 0; 

4. } 

5. int funcl(){ 

6. // before 

7. printf(“Before funcl is called.”); 

8. // after 

9. printf(“After funcl is called.”); 

10. } 

11. int new funcl(int (*func1)()){ 

12. printf(“Before funcl is called.”);  // before 

13. int result = funcl(); 

14. printf(“After funcl is called.”);  // after 

15. return result; 

16. } 
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After obtaining the requirement file, it is necessary to read it for parsing, including 

checking for any errors and extracting the instrumentation information from it. Due to the 

fact that the format of the instrumentation requirement file in this study references the 

writing method of the C programming language, it is possible to use the Clang compiler 

to perform grammar checks on the requirement file. If an error is found, the information 

will not be extracted and the error needs to be corrected first. This is because, if an erro-

neous requirement is parsed, it may introduce errors into subsequent instrumentation and 

monitoring processes, affecting the correct execution of subsequent processes. If no errors 

are detected, the parsing module will extract the instrumentation information for storage 

and provide it to the instrumentation execution module. 

5.2. Matching of Pile Insertion Positions 

5.2.1. Selection of Matching Methods 

Code wri�en using AST Matcher is more streamlined and has higher readability; the 

matching logic is also more natural. Therefore, in this study, we chose the AST Matcher 

method for node matching. The class diagram of node matching and code instrumentation 

using the AST Matcher method used in this study is shown in Figure 6. There are three 

core classes. The MyFrontendAction class is obtained by inheriting ASTFrontendAction, 

the MyASTConsumer object is created by the CreateASTConsumer method of the parent 

class, and the Member variable of the Rewriter class is declared. MyASTConsumer inher-

its from the ASTConsumer class and uses the HandleTranslationUnit method to obtain 

translation units. At the same time, it is declared that the Member variable of the Match-

Finder class is used to match the insertion position and the Member variable of the 

MyHandler class is used for code insertion. The MyHandler class inherits from the Match-

Callback class and processes the position matched by the MatchFinder object by calling 

the parent class run method. 

 

Figure 6. Code instrumentation class diagram. 

5.2.2. Implementation of Pile Insertion Action 

In the previous section, the matching of the target nodes has been achieved and their 

positions in the AST have been found. Now, they must be staked. Clang’s Rewriter class 

provides the ability to add, delete, and replace source code, making it possible for code 
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instrumentation and refactoring. When using the AST Matcher method, matching and 

processing nodes often occur in pairs. A matcher is added through addMatcher in the AST 

Consumer to find the desired node. At the same time, developers need to derive their own 

ASTNodeHandler from the MatchFinder:: MatchCallback class, override the run method 

of the parent class, and implement node processing. 

Taking the Func. c file as an example, the definition and call section of the Func1 

function have been successfully matched in the previous section. Next, we will intercept 

it through instrumentation. The main process is to generate a new interceptor function, 

with “new_” added before the original function name to indicate that it is a newly gener-

ated interceptor function. The parameters of the interceptor function need to include all 

the parameters of the original function and the Function pointer of the original function 

so that the original function can be called inside the interceptor function. The function 

body of the interception function is divided into three parts: The first part is the before 

part of the instrumentation requirement file. The second part is the call to the original 

function. If the original function has a return value, a temporary variable will be used to 

temporarily store its return value and it will be returned at the end of the intercepting 

function. The third part is the after section of the instrumentation requirements document. 

At the same time, all calls to the original function in the source code need to be replaced 

by calls to the interceptor function and the Function pointer of the original function needs 

to be passed as a parameter to the interceptor function. 

6. Experimental Analysis 

6.1. Experiment Se�ings 

The object under test in this paper is a certain type of digital drone, which includes 

drone code and console code. The basic a�ributes of the drone can be set to simulate dif-

ferent flight tasks, such as airport altitude, drone weight, and flight path. The drone sys-

tem fault mode database contains many types of faults. We select four fault categories of 

fault to test in this experimental study, with each category representing a safety a�ribute. 

The categories are common a�ribute faults, an abnormal state, external interference, and 

combined faults. The common a�ribute experiment tests whether the drones can follow 

the flight plan to fly, that is, whether it can enter the specified flight stage within the spec-

ified time range and maintain its flight state. The abnormal state experiment tests whether 

some of the drone sensors are abnormal, which may be due to component failure or vul-

nerability a�ack. The external interference experiment tests whether the signals received 

by some sensors of the drones are affected by external interference, which would lead to 

abnormal sensor data. The combined faults experiment is a comprehensive experiment 

that considers multiple safety-requirement-triggering conditions. These four safety a�rib-

utes are translated into LTL formulas and then implemented as monitors to analyze the 

characteristics of the drone during each flight cycle. Upon completion of the flight, sensor 

data and monitor status throughout the flight are displayed in graphical form, with time 

on the horizontal axis and sensor data or monitor status on the vertical axis. 

6.2. Extraction of Drone Safety Requirements 

Before monitoring a drone flight, it is necessary to first extract the safety requirements 

related to the drone, namely, the conditions and states that the drone should satisfy during 

operation. This study is based on using the fault mode database to extract safety require-

ments related to drone functionality. In this study, we summarize the power, electrical, 

power system, engine, communication link, and other aspects closely related to the safety 

of unmanned aerial vehicles during the ground start, takeoff, and flight stages. A total of 

26 categories and about 80 safety requirements are proposed and corresponding safety 

requirement formulas are wri�en. Due to space limitations, Table 10 only lists some typi-

cal safety requirements that affect drone safety. 
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Table 10. Drone safety requirements. 

Operation Phase Security Requirements Description 

Ground waiting 

The ground waiting phase enters the takeoff ground segment 

when the following conditions are met simultaneously:  

The route and airport altitude have been bound;  

Received takeoff instructions. 

G((phase = 0 & air_line = 1 & pressure_altitude = 1 & takeoff) → 

phase = 1) 

Takeoff ground seg-

ment 

In the takeoff ground segment, when the airspeed is greater than 

30 m/s and the altitude is greater than 15 m, turn to the takeoff 

departure zone.  

G((phase = 1 & airspeed > 30 & height > 15) → phase = 2) 

Takeoff departure zone 

In the takeoff departure zone, when the flight altitude is greater 

than the safe altitude of 80 m, enter the climb phase 1.  

G((phase = 2 & height > 80) → phase = 3) 

Some common a�ributes of the drone need to be changed to ensure that the drone 

can fly safely and complete its mission successfully. Therefore, in this study, we define 

some protocols to detect whether the drone is flying normally according to the expected 

plan. Taking the altitude data as an example, the safety a�ribute is defined. After taking 

off, the drones should reach the flight height of 200 m within 900 cycles and keep to this 

altitude within the range of (195,205) m for the rest of the flight until the flight state be-

comes “descending”. In addition, another highly related safety requirement is tested sim-

ultaneously. When the altitude of the drone is less than 300 m, the radio altimeter must be 

activated and remain active (altitude status value is 2). The formal formula is as follows. 

G(F[0,900](height ≥ 200)&(phase = �ixed_height → ((195 ≤ height ≤ 205) U (phase
= descent)))); G(height < 300 → height_state = radio) 

Figure 7 shows the altitude data, altimeter status, and monitor results during a com-

mon a�ributes test flight. As can be seen, the drone did not reach a height of 200 m after 

900 cycles and the monitor detected an anomaly (se�ing the result to 1). Then, during the 

level flight phase, the altitude of the drone remained around 200 m, so the monitor did 

not detect any abnormalities. The drone remained at an altitude of less than 300 m during 

flight, so the radio altimeter remained active and met safety requirements. The monitor 

did not detect any abnormalities. 
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Figure 7. Height and monitor results of a common a�ributes test flight. 

6.3. Abnormal State Experiment 

During the operation of drones, they may encounter some abnormal situations, in-

cluding internal component failures or machine vulnerabilities that are exploited by a hos-

tile actor and maliciously a�acked, resulting in unexpected results in the range or trend 

of drone sensor data, leading to abnormal flight status and ultimately to the drone crash-

ing. 

The drone obtains altitude data through altitude sensors. If the sensor malfunctions 

or is subjected to external a�acks (a�ackers constantly send incorrect altitude data to the 

drone, causing it to make incorrect judgments about the current altitude), the drone will 

continuously adjust its pitch angle to achieve the desired altitude. Therefore, this experi-

ment detects whether the drone is experiencing abnormal conditions by determining the 

fluctuation of the drone’s pitch angle. The safety a�ributes are defined as, when the drone 

is in level flight, the variance of the pitch angle data for the first 300 cycles ending with the 

current cycle must be calculated and its value should not continue to exceed 5. The formal 

formula is as follows. 

G((state = �ixed_height) → (VAR���(pitch) < 5)) 

Figure 8 shows the pitch angle data, variance, and monitor detection results during 

the flight. It can be seen that the pitch angle oscillates at about 5000 cycles, its variance 

exceeds 5 at about 5100 cycles, and the monitor value detects an abnormal situation after 

the pitch angle variance is greater than 5 for 300 consecutive cycles. 
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Figure 8. Pitch angle and monitor results for an abnormal state test flight. 

6.4. External Interference Experiment 

Currently, under normal circumstances, many drones will use GPS navigation to lo-

cate their position to realize flight path planning and control. Therefore, the flight process 

of drones is closely related to GPS data. If the GPS signal is interfered with, the normal 

flight of drones will be affected. The use of GPS decoys is a type of a�ack that interferes 

with the normal flight of drones by preventing them from receiving real GPS signals and 

making them receive false GPS signals. A jammer intercepts the real GPS signal and emits 

many false GPS signals. Since a drone always selects GPS signals from the strongest 

source, the real signal can be drowned in noise if the fake signal from the jammer is strong 

enough. So the drone can only receive false signals, which indirectly control the drone’s 

navigation system and trick the drone into flying to the wrong place. If the drone deviates 

from its normal course, its roll angle changes, so roll angle data can be analyzed to detect 

GPS jamming a�acks. In this experiment, several positioning points are set for the drone. 

After the drone reaches the positioning point in a straight flight, it will turn and after the 

direction is adjusted, it will fly in a straight line again to the next positioning point. 

A drone’s GPS receiver is vulnerable to external a�ack, but other sensors such as gy-

roscopes, levels, and barometric altimeters are generally difficult to a�ack. Changes in 

gyroscope roll can determine when a drone veers off course after a GPS decoy a�ack. Since 

the roll angle of the drone will not change greatly when it flies along a straight line, it will 

change only when it turns to the navigation point after some time. Therefore, the follow-

ing safety a�ributes are defined. When the drone is flying, it will be given 1000 cycles to 

adjust the direction after reaching a navigation point. Then the absolute value of the roll 

angle of the drones shall be less than 5 until it reaches the next anchor point. The formal 

formula is shown as follows: 

G(arrive ⟶ (X[1000]G(−5 < rool < 5) U arrive)) 

Figure 9 shows the roll angle data and monitor detection results during the flight 

process, with four positioning points reaching approximately 1000, 3000, 9000, and 10,000 

cycles. It can be seen that, in the interval between the drone reaching the positioning point 

for 1000 cycles and reaching the next positioning point, when the absolute value of the roll 
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angle is greater than 5 (approximately over 12,000 cycles), the monitor detects an abnor-

mal situation. When the absolute value of the roll angle is less than 5, the monitor returns 

to normal. 

 

Figure 9. Roll angle and monitor results for external interference test flight. 

6.5. Combined Faults Experiment 

During the flight of unmanned aerial vehicles, some changes in safety status cannot 

be judged by a single condition, but require the monitoring of a combination of multiple 

conditions and the corresponding safety requirements are also composed of multiple 

events. For example, the following safety requirements exist to determine whether the 

drones can normally enter the air stop state when the conditions are met: 

(1) The speed is less than 1000 RPM; 

(2) The lubricating oil pressure is less than 1.5 bar; 

(3) The landing gear is in a compressed state; 

(4) Flight altitude greater than 60 m; 

(5) The flight phase is not a ground hold. 

When all the above conditions are met simultaneously, then 

(1) Judge the engine’s air stop; 

(2) When the flight phase is before glide down 1, place a falling flag. 

The corresponding security requirement formula is: 

G((rotate_speed < 1000 & oil_press < 1.5 & undercarriage = 0 & height > 60 

& phase ≠ ground_wait) → (engine_status

= (�lameout_air | pre_start | start | start_estimate) & phase = drift)) 

Figure 10 shows the values of various a�ributes and monitor results in the air parking 

monitoring experiment. From the graph, it can be seen that for around 3000 cycles, the 

data of the preconditions met the requirements for air parking. At this time, the value of 

the engine status changed to 1 (air parking sign), but the value during the flight phase did 

not change to 13 (falling sign). Therefore, the monitor discovered an abnormal situation. 

Subsequently, the engine was restarted and after the successful restart, the engine status 

returned to normal. The preconditions were no longer met and the monitor returned to 

normal. 
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Figure 10. Airborne parking monitoring results. 

7. Conclusions 

UAVs are widely used in various fields and their safety and reliability are of great 

concern. In order to improve the safety of UAVs, in this paper, we propose a fault detection 

mechanism based on a combination of a fault mode database and runtime verification. 

According to the fault type of the UAV identified from the fault mode database, the key 

safety requirements and a�ributes of the UAV during operation can be extracted. Com-

bining this information with runtime verification, the key safety a�ributes of the UAV 

during operation are monitored to achieve real-time monitoring and monitoring. Experi-

mental results show that the proposed method is valid and effective. It can realize efficient 

and automated real-time monitoring of a drone in flight, timely detect abnormal condi-

tions of the drone, and provide early warning. The method proposed in this paper can 

effectively improve the efficiency of safety monitoring in the process of UAV operation to 

significantly improve the safety level of UAVs. In future research, the extraction process 

of security a�ributes will be further enriched. Working out how to extract a safety a�rib-

ute that is closer to the specific fault type experienced by the drone is a shortcoming of 

this paper. At present, only system-level security a�ributes can be monitored and it is still 

very difficult to analyze the causes of anomalies. In the future, fault modes at the subsys-

tem level will be analyzed to extract more detailed security a�ributes. Safety a�ributes 

will also be combined with more accurate fault location, as it is of great importance to 

realize accurate fault location alongside rapid anomaly detection. 
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