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Abstract: To improve the limited number of fixed access points (APs) and the inability to dynamically
adjust them in fingerprint localization, this paper attempted to use drones to replace these APs.
Drones have higher flexibility and accuracy, can hover in different locations, and can adapt to different
scenarios and user needs, thereby improving localization accuracy. When performing fingerprint
localization, it is often necessary to consider various factors such as environmental complexity, large-
scale raw data collection, and signal strength variation. These factors can lead to high-dimensional
and complex nonlinear relationships in location fingerprints, thereby greatly affecting localization
accuracy. In order to overcome these problems, this paper proposes a kernel global locally preserving
projection (KGLPP) algorithm. The algorithm can reduce the dimensionality of location fingerprint
data while preserving its most-important structural information, and it combines global and local
information to avoid the problem of reduced information and poor dimensionality reduction effects,
which may arise from considering only one. In the process of location estimation, an improved
weighted k-nearest neighbor (IWKNN) algorithm is adopted to more accurately estimate the target’s
position. Unlike the traditional KNN or WKNN algorithms, the IWKNN algorithm can choose
the optimal number of nearest neighbors autonomously, perform location estimation and weight
calculation based on the actual situation, and thus, obtain more-accurate location estimation results.
The experimental results showed that the algorithm outperformed other algorithms in terms of both
the average error and localization accuracy.

Keywords: drones; localization; kernel global locally preserving projection (KGLPP); IWKNN

1. Introduction

With the emergence of unmanned aerial vehicles (UAVs), they are widely used to
establish wireless communication networks, utilizing their characteristics of flying in the
air to provide relatively stable and reliable communication services [1–3]. Due to their
high efficiency, low cost, and wide deployment potential, particularly in achieving the
next-generation mobile communication standards, UAVs have come to play a dominant
role [4]. This not only requires strict compliance with the necessary conditions for commu-
nication by network technology, but also requires conceptual processing to ensure excellent
performance and the promotion of the application of unmanned aerial vehicles in 5G
networks [5]. In the future, we can expect to use unmanned aerial vehicles extensively
in various human activity domains and leverage their capabilities for diverse intelligent
applications. These applications may include, but are not limited to search and rescue,
environmental monitoring, agricultural management, logistics delivery, and so on. It is ex-
pected that, with the development of unmanned aerial vehicle technology and the increase
in application scenarios, we will enter an era of drone-assisted networks [6].
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In recent years, the broadband communication industry has achieved rapid develop-
ment, including various types of fixed and mobile broadband communications, which can
be seen globally. However, not all areas have full coverage of broadband communication,
especially in some remote or mountainous areas. In the event of accidents in these areas, it
is difficult to accurately locate them, so drones can play a role in this situation, replacing
traditional fixed APs and solving the problem of zero-point coverage. In [7], the researchers
proposed a new UAV localization method that uses ultra-wideband radio signals as local-
ization signals and can effectively improve the localization performance in non-line-of-sight
situations by applying the correction values of ray-tracing algorithms to ultra-wideband
ranging data. However, this approach requires the deployment of multiple positioning
base stations to collect enough signal data to enable the positioning of the UAV. As a result,
the cost of deploying base stations increases accordingly. The work [8] proposed indoor
positioning of UAVs using WiFi signal ranging. However, this method needs to obtain the
exact location of each AP in advance to achieve distance-based WiFi localization. This fur-
ther increases the difficulty and complexity of UAV positioning. A new method for indoor
UAV localization was proposed in [9], which utilizes camera optical flow data and inertial
sensor information for fusion. However, the method requires processing a large amount of
image information in visual localization, which puts higher demands on the computing
power of computers, and general computers are unable to perform such high-intensity
operations, resulting in high energy consumption and low real-time performance.

With the rapid development of technology, the demand for positioning technology on
mobile terminals has also increased. Mobile-terminal-positioning technology has become
a very important research area in the applications of the Internet of Things and device-
to-device communication [10,11]. In the Internet of Things (IoT), communication and
collaboration between devices are crucial [12]. To ensure effective interaction and resource
utilization, location information is essential. The location information of mobile terminals
enables the quick establishment of direct communication links and facilitates resource
sharing. Whether indoors or outdoors, the location information of mobile terminals is
necessary. GPS and base station positioning technologies meet outdoor positioning needs,
but people spend most of their time indoors. However, in indoor environments, buildings
obstruct signals, resulting in rapid attenuation or even complete unavailability of GNSS
signals, which cannot fulfill the indoor navigation and positioning requirements [13]. In in-
door positioning, better performance can be obtained by using WiFi [14], Bluetooth [15],
RFID [16], ultrasound technology [17], frequency modulation broadcasting [18], infrared
technology, and other positioning technologies. Among the above methods, WiFi position-
ing technology has a wide infrastructure and is easy to deploy, so WiFi-based positioning
technology is widely used for indoor positioning [19–22]. Fingerprint positioning, as a
WiFi-signal-based indoor positioning technology, has received widespread attention in
recent years due to its high accuracy, low cost, and easy implementation.

The WLAN-based RSSI positioning fingerprint algorithm is mainly divided into offline
and online phases [23,24]. In the offline phase, the first step is to deploy some reference
points in the positioning area and record the WiFi signal strength indicator (RSSI) values at
each reference point. Data collection can be performed by placing specific access points
(APs) at certain locations inside the building. Then, at each known location, mobile devices
are used to scan and record the RSSI values between each AP. Next, the collected fingerprint
data are processed and stored. The processing involves preprocessing of the signal strength
indicator, such as removing outliers, smoothing, etc. Then, the processed fingerprint
data are stored in a database for subsequent positioning queries. In the online phase,
when a mobile device needs to be located, it scans for available APs in the vicinity and
obtains the RSSI values at the current location. Then, these real-time measured RSSI values
are compared and matched with the stored fingerprint database from the offline phase.
Typically, matching algorithms such as the k-nearest neighbor algorithm are used to find
the best-matching fingerprint set, thereby determining the location of the mobile device.
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In order to solve the problem of the indoor environment being able to affect the
localization, researchers have proposed various preprocessing methods for fingerprint data,
aiming to reduce the influence of the indoor environment on the fingerprint database and
avoid the influence of outliers and noise on the fingerprint database, so as to improve the
accuracy of building thefingerprint database. Li et al. proposed a KPCA-based indoor
localization method [25], which hinges on mapping data from the original space to a
high-dimensional feature space using nonlinear mapping, followed by linear principal
component analysis (PCA). To better handle nonlinear transformations, KPCA introduces
the kernel function trick, which replaces the dot product between data vectors in the feature
space [26] with a similarity measure calculated by the kernel function. However, despite its
commitment to capturing the nonlinear features of the data by introducing kernel functions,
the algorithm used by KPCA suffers from the same shortcomings as PCA. That is, only
the global Euclidean structure (or global variance) of the data is preserved, while the local
neighborhood structure of the data is ignored. This global nature makes it difficult for
KPCA to completely capture the complex relationships and local features between the data,
resulting in its poor performance in some cases.

He et al. used the locally preserving projection (LPP) method to reduce the dimen-
sionality of the original data and used KLPP as the kernel function expansion method
for LPP [27]. Compared with PCA and KPCA, the design ideas of LPP and KLPP focus
on retaining the local structural information of the data while ignoring the global data
structure, and this design idea may lead to a certain loss of data variance [28]. In performing
data dimensionality reduction, the LPP and KLPP methods focus on preserving the local
structural information of the data. This approach may result in a distorted global data
structure, and the data points are restricted to a very small area [29]. This is because these
methods do not properly restrict the projection distance between non-adjacent data points,
which leads to unsatisfactory processing of the algorithm for large datasets. To obtain a
reliable feature representation, we must take into account the global and local structure of
the dataset and perform dimensionality reduction using appropriate processing. In recent
research on data dimensionality reduction, some scholars have combined the PCA and LPP
algorithms to be able to preserve both global and local data structures in low-dimensional
spaces [28–31]. In the process of studying the combination of PCA and LPP, a technique
proposed by the scholar Luo [31], namely the global locally preserving projection (GLPP)
method, successfully integrates two dimensionality-reduction methods, PCA and LPP,
under the same framework. After experimental validation, the GLPP method can better
maintain the global and local characteristics of the data and combine the advantages of
both, while avoiding the effects of problems such as principal component rotation and no
samples in the neighborhood.

This paper proposes a novel nonlinear dimensionality-reduction method, called kernel
global locally preserving projection (KGLPP). The proposed method is an extension and
improvement of the global locally preserving projection (GLPP) algorithm, which employs
kernel techniques to map and process data for better preservation of the global and local
structure of the dataset. Compared to other dimensionality-reduction methods, KGLPP
offers significant advantages in reducing data redundancy, improving the accuracy and
reliability of feature selection. It is shown that we can obtain KPCA and KLPP methods
through the derivation of KGLPP. Both methods are the basis laid by KGLPP [32] and
can be considered as a special case of KGLPP. Based on this, KGLPP-based drone-assisted
fingerprint localization is proposed. The connection between the KGLPP algorithm and the
drone AP solution is as follows: (1) In the drone AP solution, drones are used as carriers for
APs, allowing them to freely move and adjust their positions within indoor environments.
(2) In this scenario, the KGLPP algorithm can be used to process the fingerprint data
collected from drone APs. It can reduce the high-dimensional fingerprint data to a lower
dimension, thereby reducing computational complexity and extracting the key features of
the data. (3) The KGLPP algorithm computes based on the similarity matrix of fingerprint
data, which is obtained through the collection by the drone APs. (4) By using the KGLPP
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algorithm for dimensionality reduction, we can effectively analyze and process the data
collected by the drone APs while preserving the local relationships and global structure of
the fingerprint data.

We applied the KGLPP algorithm to both the offline and online training phases of
fingerprint data to improve the accuracy and efficiency of fingerprint localization. In the
online phase of fingerprint localization, an improved weighted k-nearest neighbor (IWKNN)
algorithm was used for position estimation. Compared the with traditional k-nearest
neighbor algorithms, the IWKNN algorithm can adaptively select the required number
of fingerprints for location based on the needs and weight them according to the distance
and similarity of the fingerprint information, thus achieving more-accurate and -reliable
fingerprint position prediction. Therefore, combining the use of the KGLPP algorithm
and IWKNN algorithm can effectively help us process fingerprint data and significantly
improve the accuracy of fingerprint localization. The experimental results showed that the
algorithm proposed in this paper was significantly better than several other fingerprint-
localization algorithms. In summary, our contributions are as follows:

• Using drones to replace APs for localization is a new approach that has several advan-
tages compared to the traditional AP method. Drones can maneuver freely and obtain
comprehensive information, with relatively low requirements for application scenar-
ios. Its hovering function and built-in sensors can provide more-accurate data; with a
low cost and rapid response, it is suitable for various practical application scenarios.

• In this study, we propose a novel fingerprint-localization algorithm based on kernel
global locally preserving projection (KGLPP). The algorithm was trained using both
an offline fingerprint database and online fingerprint vectors. The KGLPP method
improves localization accuracy by combining global and local features, and its kernel-
based feature extraction exhibits powerful nonlinear mapping capabilities, making it
suitable for complex environments. The method also reduces computational complex-
ity and provides the real-time performance and responsiveness required for practical
applications. Furthermore, the KGLPP method exhibits robustness to interference
and changes in actual environments, thereby improving the accuracy and stability of
fingerprint-based positioning.

• In the localization process, an improved weighted k-nearest neighbor (IWKNN) al-
gorithm is used. This algorithm introduces a cumulative contribution parameter
and limits its range between 0 and 1, allowing it to adaptively select the required
number of nearest neighbors, thus avoiding the overfitting or underfitting problems
that may occur when directly specifying the k value and improving the accuracy of
the algorithm.

The organizational structure of this paper is as follows. In Section 2, we review some
background techniques on the KGLPP algorithm. In Section 3, we introduce the system
framework. In Section 4, the details of the algorithm are introduced. The explanatory
results of the simulation and experiment are provided in Section 5. The paper is concluded
in Section 6.

2. Background Techniques
2.1. Kernel Principal Component Analysis

Kernel principal component analysis (KPCA) is a nonlinear form of PCA [25]. The
KPCA method is based on the nonlinear mapping function φ; here, the kernel method
was used to map the original space to the feature space, and PCA was performed on the
feature space. Let the nonlinear transformation function φ be used as a mapping function to
transform the data in the original location fingerprint space F = ( f 1, f 2, · · · , f M) ∈ Rn×M

into a new feature space. Therefore, we mapped f 1, f 2, · · · , f M to the new feature space
according to this mapping function, so that, in this new feature space, f 1, f 2, · · · , f M are
represented as φ( f 1), φ( f 2), · · · , φ( f M), respectively. This feature space is defined by the
function φ(F). In addition, it was assumed that the sample data in this feature space were
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preprocessed to be centered (i.e., their average was adjusted to zero), which means that the
condition in Equation (1) is satisfied.

M

∑
j=1

φ( f j) = 0 (1)

By computing Equation (2), we can obtain the covariance matrix C in the feature space.

C =
1
M

φ(F)φT(F) =
1
M

M

∑
j=1

φ( f j)φ
T( f j) (2)

Based on the expression in Equation (3), we can obtain the eigenvalues λ and corre-
sponding eigenvectors V of the covariance matrix C.

CV = λV (3)

During the process of eigendecomposition, the obtained eigenvector V belongs to
the space generated by φ( f 1), φ( f 2), · · · , φ( f M). This means that the eigenvector V can
be seen as a vector in the linear space spanned by φ(F), and the dimension of this space
depends on the number of dimensions obtained after applying the mapping function φ(F)
to the original dataset F. In addition, in this feature space spanned by φ(F), any eigenvector
can be seen as a linear combination of φ(F), and the entire process can be expressed using
Equation (4).

V =
M

∑
j=1

αjφ( f j) = αφ(F) (4)

where αj is a coefficient vector of the same order as φ( f j), and by substituting
Equations (2) and (4) into Equation (3), we obtain

1
M

φ(F)φT(F)φ(F)α = λφ(F)α (5)

Multiplying φT(F) at the left of both sides in Equation (5) yields

1
M

φT(F)φ(F)φT(F)φ(F)α = λφT(F)φ(F)α (6)

Defining a kernel matrix K ∈ RM×M with Kij = k( f i, f j) = φ( f i) ·φ( f j) = φT( f i)φ( f j),
therefore, Equation (6) can be simplified as

MλKα = KKα⇒ λ̃α = Kα (7)

From Equation (7), it can be seen that obtaining the eigenvalues and eigenvectors
of matrix K is a crucial step in SVM, as this process directly leads to the eigenvalues
and corresponding eigenvectors of S. Assuming that the matrix K has M eigenvectors
and corresponding eigenvalues, we can perform dimensionality reduction from a high-
dimensional space to a low-dimensional space by only considering the l(l ≤ M) largest
eigenvalues λ̃1 ≥ λ̃2 ≥ · · · λ̃l−1 ≥ λ̃l of K and their corresponding l unit-orthogonalized
eigenvectors α = [α1, α2, · · · , αl ]

T . The feature extraction of feature space φ(F) is performed
to calculate the projection from φ(F) to the feature vector space. The jth sample is projected
to the kth coordinate axis V k, as shown in Equation (8).
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tkj =φT( f j)V k

= φT( f j)
N

∑
i=1

αkiφ( f i)

=
N

∑
i=1

αkiφ
T( f j)φ( f i)

(8)

2.2. Kernel Locally Preserving Projection

The kernel locally preserving projection (KLPP) algorithm is a nonlinear extension of
the locally preserving projection (LPP) [27] algorithm. KLPP utilizes kernel functions to
perform nonlinear mapping on data, effectively taking into account the nonlinear structure
that exists within the dataset and greatly improving dimensionality reduction performance.
For a given dataset F = ( f 1, f 2, · · · , f M)T , KLPP first applies a nonlinear mapping function
φ(·) to map the original data to a feature space, allowing effective data processing in a
low-dimensional space. Then, the KLPP algorithm performs a linear locally preserving
projection (LPP) procedure on the dataset φ(F) = (φ( f 1), φ( f 2), · · · , φ( f M))T , retaining
only the most-important features of the dataset. The KLPP eigenvector problem can be
represented as [31]

φ(F)QφT(F)V = λφ(F)DφT(F)V (9)

where Q = D−W is a Laplacian matrix. W is a symmetric weight matrix represent-
ing the connection strength between each node in a graph or network. D is a diagonal
matrix where each diagonal element dii = ∑j=1 wij represents the degree of each node.
For each element wij in matrix W , it represents the connection weight between sam-
ple points fi and fj. If fi and fj are adjacent and connected, then wij is not equal to
0; otherwise, wij is equal to 0. For a more-detailed definition of matrix W , please refer
to [30]. This method is similar to KPCA, representing feature vectors in the dataset as
V = ∑M

i=1 αiφ( f i) = αφ(F), where φ( f i) is the mapping function corresponding to sample
point fi in the original space. Meanwhile, the kernel matrix K ∈ RM×M is defined, where
each element kij = k( f i, f j) = φ( f i) · φ( f j) = φT( f i)φ( f j) represents the value of the
kernel function between sample points fi and fj, and multiplying φT(F) at the left of both
sides in Equation (9) yields

φT(F)φ(F)QφT(F)φ(F)α = φT(F)λφ(F)DφT(F)φ(F)α. (10)

Equation (10) can be simplified and re-expressed by Equation (11):

KQKα = λKDKα (11)

Assume the eigenvectors of Equation (11) are α1, α2, · · · , αM. The jth sample is pro-
jected to the kth coordinate axis V k, as shown in Equation (12).

tkj = φT( f j)V k

= φT( f j)
M

∑
i=1

αkiφ( f i)

=
M

∑
i=1

αkiφ
T( f j)φ( f i)

(12)

2.3. Global Locally Preserving Projection

Global locally preserving projection (GLPP) is a novel linear dimensionality-reduction
technique that combines both global optimization and local constraint mechanisms. This
algorithm can compress high-dimensional data into a lower-dimensional space while
preserving the local and global structure of the dataset in both the original and projected
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spaces [31]. Given an n-dimensional dataset F = ( f 1, f 2, · · · , f M) ∈ Rn×M, where M is
the number of samples, GLPP aims to find a transformation matrix A ∈ Rn×k that maps
the dataset F into a lower-dimensional space F′ = [ f ′1, f ′2, · · · , f ′M] ∈ Rk×M(k ≤ n),
where each sample f i is mapped to f ′i = AT f i. This process requires ensuring that the
low-dimensional representation F′ obtained through the mapping can effectively preserve
both the global and local structure of the original dataset F while remaining interpretable
and robust.

The problem of mapping dataset F to a one-dimensional vector f ′ is considered, which
involves mapping M samples F = ( f 1, f 2, · · · , f M) ∈ Rn×M to a one-dimensional vector
f ′ = [ f ′1, f ′2, · · · , f ′M], i.e., f ′T = αT F, where α is the transformation vector. To achieve
this goal, the GLPP algorithm can be used, whose objective function is as follows:

min
α
{JLocal(α), JGlobal(α)} (13)

where the sub-objective function JLocal(α) =
1
2 ∑ij( f ′i − f ′ j)

2wij represents the local reser-

vation of the data structure and the sub-objective function JGlobal(α) = − 1
2 ∑ij ( f ′i − f ′j )

2w̃ij
represents the global reservation of the data structure. Therefore, Equation (13) can be
converted into (14):

JGLPP(α) = min
α
{µJLocal(α) + (1− µ)JGlobal(α)}

= min
α

1
2
{µ ∑

ij
( f ′i − f ′ j)

2wij

− (1− µ)(∑
ij
( f ′i − f ′ j)

2w̃ij}

= min
α

1
2 ∑

ij
( f ′i − f ′ j)

2rij

= min
α
{∑

i
f ′ihii f ′Ti −∑

ij
f ′irij f ′Tj }

= min
α
{∑

i
αT f ihii f T

i α−∑
ij

αT f irij f T
j α}

= min
α

αT F(H− R)FTα

= min
α

αT FLFTα

(14)

where f ′i = αT f i(i = 1, · · · , M), f i represents the input vector, and f ′i represents the
corresponding output vector obtained through linear transformation via transformation
vector α. The weighting coefficient µ ∈ [0, 1] is used to balance the input vector and
the output vector obtained through a linear transformation. rij = µwij − (1− µ)w̃ij, and
R = µW − (1− µ)W̃ ; H is a diagonal matrix with hii = ∑j rij, and L = H− R is the
Laplacian matrix. wij represents the weight coefficient of adjacent vectors between the ith
vector and the jth vector, while w̃ij represents the weight coefficient of non-adjacent vectors
between the ith vector and the ith vector.

wij =

e−
|| f i− f j ||

2

ε1 i f f j ∈ Ωk( f i) or f i ∈ Ωk( f j)

0 otherwise
(15)

w̃ij =

e−
|| f i− f j ||

2

ε2 i f f j /∈ Ωk( f i) or f i /∈ Ωk( f j)

0 otherwise
(16)
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where ε1 and ε2 are empirical constants used to constrain the optimization problem and
prevent overfitting. Meanwhile, Ωk( f ) represents the k-nearest neighbors (KNNs) of f ,
composed of k samples with the smallest Euclidean distance to f . The final objective
function of GLPP is expressed as

min
α

αT FLFTα s.t.αT Nα = 1 (17)

where N = µFHFT + (1− µ)I with H = µD − (1− µ)D̃, I being the identity matrix.
By deriving and transforming Equation (17), we can find its equivalence to the eigenvec-
tor problem, which allows us to solve the problem by computing the eigenvalues and
eigenvectors of the corresponding matrix.

FLFTα = λNα (18)

According to Equation (18), we can obtain the eigenvectors α1, α2, · · · , αk, and their
corresponding eigenvalues are λ1 < λ2 < · · ·<λk. To maintain the global and local
structure of dataset F, the required transformation matrix A can be constructed as follows:

f j → f ′ j = AT f j, A = [α1, α2, · · · , αk] (19)

When µ = 0 and W̃ = 1n1T
n , PCA can be derived from GLPP. Similarly, when µ = 1,

LPP can also be derived from GLPP. They are two special examples of GLPP. More-detailed
information about GLPP is in [31].

3. System Framework

To clearly articulate the system architecture and facilitate subsequent research and
analysis, we first establish some basic symbols, and the system framework is shown in
Figure 1. Assume there are n drone access points (dAPs) and M reference points (RPs)
within this localization area, to construct a complete network coverage range and pro-
vide accurate location information. The position coordinates of each RP are recorded as
pj(xj, yj), and the information of these M reference points (RPs) forms a position space
P = (p1, p2, · · · , pM)T . Next, we collected RSSI signals from n dAPs at each RP. To ob-
tain a stable RSSI value, we need to perform q acquisitions for each reference node and
then average the RSSI values of these q acquisitions and use them as the original location
fingerprint information of this reference node pj(xj, yj). This results in an n-dimensional
vector fj = (rss1

j , rss2
j , · · · , rssn

j )
T , j ∈ (1, M) of original location fingerprints, where each

dimension corresponds to a dAP and contains the mean RSSI value of that dAP at that
reference node, where rssj =

1
q ∑

q
i=1 rss(j,i) in this vector represents the mean RSSI value

from the jth dAP after q samples. The original location fingerprint information of each
reference node is stored in the offline fingerprint database by a data storage technique,
forming an original location fingerprint space F = ( f 1, f 2, · · · , f M)T containing M × n
dimensions, as shown in Figure 2.

Each row vector in the matrix F is a vector consisting of multiple features, which
reflect the location fingerprints of the reference nodes. The raw location fingerprint data
are trained by using the KGLPP method, from which features for localization are extracted.
The feature location fingerprint space F′ = ( f ′1, f ′2, · · · , f ′M)T consists of the extracted
localization features and corresponds to the original location fingerprint space P, that is
the feature location fingerprint of pj(xj, yj) is f ′ j. During online positioning, we collected g
samples of RSSI signals at the target location to be positioned. By calculating the average
value, we used it as the online fingerprint T = (t1, t2, · · · , tn) for online fingerprinting,
as shown in Figure 3. Next, we applied the KGLPP algorithm to T to extract the online
feature fingerprint vector T ′ = (t′1, t′2, · · · , t′n). Then, a modified weighted k-nearest
neighbor (IWKNN) algorithm was used to estimate the location of the target by comparing
T ′ with the feature location fingerprint vector in the offline location fingerprint library.
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Figure 2. Offline fingerprint database.
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Figure 3. The online phase; the fingerprint data collected online is represented as (−76, −68,
−65, −70).

4. KGLPP Positioning Algorithm
4.1. KGLPP Transform of Original Position Fingerprint

Kernel global locally preserving projection (KGLPP) is a new nonlinear dimension-
reduction method by introducing a kernel function into GLPP. Use nonlinear mapping φ to
realize the mapping from the original location fingerprint space F ∈ Rn×M to the feature
space, that is f 1, f 2, · · · , f M is transformed into the sample point φ( f 1), φ( f 2), · · · , φ( f M)
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of the feature space, and assume that the data in the feature space meet the centralization
condition, as shown in (20):

M

∑
i=1

φ( f i) = 0 (20)

It can be seen from Equation (18) that the eigenvector problem of KGLPP is as follows:

φ(F)LφT(F)V = λ(µφ(F)HφT(F) + (1− µ)I)V (21)

The feature vector V belongs to the space generated by φ( f 1), φ( f 2), · · · , φ( f M),
and all feature vectors can be obtained by linearly combining φ( f 1), φ( f 2), · · · , φ( f M).
This combination can be represented using linear tensors, as shown in Equation (22).

V =
M

∑
i=1

αiφ( f i) = αφ(F) (22)

where α = [α1, α2, · · · , αM]T ∈ RM, in Equation (21); multiplying φT(F) on the left-hand
side of the equation, respectively, yields the new equation:

φT(F)φ(F)LφT(F)V = λφT(F)(µφ(F)HφT(F) + (1− µ)I)V (23)

Substituting Equation (22) into Equation (23), a new expression can be obtained.
To represent this new expression more conveniently, a kernel matrix K ∈ RM×M can
be defined:

Kij = k( f i, f j) = φ( f i) · φ( f j) = φT( f i)φ( f j) (24)

Thus, Equation (23) can be simplified as

K̃LK̃α = λ(µK̃HK̃ + (1− µ)K̃)α (25)

where K̃ represents the modified kernel matrix. Generally speaking, the data in the feature
space do not satisfy the centralization condition, which means that Equation (20) is not
valid. Therefore, it is necessary to adjust the data in the feature space to ensure that this
condition is met in practical applications. This adjustment process can be expressed using
Equation (26).

φ̃( f i) = φ( f i)−
1
M

M

∑
j=1

φ( f j) (26)

To simplify the expression, for M-dimensional vectors, we can introduce an
M-dimensional column vector 1M×1 = [1, 1, · · · , 1]T , where each element is equal to 1.
Therefore, Equation (26) can be expressed as:

φ̃( f i) = φ( f i)−
1
M

φ(F)1M×1 (27)

The centering operation is performed on all vectors in matrix φ(F), i.e.,

φ̃(F) = [φ( f 1), φ( f 2), · · · , φ( f M)]− 1
M

φ(F)1M×11M×1
T

= φ(F)− 1
M

φ(F)1M×11M×1
T

(28)

For convenient representation and simplification of notation, we used the matrix
1M = 1

M 1M×11M×1
T to represent an M×M matrix, which is composed of elements that

are all equal to 1
M . With this in mind, φ̃(F) can be represented in a more-compact form:

φ̃(F) = φ(F)− φ(F)1M (29)
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Therefore, the modified kernel matrix expression is

K̃ = φ̃(F)T φ̃(F)

= [φ(F)− φ(F)1M]T [φ(F)− φ(F)1M]

= K − K · 1M − 1M · K + 1M · K · 1M

(30)

Thus, we can obtain the K value by performing calculations on the raw data F and then
calculate the centralized K̃ matrix according to the above formula, assuming the first
l(l ≤ M) maximum eigenvalues λ1 ≥ λ2 ≥ · · · λl−1 ≥ λl from Equation (25), along
with their corresponding l unit orthogonal eigenvectors α = [α1, α2, · · · , αl ]

T . Feature
extraction in the feature space φ(F) is performed by calculating the projection of φ(F) onto
the eigenvector space. The projection of the ith sample onto the kth coordinate axis V k is
given by Equation (31).

tki = φT( f i)V k

= φT( f i)
M

∑
j=1

αkjφ( f j)

=
M

∑
j=1

αkjφ
T( f i)φ( f j)

=
M

∑
j=1

αkjK̃( f i, f j)

=
M

∑
j=1

αkjK̃ij

(31)

To make it more compact, the entire feature space φ(F) is projected onto V k to obtain
Equation (32).

tk = φT(F)φ(F)αk = K̃αk (32)

Computing using Equation (32) yields the feature position fingerprint space F′, which
is composed of K̃α, where α = (α1, α2, · · · , αl)

T is an l × M-dimensional matrix. This
means that, by using the KGLPP processing method, we can transform the original n×
M-dimensional position fingerprint space into a low-dimensional l ×M(l ≤ n) feature
position fingerprint space F′, thereby simplifying the data representation and reducing
computational complexity.

In this algorithm, selecting the Gaussian kernel function as the kernel function can
effectively handle nonlinear problems. The Gaussian kernel function has a smooth shape,
which can smooth the input data, and can be adjusted to different datasets by adjusting
the parameters appropriately. Therefore, choosing the Gaussian kernel function in the
KGLPP algorithm can improve the accuracy and stability of the model and better handle
complex datasets. The Gaussian kernel function can be expressed mathematically as shown
in Equation (33).

k(xi, xj) = exp(
||xi − xj||
−γ2 ) (33)

The flow chart shown in Figure 4 illustrates the process of the KGLPP algorithm.
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Figure 4. KGLPP algorithm flow chart.

4.2. Selection of Balance Parameter µ

The selection of balance parameter µ is very important for KGLPP. It is used to balance
the impact of global and local information in node-embedding algorithms. The value range
of this parameter is 0 ∼ 1. The closer it is to 1, the more emphasis is placed on local infor-
mation; the closer it is to 0, the more emphasis is placed on global information. Choosing
the appropriate balancing coefficient can be adjusted according to the characteristics of the
dataset. A larger balance parameter places greater emphasis on the protection of the local
structure, while a smaller balance parameter places greater emphasis on the protection
of the global structure. In order to achieve a balance between protecting local and global
structures, µ can be chosen according to the following rules.

µSLocal = (1− µ)SGlobal (34)

In this formula, SLocal = ρ(Q) and SGlobal = ρ(Q̃) represent the scales of maintaining
local and global structures, respectively, where ρ(·) denotes the matrix’s spectral radius.
Thus, µ is

µ =
ρ(Q̃)

ρ(Q) + ρ(Q̃)
(35)

By choosing the lower and upper bounds of µ, two special instances of the KGLPP
algorithm can be obtained. When µ = 0 and the non-weighted adjacency matrix W̃ = 1n×n,
this means the neighborhood relationships between the data points are ignored. In this
case, Equation (25) will become more-simplified:

−K̃Q̃K̃α = λK̃α (36)
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where Q̃ = D̃− W̃ ∈ Rn×n is a symmetric matrix and, in particular, for undirected graphs,
W̃ is also symmetric. The diagonal elements of Q̃ are q̃ii = n− 1, and the off-diagonal
elements are q̃ij = −1(i 6= j). It can be intuitively observed that, if the sample size n is large

enough and the matrix Q̃
n is approximately equal to the identity matrix, an approximate

solution to Equation (37) can be obtained.

K̃K̃α = −λ

n
K̃α→ K̃α = λ̃α (37)

This is equivalent to the eigenvector problem in Equation (7) of KPCA, except that
their eigenvalues are scaled according to different coefficients. Therefore, KPCA can be
regarded as a special case of the KGLPP problem; it only considers the global data structure.
On the other hand, if we choose µ = 1 and ignore the contribution of the global data
structure, Equation (25) will be simplified to

K̃QK̃α = λK̃DK̃α (38)

This is exactly the process of solving the eigenvector problem in KLPP represented by
Equation (11). Therefore, KLPP can be regarded as another special case of KGLPP that only
preserves local structure information without considering global structure information.

4.3. Online Location Fingerprint Processing

During online positioning, we collected g RSSI signal samples as R = (r1, r2, · · · , rg)T

at the target location to be located. Then, calculate the mean of each column of R. We
used it as the online fingerprint T = (t1, t2, · · · , tn) for online fingerprinting. To ensure
consistency between offline and online data, we need to perform KGLPP training on
the online RSSI vectors before target positioning. Apart from the different expressions
of the correlation variables, the online KGLPP training process is consistent with the
offline process. By processing the online RSSI signal using KGLPP, the vector–matrix
T ′ = (t′1, t′2, · · · , t′n) is obtained. T ′ can now be used for target positioning.

T =
∑

g
i=1 r
g

= (t1, t2, · · · , tn) (39)

4.4. IWKNN Positioning

Calculate the Euclidean distance between the online location fingerprint T ′ and each
fingerprint F′ in the offline fingerprint database, as shown in the following equation.

Dj(T ′, F′ j) =

√√√√ l

∑
i=1

(t′i − rss′ ji)2, j ∈ (1, M) (40)

Dj(T ′, F′ j) is a measure of the similarity between T ′ and F′ j. The smaller its value,
the more similar T and F′ j are to each other. F′ j is a vector representation of specific features
extracted at location pj(xj, yj), which can be used to describe the feature information at
that location. Arrange these similarities Dj in order from smallest to largest, and find the h
feature location fingerprints and location information pj(xj, yj) corresponding to the top h
smallest similarity values, such that

∑h
j=1

1
Dj+l0

∑M
j=1

1
Dj+l0

≥ σ (41)

where l0 is set to a very small number to avoid the denominator being zero. σ is a positive
number less than 1, which measures the importance of the location fingerprint in terms
of the cumulative contribution. Specifically, when a location fingerprint is added to the
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cumulative contribution, the degree of its impact on the total contribution is limited by
σ, i.e., the smaller σ is, the smaller the impact of that location fingerprint on the total
contribution. The purpose of this design is to balance the contribution of each location
fingerprint and prevent certain location fingerprints from being too prominent in their
contribution and affecting the performance of the whole system.

Equation (41) provides a method to determine the magnitude of the h value au-
tonomously, i.e., by calculating the value of h given the number of position fingerprints M
and σ. After determining the value of h, we can use Equation (42) to calculate the location
estimate (x̂, ŷ).

(x̂, ŷ) =
∑h

j=1(
1

Dj+l0
pj)

∑h
j=1

1
Dj+l0

(42)

4.5. Complexity Analysis of KGLPP

We conducted the following analysis on the complexity of KGLPP. The dimension
of the fingerprint dataset is [M, n], where M represents the number of samples and n
represents the sample dimension:

(1) For a given dataset, we need to calculate the Euclidean distance between each pair of
samples. The complexity of this calculation is O(M2n).

(2) The complexity of computing the output value of the Gaussian kernel is O(M2).
(3) The complexity of constructing an adjacency weight matrix is O(M2log(M)).
(4) The complexity of constructing a non-adjacency weight matrix is O(M2log(M)).
(5) The complexity of constructing the objective function is O(M2).
(6) The complexity of eigenvalue decomposition is O(n3).
(7) The overall complexity of KGLPP is mainly determined by the distance calculation

and eigenvalue decomposition, which is O(M2n + n3).

5. Simulation and Experiment

In this paper, we used simulation data to verify the effectiveness of our proposed
algorithm. We selected the following four existing algorithms for comparison, which have
been widely used for similar problems:

(1) KNN [33]: During online localization, the Euclidean distance is used to find the RPs
closest to the target, and the average position of these RPs is used to estimate the
position of the target.

(2) WKNN [34]: WKNN differs from KNN in that it assigns different weights to different
RPs when estimating the target location.

(3) KPCA-IWKNN [25]: The KPCA-IWKNN algorithm combines the KPCA and IWKNN
algorithms, using the KPCA algorithm to downscale and extract features from the
data, then using the IWKNN algorithm to localize the target.

(4) KLPP-IWKNN [31]: The KLPP-IWKNN algorithm uses the KLPP algorithm for feature
extraction and dimensionality reduction first and then uses the improved IWKNN
algorithm for localization.

In this experiment, we evaluated and compared five different methods using three
metrics: mean error (ME), localization accuracy, and cumulative distribution function
(CDF). The mean error is the average distance between the estimated position of the
positioning system and the real position. Assuming that the real position of target j is
Zj and its estimated position is Z′j according to the prediction of the localization system,
the localization error is Ej = ||Z′j − Zj||, and the ME is obtained according to N times of
localization as

ME =
1
N

N

∑
j=1

Ej. (43)
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Localization accuracy is an important metric for assessing the performance of a local-
ization system and measures the degree of agreement between the localization results and
the true position [25]. Localization errors are known to be an unavoidable problem in local-
ization systems because they are influenced by a variety of factors. Therefore, in practical
applications, the localization error is acceptable for a certain range, but if the localization
error exceeds this range, then it may lead to the degradation of system performance and
unsatisfactory application results. Suppose the actual position of the target to be measured
is Zj for a given allowable error distance (ED) and the position of the target is predicted by
the localization system to obtain the predicted position as Z′j. If the distance between the
predicted position Z′j and the real position Zj is less than ED, we can assume that this local-
ization is accurate. That is, if |Z′j − Zj| ≤ ED, then Z′j is accurate localization; conversely,
if |Z′′j − Zj| > ED, then Z′′j is the wrong localization. The concept of accurate localization
is illustrated in Figure 5. Specifically, localization accuracy is the ratio of the number of
accurate positions to the total number of positions when the localization system performs
multiple localization tasks. Assuming the total number of localization is B, the number
of accurate localization is C, and the accuracy of localization is E, the expression for the
accuracy of localization is:

E =
C
B

(44)

Figure 5. Accurate localization concept.

5.1. Simulation Settings

In this paper, we verified the algorithm using simulation data to evaluate the per-
formance of the algorithm. In this simulation experiment, we used a specific simulation
environment with the following relevant parameters. We used an Asus laptop (Asus,
Taipei, Taiwan) as the hardware device and implemented the algorithm on the Matlab
2016a software platform.

To better simulate real-world scenarios, a two-ray ground reflection (TRGR) channel
path loss model was adopted to construct the fingerprint database [35]. Specifically, the path
loss of the TRGR channel is expressed as follows:

PL = 10 log10

(
Pt

Pr

)
+ x = 10log10

∣∣∣∣∣ λ

4π

(√
Glos
s

+
Γ(θ)

√
Ggre−j∆ϕ

s′

)∣∣∣∣∣
2
+ x, x ∼ N(0, δ2) (45)

where s represents the length of the line-of-sight (LOS) path, s′ represents the length of the
ground reflection path, while d represents the horizontal distance between the transmitter
and receiver. ht represents the height of the transmitter, and hr represents the height of the
receiver. Glos represents the combined antenna gain along the LOS path; Ggr represents
the combined antenna gain along the ground reflection path; λ denotes the wavelength
of transmission; Γ(θ) represents the reflection coefficient, where θ = actan( ht+hr

d ) and
x ∼ N(0, δ2) is the noise.

To simulate a realistic wireless communication environment, the parameters for the
TRGR model path loss were set as follows: the length of ht was 2.5 m; the length of hr was



Drones 2023, 7, 480 16 of 22

1.55 m; λ was 0.123 m (where the carrier frequency was 2440 MHz); Γ(θ) = sin(θ)−xv
sin(θ)+xv

, where

xv =

√
ε−cos(θ)2

ε , ε = 4.5 + 0.5i was used to represent the relative permittivity of dry soil.
In order to verify the effectiveness of the algorithm, we needed to establish a reliable

test environment first. We chose a basic fingerprint location method and set up a topo-
graphic map as a base before testing. As shown in Figure 6. The topographic map was
20 m ×10 m ; the size of the RP grid was 2 m; the number of dAPs was 18. To ensure accu-
racy, the RSSI data of each RP and TP were collected 100 times. By averaging the collected
data, more reliable and stable mean values can be obtained, enabling a more-accurate
assessment of the signal strength between the RPs and TPs.
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Ax
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Figure 6. Basic simulation scenario.

During the simulation process, we employed the Gaussian kernel function as the
kernel function for KGLPP, KPCA, and KLPP. The width γ of the Gaussian kernel function
was empirically set to 2. For the WKNN and KNN algorithms, we chose the four nearest
neighbors to compute the similarity. The value of σ was set to be 0.3.

5.2. Illustrative Results

Figures 7 and 8 illustrate the trend of algorithmic localization accuracy variation
when the random noise intensity (The random noise intensity refers to the degree or
strength of the random noise introduced into the fingerprint data during the simulation
process. It is a parameter in the simulation environment used to control the intensity and
range of the noise impact.) was within the range of 5 dBm to 25 dBm, with an average
localization error and error distance of 1.5 m. In this experiment, the number of dAPs
was 18, the value of σ was 0.3, and the dimension of the feature location fingerprint
space was eight. The results in the figures show that the localization performance and
localization accuracy of all localization algorithms gradually decreased when the noise
increased. The algorithm proposed in this paper outperformed the other four algorithms
in terms of average positioning error and positioning accuracy. This advantage stemmed
from the ability of KGLPP to maintain both global and local structural information during
the dimensionality reduction process. It takes into account not only the similarity between
data samples (local structure), but also the characteristics of the overall data distribution
(global structure). By constructing a graphical structure in high-dimensional space and
using the graph Laplacian operator for dimensionality reduction, KGLPP is able to preserve
the relationships between data samples, thereby maintaining the structure and geometric
properties of the data as much as possible after dimensionality reduction. When there is
noise present, KPCA and KLPP often suffer from interference, leading to distorted results
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after dimensionality reduction. In contrast, KGLPP effectively mitigates the negative impact
of noise by preserving structural information. This is because KGLPP takes into account
the similarity between samples when constructing the graphical structure, mapping similar
samples to neighboring positions in the reduced-dimensionality space. This similarity
constraint helps suppress the influence of noise on the dimensionality-reduction results,
thereby improving the accuracy and reliability of the data after dimensionality reduction.
With the increase of noise, KGLPP-IWKNN exhibited better performance compared to
KPCA-IWKNN and KLPP-IWKNN. This is because KGLPP can better preserve structural
information, while KPCA and KLPP perform dimensionality reduction without considering
global and local structures, making them susceptible to noise interference. Additionally,
KGLPP possesses the characteristics of nonlinear mapping, which enables it to better adapt
to the distribution of complex data and further enhance robustness against noise. Therefore,
KGLPP-IWKNN can provide more-accurate localization results in the presence of noise.
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Figure 7. Variation of the mean error of the algorithm with noise.
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Figure 8. Variation of localization accuracy with noise.

In the following localization simulation experiments, the random noise in the simula-
tion environment was 20 dBm.
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With 100 localization experiments performed, Figure 9 presents the curve of the mean
localization error with the number of dAPs when the number of offline deployed dAPs was
in the range of 2 to 14. In this experiment, the number of dAPs was 14, the value of σ was
0.3, and the dimension of the feature location fingerprint space was eight. As the number
of dAPs deployed offline gradually increased, the localization error of all algorithms
gradually decreased. This is because the increased number of dAPs led to more matching
dimensions, which improved the accuracy of RP matching. In addition, according to
the results in Figure 9, when the number of dAPs in the localization area was small,
KGLPP-IWKNN exhibited higher localization accuracy compared to other algorithms.
This is because KGLPP employs a global–local structure-preservation method during
the dimensionality-reduction process, aiming to preserve the spatial layout features of
fingerprint data and the relationships between neighboring samples to the greatest extent
possible. This global–local structure preservation helps reduce information loss during the
dimensionality-reduction process and improves localization accuracy. Moreover, KGLPP
also exhibits strong adaptability by dynamically adjusting the projection method during the
dimensionality-reduction process based on different signal features. As the number of dAPs
increased, the signal features in indoor environments became more diverse and complex.
However, KGLPP was able to adapt better to this situation, thereby improving the accuracy
of localization. In addition, KGLPP obtained more-representative and -discriminative
fingerprint features through feature extraction during the dimensionality reduction process.
Compared to methods such as KPCA and KLPP, KGLPP is able to better preserve useful
information, effectively differentiate different fingerprint samples when projecting data
into a lower-dimensional space, and reduce localization errors.
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Figure 9. Variation of the mean localization error with increasing number of deployed dAPs.

With an error distance of 1.5 m, Figure 10 shows the trend of improved localization
accuracy of all algorithms with an increase in the number of dAPs, indicating that the
proposed algorithm in this paper had higher localization accuracy compared to the other
algorithms. In this experiment, the number of dAPs was 14, the value of σ was 0.3, and the
dimension of the feature location fingerprint space was eight. When the number of dAPs
was six, the proposed algorithm in this paper achieved a localization accuracy of 62%,
while other comparative algorithms required more dAPs to achieve this accuracy. This
indicated that the algorithm proposed in this paper had higher efficiency in terms of dAP
utilization and could achieve higher localization accuracy with a limited number of dAPs.

Figure 11 illustrates the cumulative distribution function curve of the localization
error. In this experiment, the number of dAPs was 14, the value of σ was 0.3, and the
dimension of the feature location fingerprint space was eight. Compared with the other



Drones 2023, 7, 480 19 of 22

algorithms, KGLPP can effectively reduce the data noise and redundancy, preserve useful
features, and improve the robustness and discriminability of features. These advantages
enable KGLPP to more accurately identify the relationship between the signal strength and
location during the localization process, thereby improving the accuracy of localization.

Figure 12 shows the variation of the average localization error of the proposed algo-
rithm with respect to the change of the σ value. When σ = 0, the nearest neighbor was
used for localization, and the localization error was the highest because only one RP was
used for localization, making it very difficult to achieve high-precision localization. As σ
increased, the number of neighbors required for localization by the IWKNN algorithm
also increased, which could more accurately reflect the contribution of RPs and reduce
localization error. Therefore, as the σ value increased, the average localization error corre-
spondingly decreased. It was found in the experiment that the average localization error
reached the minimum value when σ was set to 0.3; However, when σ was greater than
0.8, in order to improve the accuracy, the algorithm used more neighboring nodes for
localization, but these redundant location fingerprints would bring more errors, resulting
in an increase in the mean localization error. Therefore, the value of σ was set to 0.3 in the
experiment to reduce localization errors.
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Figure 10. Variation of localization accuracy with the number of dAPs.
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Figure 11. Cumulative distribution function of localization error.
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Figure 12. Variation of mean localization error with the value of parameter σ.

6. Conclusions

This paper aimed to address the issues of limited and non-dynamically adjustable
fixed access points (APs) in fingerprint localization and proposed the use of drones as
a replacement for traditional APs to improve flexibility and accuracy. Drones can hover
at different positions to adapt to various scenarios and user needs. However, factors
such as environmental complexity, the massive collection of raw data, and changes in
signal strength can all affect the accuracy of fingerprint localization. To address these
issues, this study proposed a kernel global locally preserving projection (KGLPP) algorithm
that deals with location fingerprint data by reducing dimensionality while taking into
account both global and local information, avoiding poor dimensionality reduction due to
considering single pieces of information. In the location estimation stage, this paper used
an improved weighted k-nearest neighbor (IWKNN) algorithm to more accurately estimate
the target location. The IWKNN algorithm is different from the traditional KNN or WKNN
algorithms in that it can adaptively select the optimal number of neighbors to improve
localization accuracy. The experimental results demonstrated that the algorithm proposed
in this paper outperformed other algorithms and achieved higher localization accuracy.
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