
Citation: Yang, M.; Liu, G.; Zhou, Z.;

Wang, J. Partially Observable Mean

Field Multi-Agent Reinforcement

Learning Based on Graph Attention

Network for UAV Swarms. Drones

2023, 7, 476. https://doi.org/

10.3390/drones7070476

Academic Editor: Diego

González-Aguilera

Received: 22 May 2023

Revised: 14 July 2023

Accepted: 14 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Partially Observable Mean Field Multi-Agent Reinforcement
Learning Based on Graph Attention Network for UAV Swarms
Min Yang 1, Guanjun Liu 1,* , Ziyuan Zhou 1 and Jiacun Wang 2

1 Department of Computer Science and Technology, Tongji University, Shanghai 201804, China;
minyang@tongji.edu.cn (M.Y.); ziyuanzhou@tongji.edu.cn (Z.Z.)

2 Department of Computer Science and Software Engineering, Monmouth University,
West Long Branch, NJ 07764, USA; jwang@monmouth.edu

* Correspondence: liuguanjun@tongji.edu.cn

Abstract: Multiple unmanned aerial vehicles (Multi-UAV) systems have recently demonstrated
significant advantages in some real-world scenarios, but the limited communication range of UAVs
poses great challenges to multi-UAV collaborative decision-making. By constructing the multi-UAV
cooperation problem as a multi-agent system (MAS), the cooperative decision-making among UAVs
can be realized by using multi-agent reinforcement learning (MARL). Following this paradigm, this
work focuses on developing partially observable MARL models that capture important information
from local observations in order to select effective actions. Previous related studies employ either
probability distributions or weighted mean field to update the average actions of neighborhood agents.
However, they do not fully consider the feature information of surrounding neighbors, resulting
in a local optimum often. In this paper, we propose a novel partially multi-agent reinforcement
learning algorithm to remedy this flaw, which is based on graph attention network and partially
observable mean field and is named as the GPMF algorithm for short. GPMF uses a graph attention
module and a mean field module to describe how an agent is influenced by the actions of other
agents at each time step. The graph attention module consists of a graph attention encoder and a
differentiable attention mechanism, outputting a dynamic graph to represent the effectiveness of
neighborhood agents against central agents. The mean field module approximates the effect of a
neighborhood agent on a central agent as the average effect of effective neighborhood agents. Aiming
at the typical task scenario of large-scale multi-UAV cooperative roundup, the proposed algorithm
is evaluated based on the MAgent framework. Experimental results show that GPMF outperforms
baselines including state-of-the-art partially observable mean field reinforcement learning algorithms,
providing technical support for large-scale multi-UAV coordination and confrontation tasks in
communication-constrained environments.

Keywords: multi-UAV systems; graph attention network; multi-agent reinforcement learning; mean
field theory; partially observable

1. Introduction

The Multi-UAV system [1] has gained significant traction in various domains in recent
years, in which multiple unmanned aerial vehicles collaborate to accomplish tasks. It has
been widely applied in many fields, including Multi-UAV transportation, Multi-UAV area
search and Multi-UAV formation flying [2]. It is noteworthy that a Multi-UAV cooperative
transportation system [3–5] has been developed and implemented by our research group
following the trend.

Multi-agent systems (MAS) [6,7] consist of multiple entities called agents that interact
in a shared environment aiming to achieve some individual or collective objective. Multi-
UAV system can be considered as a specific type of MAS. In a Multi-UAV system, each
UAV is treated as an intelligent agent that perceives the environment, makes decisions, and

Drones 2023, 7, 476. https://doi.org/10.3390/drones7070476 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7070476
https://doi.org/10.3390/drones7070476
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-7523-4827
https://orcid.org/0000-0002-2649-8666
https://orcid.org/0000-0003-4176-3947
https://doi.org/10.3390/drones7070476
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7070476?type=check_update&version=1

Drones 2023, 7, 476 2 of 22

executes actions to collaboratively accomplish tasks. Therefore, the theories and methods
in MAS research can provide guidance for the coordinated control of Multi-UAV systems.
Among them, reinforcement learning, as a widely applied approach, can be used to achieve
decision-making and collaboration among agents. Recently, reinforcement learning [8]
has found widespread applications in various domains, including video games [9–11],
task division [12], and education [13]. Multi-Agent Reinforcement Learning (MARL) [14]
is an extension of reinforcement learning in MAS, and it has been applied in some real-
world scenarios such as autonomous mobile [15,16] and multi-UAV collaborative scenarios.
Shi et al. [3] successfully migrated MARL to real-world multi-UAV handling tasks by
employing Recurrent Multi-Agent Deep Deterministic Policy Gradient (R-MADDPG) and
domain randomization techniques. Liu et al. [17] proposed the Extensible Multi-Agent
Deep Deterministic Policy Gradient (Ex-MADDPG) algorithm to address dynamic task
assignment problems in UAV swarms, in which the practicality and effectiveness of the
Ex-MADDPG algorithm were validated using a swarm of nine UAVs.

For large-scale MAS [18], it is unrealistic for agents to observe the entire environment
globally limiting their ability to find appropriate actions. Furthermore, as the number
of agents increases, joint optimization of all agents in a multi-agent environment may
result in a huge joint state-action space, which also brings scalability challenges. Therefore,
traditional MARL is difficult to apply to large-scale multi-agent environments, especially
when the number of agents increases exponentially. To tackle this drawback, recent studies
address the scalability issues of multi-agent reinforcement learning [19–21] by introducing
mean field theory, i.e., the multi-agent problem is reduced to a simple two-agent prob-
lem. However, Yang et al. [19] assumes that each agent can observe global information,
which is unreasonable in real-world MAS. As shown in Figure 1, multiple UAVs cooperate
to perform search for fire detection, in which each UAV cannot get the global environ-
ment information, but it can obtain the information of other UAVs within the limited
communication range. Thus, the adaptive communication strategy are required in the
multi-UAV tasks such as collaborative search and rescue mission, which are typical partially
observable scenarios.

UAV Communication range Ignition point

Figure 1. Multi-UAV system in forest fire detection.

Therefore, it is necessary to study large-scale multi-agent reinforcement learning algo-
rithms in partially observable cases [22]. In addition, researchers have intensively studied
mean field-based multi-agent reinforcement learning algorithms to improve performance
in partially observable cases. One way is to further decompose the Q-function of the
mean field-based multi-agent reinforcement learning algorithm [23,24]. Another way uses
probability distribution or weighted mean field to update the mean action of neighborhood
agents [25–28]. The graph attention and mean field mechanism are also utilized in [29],

Drones 2023, 7, 476 3 of 22

which measure the interaction strength between agents with fixed relative positions and
global information. Differently, we consider the dynamic changes of the agent’s position
and the death scene of the agent and construct a more flexible partial observable graph
attention network based on the mean field theory for partially observable scenarios.

This paper focuses on identifying the neighborhood agents that may have the greater
influence on the central agent in a limited observation space, in order to avoid the local
optimum issue. Since the graph neural network [30–32] can fully aggregate the relationship
between the central agent and its surrounding neighbors, we propose a graph attention-
based mechanism to calculate the importance of neighbor agents to estimate the average
actions more efficiently.

The main contributions of this paper are as follows:

• We propose a Graph attention network supported Partially observable Mean Field
Multi-agent reinforcement learning (GPMF) algorithm, which can learn a decentral-
ized agent policy from an environment without requiring global information of an
environment. This is particularly valuable in scenarios with large-scale agents and lim-
ited observability, where existing methods lack sufficient judgment of the importance
of neighbor agents.

• We provide theoretical evidence that the settings of the GPMF algorithm approach
Nash equilibrium, showcasing its sound theoretical foundation.

• Experiments on three challenging game tasks in the MAgents framework show that
GPMF outperforms two baseline algorithms as well as the state-of-the-art partially
observable mean field reinforcement learning algorithms. These results validate
the effectiveness of GPMF in solving dynamic cooperation problems in multi-UAV
scenarios and facilitating collaboration among UAVs.

2. Related Work
2.1. Multi-UAV System Based on Multi-Agent Reinforcement Learning

The development of multi-agent reinforcement learning provides new solutions for
multi-UAV missions. Qie et al. [33] formulated the Multi-UAV Target Assignment and
Path Planning (MUTAPP) problem as a multi-agent system, and adopted the Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) algorithm to solve the MUTAPP problem.
For large-scale multi-UAV systems, Azzam et al. [34] developed MARL-based cooperative
navigation of UAV swarms via centralized training and decentralized execution (CTDE),
and the method was extended to work with a large number of agents , without retraining
or changing the number of agents during training. Wang et al. [35] proposed a novel
MARL paradigm, weighted mean field reinforcement learning, and conducted experiments
on a large-scale UAV swarm confrontation environment to verify the effectiveness and
scalability of the method. However, most of the group goals of existing MARL-based multi-
UAV cooperation are based on a single cooperation or confrontation environment, and
the complex environment of cooperation and confrontation has not been fully considered.
In addition, the UAV observation range in the real scene is limited, so it is necessary to
consider the solution of large-scale multi-UAV system cooperation and confrontation under
the limitation of communication.

2.2. Large-Scale Partially Observable Multi-Agent Reinforcement Learning

Large-scale partially observable multi-agent reinforcement learning can provide tech-
nical support for the realization of large-scale multi-UAV tasks under communication
constraints. For large-scale multi-agent environments, Yang et al. [19] introduced the mean–
field theory, which approximates the interaction of many agents as the interaction between
the central agent and the average effects from neighboring agents. However, partially
observed multi-agent mean–field reinforcement learning algorithms still have a space to
improve. Some researchers further decompose the Q-function of the mean field based
multi-agent reinforcement learning algorithm. Zhang et al. [23] trained agents through
the CTDE paradigm, transforming each agent’s Q-function into its local Q-function and its

Drones 2023, 7, 476 4 of 22

mean field Q-function, but this approach is not strictly partially observable. Gu et al. [24]
proposed a mean field multi-agent reinforcement learning algorithm with local training
and decentralized execution. The Q-function is decomposed by grouping the observable
neighbor states of each agent in a multi-agent system, so that the Q-function can be updated
locally. In addition, some researchers have focused on improving the mean action in mean
field reinforcement learning. Fang et al. [25] added the idea of mean field to MADDPG,
and proposed a multi-agent reinforcement learning algorithm based on weighted mean
field, so that MADDPG can adapt to large-scale multi-agent environment. Wang et al. [28]
proposed a weighted mean field multi-agent reinforcement learning algorithm based on
reward attribution decomposition by approximating the weighted mean field as a joint
optimization of implicit reward distribution between the central agent and its neighbors.
Zhou et al. [26] used the mean action of neighbor agents as a label, and trained a mean
field prediction network to replace the mean action. Subramanian et al. [27] proposed
two multi-agent mean field Q-learning algorithms based on partially observable (POMFQ)
settings: Fixed Observation Radius (FOR) and Probabilistic Distance-based Observability
(PDO), extracting partial samples from Dirichlet or Gamma distribution to estimate par-
tially observable mean action. Although these methods achieved good results, they did not
fully consider the feature information of surrounding neighbors.

2.3. Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) are able to mine graph structures from data. In multi-
agent reinforcement learning, GNNs can be used to model interactions between agents.
In recent works, graph attention mechanism has been used for multi-agent reinforcement
learning. Zhang et al. [36] integrated the importance of the information of surrounding
agents based on the multi-head attention mechanism, effectively integrated the key infor-
mation of the graph to represent the environment and improved the cooperation strategy
of agents with the help of multi-agent reinforcement learning. DCG [37] decomposed
the joint value function of all agents into gains between pairs of agents according to the
coordination graph, which can flexibly balance the performance and generalization abil-
ity of agents. Li et al. [38] proposed a deep implicit coordination graph (DICG) structure
that can adapt to dynamic environments and learn implicit reasoning about joint actions
or values via graph neural networks. Ruan et al. [39] proposed a graph-based coordi-
nation strategy, which decomposes the joint team strategy into a graph generator and a
graph-based coordination strategy to realize the coordination behavior between agents.
MAGIC [40] accurately represented the interactions between agents during communication
by modifying the standard graph attention network and compatible with differentiable
directed graphs.

Our approach differs from related works above in that it uses a graph attention
mechanism to select surrounding agents that are more important to the central agent in
a partially observable environment. GPMF uses a graph attention module and a mean
field module to describe how an agent is influenced by the actions of other agents at each
time step, where graph attention consists of a graph attention encoder and a differentiable
attention mechanism, and finally outputs a dynamic graph to represent the effectiveness
of the neighborhood agent to the central agent. The mean field module approximates
the influence of a neighborhood agent on a central agent as the average influence of the
effective neighborhood agents. Using these two modules together is able to efficiently
estimate the mean action of surrounding agents in partially observable situations. GPMF
does not require global information about the environment to learn decentralized agent
policies from the environment.

Drones 2023, 7, 476 5 of 22

3. Motivation and Preliminaries

In this section, we model discrete-time non-cooperative multi-agent task as a stochastic
game (SG). SG can be defined as a tuple (S, A1, . . . , AN , r1, . . . , rN , p, γ), where S represents
the true states of the environment and Aj is the set of actions of the j-th agent. The reward
function for agent j is rj : S × A1 × · · · × AN → R. State transitions are specified as
p : S× A1 × · · · × AN → Ω(S). γ is the discount factor, that represents the importance
of future rewards. It is a constant between 0 and 1. The disadvantage is that it cannot be
applied to the coexistence of multiple agents. Yang et al. [19] introduced mean field theory,
which approximates the interaction of many agents as the interaction between the average
effect of a central agent and neighboring agents, and solves the scalability problem of SG.

The Nash equilibrium of general and random games can be defined as a strategy
tuple

(
π1
∗, · · · , πN

∗
)
, for all s ∈ S and ∀πi ∈ Πi, there is vj(s, π1

∗, · · · , πi
∗, · · · , πN

∗
)
≥

vj(s, π1
∗, · · · , πi, · · · , πN

∗
)
. This shows that when all other agents are implementing their

equilibrium strategy, no one agent will deviate from this equilibrium strategy and receive
a strictly higher reward. When all agents follow the Nash equilibrium strategy, the Nash
Q-function of agent j is Qj

∗(s, a). Partially observable stochastic games can generate a
partially observable Markov decision process (POMDP), we review POMDP in Section 3.1
and analyze the partially observable model from a theoretical perspective. Section 3.2
first introduces the globally observable mean field multi-agent reinforcement learning,
and then introduces the partially observable mean field Q-learning algorithm (POMFQ)
based on the POMDP framework, and analyzes the existing part of the observable in detail.
The limitation of mean field reinforcement learning POMFQ(FOR) [27] is that the feature
informations of surrounding neighbors are not fully considered. In a partially observable
setting, the observable neighborhood agent information oj of agent j can be used to better
mine the relationship between features through a graph attention network. Introducing
graph attention networks into partially observable mean field multi-agent reinforcement
learning can further improve their performance, and Section 3.3 briefly describes graph
attention networks.

3.1. Partially Observable Markov Decision Process

We mainly study Partially Observable Markov Decisions Process (POMDP) [14,22,41,42].
The POMDP of n agents can be represented as a tuple

〈
N, S,

{
Ai}n

i=1, T, Z, R, O, γ
〉

, where

N = {1, . . . , n} represents the set of agents, S denotes the global state, Aj is the set of
action spaces of the j-th agent, Z represents the observation space of the agents, and
the agent j receives observation oj ∈ Oj through the observation function Z(s, j) : S ×
N → O, and the transition function T : S × A1 × . . . × AN × S 7→ [0, 1] represents the
environment transitions from a state to another one. At each time step t, the agent j
chooses an action aj

t ∈ Aj, gets a reward rj
t : S × Aj 7→ R w.r.t. a state and an action.

γ ∈ [0, 1] is a reward discount factor. Agent j has a stochastic policy π j conditioned
on its observation oj or action observation history τ j ∈

(
Z× Aj), and according to the

all agents’ joint policy π
∆
=
[
π1, . . . , πN], the value function of agent j under the joint

strategy π is vj
π(s) = ∑∞

t=0 γtEπ,p

[
rj

t|s0 = s
]
, and then the Q-function can be formalized as

Qj
π(s, a) = rj(s, a) + γEs′∼p

[
vj

π(s′)
]
. Our work is based on the POMDP framework.

3.2. Partially Observable Mean Field Q-Learning

Mean field reinforcement learning [19] approximates interactions among multiple
agents as two-agent interactions, where the second agent corresponds to the average effect
of all other agents. Yang et al. [19] decomposes the multi-agent Q-function into pairwise
interacting local Q-functions as follows:

Qj
π(s, a) =

1
N j ∑

k∈N(j)
Qj

π

(
s, aj, ak

)
(1)

Drones 2023, 7, 476 6 of 22

where N j is the index set of the neighbors of the agent j and aj denotes the discrete action
of the agent j and is represented by one-shot coding. Mean field Q-function is cyclically
updated according to Equations (2)–(5):

Qj
π

(
st, aj

t, āj
t

)
= (1− α)Qj

π

(
st, aj

t, āj
t

)
+ α
[
rj

t + γvj(st+1)
]

(2)

where
vj(st+1)= ∑

aj
t+1

π j
(

aj
t+1 | st+1, ãj

t

)
Qj

π

(
st+1, aj

t+1, ãj
t

)
(3)

āj
t =

1
N ∑

k 6=j
ak

t , ak
t ∼ πk

(
· | st, āk

t−1

)
(4)

π j
(

aj
t | st, āj

t−1

)
=

exp
(
−βQj

π

(
st, aj

t, āj
t−1

))
∑

aj′
t ∈Aj

exp
(
−βQj

π

(
st, aj′

t , āj
t−1

)) (5)

where āj
t is the mean action of the neighborhood agents, rj

t is the reward for agent j at time
step t, vj is the value function of agent j, and β is the Boltzmann parameter. Yang et al. [19]
assumed that each agent has global information, and for the central agent, the mean action
of the neighboring agents is updated by Equation (4). However, in a partially observable
multi-agent environment, the way of calculating the mean action in Equation (4) is no
longer applicable. In the case of partial observability, Subramanian et al. [27] take U
samples from the Dirichlet distribution to update the mean action of Equation (4), and
achieve better performance than the mean field reinforcement learning algorithm. The
formula is as follows:

Dj(θ) ∝ θ
η1−1+c1
1 · · · θηL−1+cL

L ; ãj
i,t ∼ Dj(θ; η + c); ãj

t =
1
U

i=U

∑
i=1

ãj
i,t (6)

where L denotes the size of the action space, c1, . . . , cL denotes the number of occurrences
of each action, η is the Dirichlet parameter, θ is the classification distribution. But the
premise of the Dirichlet distribution is to assume that the characteristics of each agent are
independent to achieve better clustering based on the characteristics of neighboring agents.
In fact, in many multi-agent environments, the characteristics of each agent have a certain
correlation, but the Dirichlet distribution does not consider this correlation, which makes it
unable to accurately describe the central agent and the neighborhood agents. There will be
some deviations in the related information. Figure 2 shows a multi-robot system, each robot
has a limited observation range and does not know all the information of the environment.
The goal of the robot is to find the exit by observing the state of the surrounding robots.
The action space of the agent is {up, down, le f t, right}. A central agent surrounded by a red
circle is influenced by surrounding agents. We use the Dirichlet distribution to simulate and
calculate the probability of the central agent moving in all directions, where the Dirichlet
parameter η is set to 1, and the result is as follows:

pup = 0.25
pdown = 0.5
ple f t = 0.143
pright = 0.1

(7)

Drones 2023, 7, 476 7 of 22

①

②

③ Inclined exit

High weight

Low weight

Optimal exit

up

down

right

left

0.25

0.5

0.143 0.107

Figure 2. A multi-agent system looking for an exit, where the red agent in the center is assigned by
Dirichlet to compute actions.

It can be seen that the probability of the agent moving down is the highest, which is
essentially due to a large number of agents moving to down, so the robot is more inclined to
move in the direction of exit 3. However, the closest exit to it is actually exit 1, and moving
up is the best move. The Dirichlet distribution results in a local optimal solution rather
than finding the optimal action.

Zhang et al. [43] believe that the correlation between two agents is crucial for multi-
agent reinforcement learning. First, the paper [43] calculated the correlation coefficient
between each pair of agents, and then shielded the communication among weakly cor-
related agents, thereby reducing the dimensions of the state-action value network in the
input space. Inspired by Zhang et al. [43], for large-scale partially observable multi-agent
environments, it is more necessary to select important neighborhood agents. In our paper,
we adopt a graph attention network to filter out more important neighborhood agents,
discard unimportant agent information, and achieve more accurate estimation of the mean
action of neighborhood agents.

3.3. Graph Attention Network

Graph neural network [30] can better mine the graph structure form among data
elements. Graph attention network (GAT) [44] is composed of a group of graph attention
layers, which model the effect of neighbor nodes on central node. The attention score can
be computed as Equations (8) and (9).

eij = (Wmi‖Wmj) (8)

αij = softmaxj
(
eij
)
=

exp
(
eij
)

∑
k∈Ni

exp(eik)
(9)

where eij is the attention coefficient of each pair of nodes, indicating the importance of node
j to node i. Finally, the output features are obtained by weighting the input features hj, and
the update rule for each node i is:

ei = σ

(
∑

j∈Ni

αijWhj

)
(10)

Drones 2023, 7, 476 8 of 22

where ei represents the feature of node i, Ni is the set of adjacent nodes of node i, and σ(·)
is a nonlinear activation function.

4. Approach

In this section, we propose a Graph attention network supported Partially observable
Mean Field Multi-agent reinforcement learning (GPMF) algorithm, which can be applied to
large-scale partially observable multi-UAV cooperative pursuit tasks, where he communi-
cation range of each UAV is limited, and it can only observe the characteristic information
of other UAVs within a fixed range. The multi-UAV cooperative pursuit problem is es-
sentially a mixed scenario of competition and cooperation. Competition means that each
UAV competes for resources to maximize rewards, while cooperation means that UAVs
cooperate to achieve a common goal. Incorporating the multi-UAV cooperative pursuit
problem into a multi-agent system (MAS), as shown in Figure 3, each UAV is abstracted
as an agent, and then trained in a dynamic environment based on our proposed GPMF
framework. The overall architecture of the GPMF algorithm is depicted in Figure 4. It has
two important components: the Graph Attention Module and the Mean Field Module. In
the Graph Attention Module, the information observed locally by each agent is spliced
firstly. Then the high-dimensional feature representations are obtained by a latent space
mapping process which followed by a one-layer LSTM network to obtain the time-series
correlation of the target agent, and the hidden layer of the LSTM is used as the input of
the graph attention module to initialize the constructed graph nodes. Then to enhance
the aggregation of neighbor agents to target agent, a similar process is implemented as
a FC mapping network followed by a GAT layer. After that, the final representation of
agents are obtained by a MLP layer with the input of the representations of target agent
and other observable agents. Finally, we adopt layer-normalized method to obtain the
adjacency matrix

{
Gt}N

1 via Gumbel Softmax. In the Mean Field Module utilizes the

adjacency matrix
{

Gt}N
1 from Graph Attention Module to obtain adopting action from

important neighbor agents, in which the joint Q-function of each agent j approximates the
Mean Field Q-function Qj(s, a) ≈ Qj

POMF

(
s, aj, ãj) of important neighbor agents, where the

Q-value is Partially Observable Mean Field(POMF) Q-value, and ãj is the mean action of
the important neighborhood agents that are partially observed by agent j. Each component
is described in detail below.

UAV 1 UAV j UAV N

Agent 1 Agent j Agent N

GPMF Framework

M
o

d
el

M
o

d
el

M
o

d
el

Execution layer

… …

… …

MAS training layer

Figure 3. Abstract diagram of multi-UAV system.

Drones 2023, 7, 476 9 of 22

Graph Attention
Feature Vector Module

Effective Feature Vector

Agent 1

Agent 𝑗

Agent 𝑁

…

…

…

…

Get 𝑴 Effective neighbors

𝐺𝑡

FC

LSTM

FC

Gumbel Softmax

MLPGAT Encoder

……

𝑒1
𝑡

𝑒𝑖
𝑡

𝑒𝑁𝑗

𝑡

…

𝐸𝑡

…

Agent 1

Agent 𝑗

Agent 𝑁

…

𝑥1
𝑡 𝑥𝑁𝑗

𝑡

𝑁𝑗 neighbors

……

… …

… …

Local Observable

Get Mean action

Mean Field Module

…

𝑥𝑖
𝑡

Figure 4. Schematic of GPMF. Each agent can observe the feature information of other agents within
a fixed range, input it into the Graph Attention Module, and output an adjacency matrix to represent
the effectiveness of the neighborhood agent to the central agent.

4.1. Graph Attention Module

To more accurately determine the influence of agent j’s neighbor Nj on itself, we need
to be able to extract useful information from the local observations of agent j. The local
observations of each agent include the embedding information of neighboring agents. For
each agent j and each time step t, the information of a local observation of length Lj is

expressed as ot
j =

(
xt

1, xt
2, · · · , xt

Nj

)
, where xt

Nj
represents the feature of the Nj-th neighbor

agent of agent j, and ot
j ∈ RNj×D, xt

i ∈ R1×D. Lj is concatenation of the embedding

features of each neighbor. Our goal is to learn an adjacency matrix
{

Gt}N
1 to extract more

important embedding information for the agent j from local observations at each time step
t. Since graph neural networks can better mine the information of neighbor nodes, we
propose a graph attention structure suitable for large-scale MAS. This structure focuses
on information from different agents by associating weights with observations based on
the relative importance of other agents in their local observations. The graph attention
structure is constructed by overlaying a graph attention encoder and a differentiable
attention mechanism. For the local observation ot

j of agent j at time step t, ot′
j is first

encoded using a fully connected layer (FC) , and is passed to the LSTM layer to generate
the hidden state ht

j and cell state ct
j of agent j, where ht

j serves as the input of the graph
attention module to initialize the constructed graph nodes:

ht
j, ct

j = LSTM
(

e
(

ot
j

)
, ht

j, ct
j

)
(11)

where e(·) is a fully connected layer representing the observed encoder. ht
j is encoded as

a message:
mt

j = e
(

ht
j

)
(12)

where mt
j is the aggregated information of the neighborhood agents observed by agent j at

time step t. The input encoding information Mt is passed to the GAT encoder and hard
attention mechanism, where the hard attention mechanism consists of MLP and Gumbel
Softmax function. Finally, the output adjacency matrix

{
Gt}N

1 is used to determine which
agents in the neighborhood have an influence on the current agent. The GAT encoder helps
to efficiently encode the agent’s local information, which is expressed as:

{Mt}N
1 = fSched

(
mt

1, · · · , mt
N
)

(13)

Drones 2023, 7, 476 10 of 22

Additionally, we take the form of the same attention mechanism as GAT [44], expressed
as follows:

αS
ij =

exp
(

LeakyReLU
(

aT
S

[
WSmt

i ||WSmt
j

]))
∑

k∈Nt
j∪{j}

exp
(

LeakyReLU
(

aT
S

[
WSmt

j ||WSmt
k

])) (14)

where LeakyReLU(·) is the activation function, aS ∈ RD is the weight vector, Nt
j ∪ {j}

represents the central agent j and its observable neighborhood agent set, and WS ∈ RD×D

is the weight matrix. The node feature of agent j is expressed as:

et
j = ELU

 ∑
i∈Nt

j∪j

αS
ijWSmt

i

 (15)

where ELU(·) is an exponential linear unit function. Connecting the features of each node
in pairs: Et

i,j =
(

et
i ||et

j

)
, we can get a matrix Et ∈ RN×Nj×2D, where Et

i,j represents the

relevant features of agent j. Taking Et as the input of MLP, which is followed by a Gumbel
Softmax function, then the connected vector Gt

j can be obtained. The connected vector Gt
j

consists of elements gij, where i represents the neighbors of the central agent j. The element
gt

ij = 1 in the adjacency matrix indicates that the action of the agent i will have an impact
on the agent j. Conversely, gt

ij = 0 means that the agent’s actions have no effect on the
agent j.

4.2. Mean Field Module

This Graph Attention Module selects important Mj agents from the neighbors Nj of
agent j, and compute the mean of the actions of the choosed neighbor agents:

ãj
t =

1
Mj

∑
k∈Nj

ak
t · Gt

j , ak
t ∼ πk

(
· | st, ãk

t

)
(16)

where · is the element-wise multiplication.
In the above formula, ak represents the important neighborhood agent for agent j.

Then the Q-value of each agent is shown in Equation (17). Note that the Q-value here is a
partially observable Q-value.

Qj
GPMF

(
sj

t, aj
t, ãj

t

)
= (1− α)Qj

GPMF

(
sj

t, aj
t, ãj

t

)
+ α
[
rj

t + γv
(

sj
t+1

)]
(17)

where the value function vj is expressed as

vj
(

sj
t+1

)
= ∑

aj
t+1

π j
(

aj
t+1 | sj

t+1, ãj
t

)
Qj

GPMF

(
sj

t+1, aj
t+1, ãj

t

)
(18)

According to the above graph attention mechanism, more important neighborhood
agents are obtained. The new mean action ãj

t is calculated by Equation (16), and then the
strategy π

j
t of agent j is updated by the following formula:

π j
(

aj
t | sj

t, ãj
t−1

)
=

exp
(
−βQj

GPMF

(
sj

t, aj
t, ãj

t−1

))
∑

aj′
t ∈Aj

exp
(
−βQj

GPMF

(
sj

t, aj′
t , ãj

t−1

)) (19)

Drones 2023, 7, 476 11 of 22

4.3. Theoretical Proof

This subsection is devoted to proving that the setting of GPMF is close to the Nash
equilibrium [45]. Subramanian et al. [27] showed that in partially observable cases, the
fixed observation radius (FOR) setting is close to a Nash equilibrium, where the mean
action of each agent’s neighborhood agents is approximated by a dirichlet distribution.
First, we state some assumptions, which are the same as literature [27], and are followed by
all the theorems and analyses below.

Assumption 1. For any i and j, there is limt→∞ τi
j (t) = ∞ w.p. 1.

This assumption guarantees a probability of 1 that old information is eventually
discarded.

Assumption 2. Suppose some measurability conditions are as follow: (1) x(0) is F (0)-measurable.
(2) For each i,j and t, wi(t) is F (t + 1)-measurable. (3) For each i, j and t, αi(t) and τi

j (t)
are F (t)-measurable. (4) For each i and t, B[wi(t)|F (t)] = 0. (5) B

[
w2

i (t)|F (t)
]
≤ A +

B maxj maxτ≤t
∣∣xj(τ)

∣∣2, where A and B are deterministic constants.

Assumption 3. The learning rates satisfy 0 ≤ αi(t) < 1.

Assumption 4. Suppose some conditions for the F mapping are as follows: (1) If x ≤ y, then
F(x) ≤ F(y), that is, F is monotonic; (2) F is continuous; (3) When t → ∞, F is limited to
the interval [x∗ − D, x∗ + D], where x∗ is some arbitrary point; (4) If e ∈ Rn is a vector that
satisfies all components equal to 1, then F(x)− pe ≤ F(x + pe) ≤ F(x + pe) + pe, where p is a
positive scalar.

Assumption 5. Each action-value pair can be accessed indefinitely, and the reward is limited.

Assumption 6. Under the limit t→ ∞ of infinite exploration, the agent’s policy is greedy.

This assumption ensures that the agent is rational.

Assumption 7. In each stage of a stochastic game, a Nash equilibrium can be regarded as a global
optimum or saddle point.

Based on these assumptions, Subramanian et al. [27] give the following lemma:

Lemma 1 ([27]). When the Q-function is updated using the partially observable update rule in
Equation (2), and Assumptions 3, 5, and 7 hold, the following holds for t→ ∞:

|Q∗(st, at)−QPOMF(st, at, ãt)| ≤ 2D (20)

where Q∗ is the Nash Q-value, QPOMF is the partially observable mean field Q-function, and D
is the bound of the F map. The probability that the above formula holds is at least δL−1 , where
L = |A|.

In our GPMF setting, for partially observable neighborhood agents, we choose to
select a limited number of important agents by using graph attention, and then update the
POMF Q-function. The following theorem proves that the setting of GPMF Q-function is
close to Nash equilibrium.

Drones 2023, 7, 476 12 of 22

Theorem 1. The distance between the MFQ (globally observable) mean action ā and the GPMF
(partially observable) mean action ã satisfies the following inequality:

∣∣∣ãj
t − āj

t

∣∣∣ ≤ √ 1
2Nj

log
2
δ

(21)

where Nj is the number of observed neighbor agents, ã is the partially observable mean action obtained
by graph attention in Equation (16), ā is the globally observable mean action in Equation (4), when
t→ ∞, the probability >= δ.

Proof of Theorem 1. Assuming that each agent is globally observable, the mean of impor-
tant agents selected by graph attention is close to the true underlying global observable ā.
Since the GPMF Q-function is updated by taking finite samples through graph attention,
the empirical mean is ã.

Theorem 2. If the Q-function is Lipschitz continuous with respect to the mean action, i.e., M is con-
stant, then the MF Q-function QMF and GPMF Q-function QGPMF satisfy the following relation:

|QGPMF(st, at, ãt−1)−QMF(st, at, āt−1)| ≤ M× L× log
2
δ
× 1

2Nj
(22)

where L = |A|, A is the action space of the agent, when the limit t → ∞, the probability is
≥ (δ)L−1.

Proof of Theorem 2. To prove Theorem 2, first consider a Q-function that is Lipschitz
continuous for all ā and ã. According to Theorem 1, the above formula can further deduce
the result of Theorem 2. The total number of components is equal to the action space L.
The bound of Theorem 1 is probability >= δ, and since there are L random variables,
the probability of Theorem 2 is at least (δ)L−1. When the first L− 1 random variable is
fixed, the deterministic last ā component satisfies the relationship that the sum of the
individual components is 1. Since each agent’s action is represented by a one-hot encoding,
the ã′ component of GPMF also satisfies the relationship that the sum of the individual
components is 1, and the component of the agent’s mean action does not change due to the
application of graph attention. The proof of Theorem 2 ends.

Theorem 3. A stochastic process in form xi(t + 1) = xi(t) + αi(t)
(

Fi
(

xi(t)
)
− xi(t) + wi(t)

)
remains bounded in the range [x∗ − 2D, x∗ + 2D] on limit t→ ∞ if Assumptions 1, 2, 3 and 4 are
satisfied, and are guaranteed not to diverge to infinity. Where D is the boundary of the F map in
Assumption 4.

Proof of Theorem 3. This theorem can be proved by extending the results in Tsitsiklis [46].
The result of Theorem 3 can then be used to derive Theorem 4.

Theorem 4. When the Q-function is updated using the partially observable update rule in
Equation (17), and Assumptions 3, 5, and 7 hold, the following holds for t→ ∞:

|Q∗(st, at)−QGPMF(st, at, ãt)| ≤ 2D (23)

where Q∗ is the Nash Q-function, QGPMF is the partially observable mean field Q-function, and
D is the bound of the F map. The probability that the above formula holds is at least δL−1 , where
L = |A|.

Drones 2023, 7, 476 13 of 22

Proof of Theorem 4. Theorem 4 shows that the GPMF update is very close to the Nash
equilibrium at the limit t→ ∞, i.e., reaching a plateau for stochastic policies. Therefore, the
strategy of Equation (19) is approximately close to this plateau. Theorem 4 is an application
of Theorem 3, using Assumptions 3, 5 and 7. However, in MARL, a Nash equilibrium is
not optimal, but only a fixed-point guarantee. Therefore, to achieve better performance,
each selfish agent will still tend to pick a limited number of samples. To balance theory
and performance when selecting agents from the neighborhood, an appropriate number of
agents (more efficient agents) need to be used for better multi-agent system performance.
This paper uses the graph attention structure to filter out more important proxies, which
can better approximate the Nash equilibrium.

4.4. Algorithm

The implementation of GPMF follows the related work of the previous POMFQ [27],
the difference is that the graph attention structure is used to select the neighborhood agents
that are more important to the central agent when updating the mean action. Algorithm 1
gives the pseudocode of the GPMF algorithm. It obtains effective neighbor agents by
continuously updating the adjacency matrix Gt

j to update the agent’s strategy.

Algorithm 1 Partially Observable Mean Field MARL Based on Graph Attention Network

Initialize the weights of Q-function Qφj , Q
φ

j
−

, replay buffer B, GAT encoder, MLP layers

and mean action āj for each agent j ∈ 1, . . . , N.
for episode = 1, 2, . . . , E do

for t ≤ T and not terminal do
For each agent j, calculate the hidden state ht

j according to Equation (11), and
encode ht

j as a message mt
j (Equation (12)).

For each agent j, sample aj fron policy induced by Qφj (Equation (19)).
For each agent j, pass the encoded information mt

j to the GAT encoder and hard
attention mechanism to output the adjacency matrix Gt

j .

For each agent j, calculate the new neighborhood agent mean action āj by
Equation (16).

Receive the full state of environment st, action a =
[
a1, . . . , aN], reward[

r = r1, . . . , rN], and the next state s′ =
[
s1, . . . , sN].

Store transition 〈s, a, r, s′, ā〉 in B, where ā =
[
ā1, . . . , āN] is the mean action.

for j = 1, . . . , N do
Sample a minibatch of K experiences 〈s, a, r, s′, ā〉 from replay buffer B.
Set yj = rj + γvGPMF

φ
j
−

(s′) according to Equation (18).

Minimize the loss L
(
φj) = 1

K ∑
(
yj− Qφj

(
s′, aj, āj))2

to update Q network.

For each agent j, update params of target network :φj
− ← τφj + (1− τ)φ

j
−.

In Algorithm 1, for each agent j, the Q-function is parameterized by φ and trained by
minimizing the loss function L

(
φj), where yj is the target mean field value calculated with

the weights φ
j
− and finally trained by the gradient optimizer.

5. Experiments

For the multi-UAV cooperative pursuit scenario, the multi-agent reinforcement learn-
ing training platform Magent is used to simulate and verify the GPMF algorithm. The
same experimental environments as [27] are adopted in our work, in which three three
different strategies are designed in the MAgent framework [47]. It is noteworthy that the
simulation environment is a partially observable multi-agent cooperative task environment,
which is used to simulate the cooperative pursuit of multi-UAV swarms. In these three

Drones 2023, 7, 476 14 of 22

tasks, the map size is set to 28*28, where the observation range of each UAV is 6 units.
The state space is the concatenation of the feature information of other UAVs within each
UAV’s field of view, including location, health, and grouping information. The action space
includes 13 move actions and 8 attack actions. In addition, each UAV is required to handle
at most 20 other UAVs that are closest. To ensure a comprehensive understanding of the
evaluation process, we provide detailed descriptions of the experimental setup and the
training procedures are employed within the MAgent framework. This allow us to ana-
lyze the performance of the GPMF and evaluate its effectiveness in dealing with dynamic
multi-UAV cooperative pursuit tasks.

5.1. Environment and Tasks

We will evaluate on three tasks: Multibattle game, Battle-Gathering and Predator-Prey.

• Multibattle game: There are two groups of UAVs participating in the competition
scenario, each consisting of 25 UAVs. UAV gets −0.005 points for each movement,
−0.1 points for attacking open space, 200 points for collision causing enemy UAV to
fall, and 0.2 points for successful collision. Each UAV has a size of 2 × 2, a maximum
health of 10 units, and a speed of 2 units. At the end of the mission, the team with the
most surviving UAVs wins. If two teams have the same number of surviving UAVs,
the team with the highest reward wins. Each team’s reward is the sum of the rewards
of the individual UAVs in the team.

• Battle-Gathering game: The distribution of resources in the environment is uniform,
and each UAV can observe the location of all resources. In addition to rewards for
shooting down enemy UAVs, each UAV can also occupy resources to obtain rewards.
UAVs get 5 points for collides enemy UAVs, and the rest of the reward settings are the
same as the Multibattle environment.

• Predator-Prey game: There are 40 predators (big UAVs) and 20 preys (small UAVs),
respectively simulating two groups of UAVs. Each large UAV is a square with a size
of 2 × 2, with a maximum health of 10 units and a speed of 2 units. The small UAV is
a 1 × 1 square with a maximum health of 2 units and a speed of 2.5 units. In order to
complete the task, the large UAV must collide with more small UAVs, and the small
UAVs must try to evade. In addition, large UAVs and small UAVs have different
reward functions. Specifically, large UAVs get −0.3 points for attacking spaces, 1 point
for successful collisions with small UAVs, 100 points for shooting down small UAVs,
−1 point for collisions with small UAVs, and large UAV drops earn 0.5 points. Unlike
the Multibattle environment, when the round ends for a fairer duel, if the two teams
have the same number of surviving UAVs, it is judged as a draw.

5.2. Evaluation

We consider four algorithms for the above three games: Mean Field Q-learning (MFQ),
Mean Field Actor-Critic (MFAC) [19], Partially Observable Mean Field Q Learning-Fixed
Observation Radius (POMFQ(FOR)) [27] and GPMF, where MFQ and MFAC are baselines
and POMFQ(FOR) is the state-of-the-art algorithm.

The original baselines MFQ and MFAC were proposed by Yang et al. [19] based on
global observability, and the idea was to approximate the influence of the neighborhood
agents on the central agent as their mean actions, thereby updating the actions of the
neighborhood agents. We fix the observation radius of each agent in the baseline MFQ
and MFAC and apply it to a partially observable environment, where neighbor agents
are agents within a fixed range. The POMFQ(FOR) algorithm introduces noise in the
mean action parameters to encourage exploration, uses Bayesian inference to update the
Dirichlet distribution, and samples 100 samples from the Dirichlet distribution to estimate
partially observable mean field actions. The GPMF algorithm evaluates the effectiveness
of neighborhood agents within a fixed range through the graph attention mechanism,
selects more important neighborhood agents, and updates the mean action by averaging
the actions of these agents.

Drones 2023, 7, 476 15 of 22

5.3. Hyperparameters

In the three tasks, each algorithm was trained for 2000 epochs in the training phase,
generating two sets of A and B sets of models. In the test phase, 1000 rounds of con-
frontation were conducted, of which the first 500 rounds were the first group A of the first
algorithm against the second group B of the second algorithm, and the last 500 groups were
the opposite. We would like to emphasize that our primary objective was to compare the
performance of different algorithms, rather than conducting adversarial experiments be-
tween the same algorithms. Our goal was to assess the effectiveness of various approaches
and identify the algorithm that performs best in the given tasks. The hyperparameters of
MFQ, MFAC, POMFQ(FOR) and GPMF are basically the same. Table 1 lists the hyperpa-
rameters during training of the four algorithms, and the remaining parameters can be seen
in [27].

Table 1. Hyperparameters for four algorithms training.

Parameter Value Description

α 10−4 learning rate
β decays linearly from 1 to 0 exploration rate
γ 0.95 discount rate
B 1024 replay buffer
h 64 the hidden layer size in GAT
K 64 mini-batch

temperature 0.1
the soft-max layer

temperature of the actor in
MFAC

6. Results and Discussion

In this section, we evaluate the performance of GPMF in three different environments,
including Multibattle, Battle-Gathering, and Predator-Prey.

We benchmark against three algorithms, MFQ, MFAC and POMFQ(FOR), in which
POMFQ(FOR) achieved the state-of-the-art performance to our best knowledge.

We implement our method and comparative methods on three different tasks. Note
that we only used 50 UAVs in our experiments and did not test more UAVs, this is be-
cause the proportion of other UAVs that each UAV can see is more important than the
absolute number.

6.1. Reward

Figure 5 shows how the reward changes as the number of iterations increases during
training. We plot the reward changes for the four algorithms in different environments
during the first 1000 iterations. Since each algorithm is self-training which results in a large
change in the reward, we use the least squares method to fit the reward curve. In Figure 5,
the solid black line represents the reward of the GPMF algorithm. From Figure 5a–c, it can
be seen that the reward of the GPMF algorithm increases rapidly, indicating that the GPMF
algorithm can converge rapidly in the early stage, and the convergence performance is
better than the other three algorithms.

Drones 2023, 7, 476 16 of 22

6.2. ELO Calculation

We use ELO Score [48] to evaluate the performance of the two groups of agents, the
advantage of which is that it takes into account the strength gap between the opponents
themselves. ELO ratings are commonly used in chess to evaluate one-on-one situations,
and this approach can similarly be extended to N-versus-N situations. For the algorithm
proposed in the paper, we record the total rewards of the two teams of agents during each
algorithm confrontation, which are R1 and R2, respectively. Then the expected win rates of
the two groups of agents are:

E1 =
1

1 + 10(R2−R1)/400
, E2 =

1

1 + 10(R1−R2)/400
(24)

where E1 + E2 = 1. By analyzing the actual and predicted winning rates of the two groups
of agents, the new ELO score of each team after the game ends can be obtained:

R1
′ = R1 + K(S1 − E1), R2

′ = R2 + K(S2 − E2) (25)

where R1 represents the actual winning or losing value, 1 means the team wins, 0.5 means
the two teams are tied, and 0 means the team loses. K is represented as a floating coefficient.
To create a gap between agents, we set K to 32. For each match, we faced off 500 times and
calculated the average ELO value for all matches.

0 200 400 600 800 1000
Episode

1000

0

1000

2000

3000

4000

5000

6000

R
ew

ar
d

* MFQ
* MFAC

* POMFQ(FOR)
* GPMF

(a) Multibattle game

0 200 400 600 800 1000
Episode

0

2000

4000

6000

8000

10,000

12,000

14,000

R
ew

ar
d

* MFQ
* MFAC

* POMFQ(FOR)
* GPMF

(b) Battle-Gathering game

0 200 400 600 800 1000
Episode

1000

0

1000

2000

3000

4000

R
ew

ar
d

* MFQ
* MFAC

* POMFQ(FOR)
* GPMF

(c) Predator-Prey game

Figure 5. Train results of three tasks. The reward curve for each algorithm is fitted by the least squares
method.

Tables 2–4 show the ELO scores of the four algorithms on the three tasks. It can be seen
from Table 2 that in Multibattle environment, the GPMF algorithm has the highest ELO
score of 3579, which is significantly better than the other three algorithms. As shown in
Table 3, in Battle-Gathering environment, the ELO score of the MFQ algorithm is the highest,
and the ELO score of the GPMF algorithm is average. This is because some algorithms
favor capturing resources for a quick reward rather than colliding with enemy UAVs.
However, the final game winning or losing decision is made by comparing the number of
remaining UAVs between the two teams of UAVs. As shown in Table 4, in Predator-Prey
environment, the ELO score of the GPMF algorithm has the highest ELO score of 860, which
is significantly better than the other three algorithms. From the experimental results in the
three environments, we can summarize that ELO score of the GPMF algorithm is better
than other three algorithms, showing better performance.

Drones 2023, 7, 476 17 of 22

Table 2. The ELO Score of four algorithms in Multibattle environment.

Algorithm 1 Algorithm 2 ELO Score 1 ELO Score 2

GPMF-1 POMFQ(FOR)-2 3579 820
GPMF-2 POMFQ(FOR)-1 2696 2838

GPMF-1 MFQ-2 2098 1508
GPMF-2 MFQ-1 2535 1695

GPMF-1 MFAC-2 1350 −49
GPMF-2 MFAC-1 −856 −78

POMFQ(FOR)-1 MFQ-2 3145 2577
POMFQ(FOR)-2 MFQ-1 2569 2857

POMFQ(FOR)-1 MFAC-2 −205 −64
POMFQ(FOR)-2 MFAC-1 826 −42

MFQ-1 MFAC-2 −142 −49
MFQ-2 MFAC-1 610 −46

Table 3. The ELO Score of four algorithms in Battle-Gathering environment.

Algorithm 1 Algorithm 2 ELO Score 1 ELO Score 2

GPMF-1 POMFQ(FOR)-2 7770 8931
GPMF-2 POMFQ(FOR)-1 8293 9310

GPMF-1 MFQ-2 6374 10,870
GPMF-2 MFQ-1 8510 8313

GPMF-1 MFAC-2 5525 10
GPMF-2 MFAC-1 10,751 −31

POMFQ(FOR)-1 MFQ-2 8526 8760
POMFQ(FOR)-2 MFQ-1 8632 8227

POMFQ(FOR)-1 MFAC-2 12,722 0
POMFQ(FOR)-2 MFAC-1 12,171 −88

MFQ-1 MFAC-2 12,649 49
MFQ-2 MFAC-1 13,788 −48

Table 4. The ELO Score of four algorithms in Predator-Prey environment.

Algorithm 1 Algorithm 2 ELO Score 1 ELO Score 2

GPMF-1 POMFQ(FOR)-2 421 −32
GPMF-2 POMFQ(FOR)-1 16 7

GPMF-1 MFQ-2 714 −27
GPMF-2 MFQ-1 −15 −94

GPMF-2 MFAC-1 16 16

POMFQ(FOR)-1 MFQ-2 66 18
POMFQ(FOR)-2 MFQ-1 13 24

POMFQ(FOR)-1 MFAC-2 16 −16
POMFQ(FOR)-2 MFAC-1 47 16

MFQ-1 MFAC-2 16 −16
MFQ-2 MFAC-1 174 17

6.3. Results

Figure 6 shows the face-off results of the four algorithms in the three tasks. Figure 6a
shows the faceoff results of Multibattle game. The different colored bars for each algorithm
represent the results of an algorithm versus others. The vertical lines in the bar graph
represent the standard deviation of wins for groups A and B over 1000 face-offs. Figure 6a
shows GPMF against three other algorithms, all with a win rate above 0.7.

Drones 2023, 7, 476 18 of 22

Figure 6b shows the faceoff results of Battle-Gathering game. In addition to the
rewards for shooting down UAVs, UAVs can also get rewards for occupying resources. It
can be seen that MFQ loses to all other algorithms, MFAC and POMFQ(FOR) perform in
general, and our GPMF is clearly ahead of other algorithms.

Figure 6c shows the faceoff results of Predator-Prey game.The standard deviation of
this game is significantly higher than the previous two games, due to the fact that both
groups A and B are trying to beat each other in the environment. It can be seen that the
GPMF algorithm is significantly better than other three algorithms, reaching a winning rate
of 1.0.

MFQ MFAC POMFQ(FOR) GPMF
0

200

400

600

800

1000

1200

N
um

be
r o

f G
am

es
 w

on

* MFQ
* MFAC

* POMFQ(FOR)
* GPMF

(a) Multibattle game

MFQ MFAC POMFQ(FOR) GPMF
0

200

400

600

800

1000

1200
N

um
be

r o
f G

am
es

 w
on

* MFQ
* MFAC

* POMFQ(FOR)
* GPMF

(b) Battle-Gathering game

MFQ MFAC POMFQ(FOR) GPMF
0

200

400

600

800

1000

1200

N
um

be
r o

f G
am

es
 w

on

* MFQ
* MFAC

* POMFQ(FOR)
* GPMF

(c) Predator-Prey game

Figure 6. Faceoff results of three games. The * in the legend indicates the enemy. For example, the
first blue bar in the bar graph corresponding to the GPMF algorithm is the result of the confrontation
between GPMF and MFQ.

6.4. Visualization

To visualize the effectiveness of the GPMF algorithm, we visualize the confrontation
between GPMF and POMFQ(FOR) in a Multibattle environment, as shown in Figure 7,
where the red side is GPMF and the blue side is POMFQ(FOR). It can be seen from the
confrontation process that for the GPMF algorithm, when a UAV decides to attack, the
surrounding UAVs will also decide to attack under its influence, forming a good cooperation
mechanism. On the contrary, for the POMFQ(FOR) algorithm, some blue-side UAVs are
chosen to attack, some are chosen to escape, and no common fighting mechanism was
formed. Similarly, in the Battle-Gathering environment of Figure 8, GPMF can learn the
besiege mechanism well. In the Predator-Prey environment of Figure 9, when GPMF acts
as a predator, the technique of surrounding the prey POMFQ(FOR) can be learned. On the
contrary, when POMFQ(FOR) acted as a predator, it failed to catch the prey GPMF.

cooperative

attack

attack

escape

GPMF alive：22 POMFQ(FOR) alive：2

Figure 7. Visualization of the standoff between GPMF and POMFQ(FOR) in a Multibattle game.

Drones 2023, 7, 476 19 of 22

Besiege

begin

Besiege

end

resource GPMF alive：24 POMFQ(FOR) alive：9

alive：9
Figure 8. Visualization of the standoff between GPMF and POMFQ(FOR) in a Battle-Gathering game.

encircle
escape

GPMF alive：25GPMF alive：25

POMFQ(FOR) alive：21 POMFQ(FOR) alive：25

Figure 9. Visualization of the standoff between GPMF and POMFQ(FOR) in a Predator-Prey game.

6.5. Ablation Study

Figure 10 is an ablation study that investigates the performance of the GPMF algo-
rithm for different observation radius in a Multibattle environment. where the solid line
represents the least squares fit of the reward change. It can be seen from the figure that
when the number of training episodes is small, the performance of the algorithm is better
as the observation distance increases. But with the increase of training times, when R = 4,
the performance of the algorithm is the best, so the appropriate observation distance can
achieve better performance. What is more important in this paper is to explore the effect
of the ratio of observable distance to the number of agents on the performance of the
algorithm, so there is no experiment with more agents.

0 200 400 600 800 1000
Episode

-1000

0

1000

2000

3000

4000

5000

6000

R
ew

ar
d

R=2
R=4

R=6
R=8

R=10

Figure 10. Ablation study. R represents the observation radius of an agent.

Drones 2023, 7, 476 20 of 22

7. Conclusions

In this paper, we propose a novel multi-agent reinforcement learning algorithm, Graph
attention network supported Partially observable Mean Field Multi-agent reinforcement
learning (GPMF), to address large-scale partially observable multi-UAV cooperative pursuit
problem. While existing methods approach Nash equilibrium, they fail to consider direct
inter-agent correlations. By abstracting the UAVs of a multi-UAV system into agents,
exploiting inter-agent correlations, a graph attention module is incorporated to capture the
influence of actions taken by other agents at each time step. Experimental results on three
challenging tasks within the MAgents framework demonstrate that our proposed approach
outperforms baselines and state-of-the-art partially observable mean field reinforcement
learning algorithms in all of these tasks. This further indicates the ability of our algorithm
to improve communication and cooperation among UAVs.

In addition, we recognize the importance of investigating the robustness of multi-UAV
system and improving the resilience of the GPMF algorithm against various interferences.
One key aspect we aim to address is enhancing the reliability and effectiveness of commu-
nication protocols [7]. By developing more robust and efficient communication protocols,
we can improve the overall resilience and robustness of multi-UAV system, enabling UAVs
to effectively coordinate and adapt to changing environments and disturbances.

Author Contributions: Conceptualization, M.Y. and G.L.; methodology, M.Y.; investigation, Z.Z.;
writing—original draft preparation, M.Y.; writing—review and editing, G.L. and J.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Shanghai Science and Technology Committee
(No. 22511105500), the National Nature Science Foundation of China (No. 62172299) and the
Fundamental Research Funds for the Central Universities (No. 2023-4-YB-05).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MARL Multi-agent reinforcement learning
GAN graph attention network
POMF partially observable mean field
MAS multi-agent system
POMDP partially observable Markov decision process

References
1. Frattolillo, F.; Brunori, D.; Iocchi, L. Scalable and Cooperative Deep Reinforcement Learning Approaches for Multi-UAV Systems:

A Systematic Review. Drones 2023, 7, 236. [CrossRef]
2. Wang, J.; Han, L.; Dong, X.; Li, Q.; Ren, Z. Distributed sliding mode control for time-varying formation tracking of multi-UAV

system with a dynamic leader. Aerosp. Sci. Technol. 2021, 111, 106549. [CrossRef]
3. Shi, H.; Liu, G.; Zhang, K.; Zhou, Z.; Wang, J. MARL Sim2real Transfer: Merging Physical Reality With Digital Virtuality in

Metaverse. IEEE Trans. Syst. Man Cybern. Syst. 2022, 53, 2107–2117. [CrossRef]
4. Weng, Q.L.; Liu, G.J.; Zhou, P.; Shi, H.R.; Zhang, K.W. Co-TS: Design and Implementation of a 2-UAV Cooperative Transportation

System. Int. J. Micro Air Veh. 2023, 15, 17568293231158443. [CrossRef]
5. Zhou, P.; Liu, G.; Wang, J.; Weng, Q.; Zhang, K.; Zhou, Z. Lightweight unmanned aerial vehicle video object detection based on

spatial-temporal correlation. Int. J. Commun. Syst. 2022, 35, e5334. [CrossRef]
6. Uhrmacher, A.M.; Weyns, D. Multi-Agent Systems: SIMULATION and Applications; CRC press: Boca Raton, FL, USA, 2009.
7. Cui, Y.; Luo, B.; Feng, Z.; Huang, T.; Gong, X. Resilient state containment of multi-agent systems against composite attacks via

output feedback: A sampled-based event-triggered hierarchical approach. Inf. Sci. 2023, 629, 77–95. [CrossRef]

http://doi.org/10.3390/drones7040236
http://dx.doi.org/10.1016/j.ast.2021.106549
http://dx.doi.org/10.1109/TSMC.2022.3229213
http://dx.doi.org/10.1177/17568293231158443
http://dx.doi.org/10.1002/dac.5334
http://dx.doi.org/10.1016/j.ins.2023.01.125

Drones 2023, 7, 476 21 of 22

8. Zhou, Z.; Liu, G.; Tang, Y. Multi-Agent Reinforcement Learning: Methods, Applications, Visionary Prospects, and Challenges.
arXiv 2023, arXiv:2305.10091.

9. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.;
Georgiev, P.; et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354.
[CrossRef]

10. Zhou, Z.; Liu, G.; Zhou, M. A Robust Mean-Field Actor-Critic Reinforcement Learning Against Adversarial Perturbations on
Agent States. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–12. [CrossRef]

11. Zhou, Z.; Liu, G. Robustness Testing for Multi-Agent Reinforcement Learning: State Perturbations on Critical Agents. arXiv 2023,
arXiv:2306.06136.

12. Guo, X.; Bi, Z.; Wang, J.; Qin, S.; Liu, S.; Qi, L. Reinforcement learning for disassembly system optimization problems: A survey.
Int. J. Netw. Dyn. Intell. 2023, 2, 1–14. [CrossRef]

13. Gu, J.; Wang, J.; Guo, X.; Liu, G.; Qin, S.; Bi, Z. A Metaverse-Based Teaching Building Evacuation Training System With Deep
Reinforcement Learning. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 2209–2219. [CrossRef]

14. Zhang, K.; Yang, Z.; Başar, T. Multi-agent reinforcement learning: A selective overview of theories and algorithms. In Handbook of
Reinforcement Learning and Control; Springer: Berlin/Heidelberg, Germany, 2021; pp. 321–384.

15. Schmidt, L.M.; Brosig, J.; Plinge, A.; Eskofier, B.M.; Mutschler, C. An Introduction to Multi-Agent Reinforcement Learning and
Review of its Application to Autonomous Mobility. arXiv 2022, arXiv:2203.07676.

16. Zhang, Z.; Liu, J.; Liu, G.; Wang, J.; Zhang, J. Robustness verification of swish neural networks embedded in autonomous driving
systems. IEEE Trans. Comput. Soc. Syst. 2022, 1–10. [CrossRef]

17. Liu, B.; Wang, S.; Li, Q.; Zhao, X.; Pan, Y.; Wang, C. Task Assignment of UAV Swarms Based on Deep Reinforcement Learning.
Drones 2023, 7, 297. [CrossRef]

18. Hernandez-Leal, P.; Kartal, B.; Taylor, M.E. A survey and critique of multiagent deep reinforcement learning. Auton. Agents
Multi-Agent Syst. 2019, 6, 750–797. [CrossRef]

19. Yang, Y.; Luo, R.; Li, M.; Zhou, M.; Zhang, W.; Wang, J. Mean Field Multi-Agent Reinforcement Learning. In Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018;
Volume 80, pp. 5567–5576.

20. Xie, Q.; Yang, Z.; Wang, Z.; Minca, A. Learning while playing in mean-field games: Convergence and optimality. In Proceedings
of the International Conference on Machine Learning. PMLR, Virtual, 18–24 July 2021; pp. 11436–11447.

21. Laurière, M.; Perrin, S.; Geist, M.; Pietquin, O. Learning Mean Field Games: A Survey. arXiv 2022, arXiv:2205.12944.
22. Cai, Q.; Yang, Z.; Wang, Z. Reinforcement learning from partial observation: Linear function approximation with provable

sample efficiency. In Proceedings of the International Conference on Machine Learning. PMLR, Baltimore, MD, USA, 17–23 July
2022; pp. 2485–2522.

23. Zhang, T.; Ye, Q.; Bian, J.; Xie, G.; Liu, T. MFVFD: A Multi-Agent Q-Learning Approach to Cooperative and Non-Cooperative
Tasks. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event/ Montreal,
QC, Canada, 19–27 August 2021; pp. 500–506. [CrossRef]

24. Gu, H.; Guo, X.; Wei, X.; Xu, R. Mean-field multi-agent reinforcement learning: A decentralized network approach. arXiv 2021,
arXiv:2108.02731.

25. Fang, B.; Wu, B.; Wang, Z.; Wang, H. Large-Scale Multi-agent Reinforcement Learning Based on Weighted Mean Field. In
Proceedings of the Cognitive Systems and Signal Processing—5th International Conference, ICCSIP 2020, Zhuhai, China, 25–27
December 2020; Volume 1397, pp. 309–316.

26. Zhou, S.; Ren, W.; Ren, X.; Yi, X. Multi-Agent Mean Field Predict Reinforcement Learning. In Proceedings of the 2020 IEEE
International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 25–27
August 2020; pp. 625–629.

27. Subramanian, S.G.; Taylor, M.E.; Crowley, M.; Poupart, P. Partially Observable Mean Field Reinforcement Learning. In
Proceedings of the AAMAS ’21: 20th International Conference on Autonomous Agents and Multiagent Systems, Virtual Event,
3–7 May 2021; pp. 537–545.

28. Wu, T.; Li, W.; Jin, B.; Zhang, W.; Wang, X. Weighted Mean-Field Multi-Agent Reinforcement Learning via Reward Attribution
Decomposition. In Proceedings of the International Conference on Database Systems for Advanced Applications, Virtual Event,
11–14 April 2022; pp. 301–316.

29. Hao, Q. Very Large Scale Multi-Agent Reinforcement Learning with Graph Attention Mean Field. 2023. Available online:
https://openreview.net/forum?id=MdiVU9lMmVS (accessed on 5 March 2023).

30. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef]

31. Fan, S.; Liu, G.; Li, J. A heterogeneous graph neural network with attribute enhancement and structure-aware attention. IEEE
Trans. Comput. Soc. Syst. 2023. [CrossRef]

32. Lou, X.; Liu, G.; Li, J. ASIAM-HGNN: Automatic Selection and Interpretable Aggregation of Meta-Path Instances for Heteroge-
neous Graph Neural Network. Comput. Inform. 2023, 42, 257–279. [CrossRef]

33. Qie, H.; Shi, D.; Shen, T.; Xu, X.; Li, Y.; Wang, L. Joint optimization of multi-UAV target assignment and path planning based on
multi-agent reinforcement learning. IEEE Access 2019, 7, 146264–146272. [CrossRef]

http://dx.doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.1109/TNNLS.2023.3278715
http://dx.doi.org/10.53941/ijndi0201001
http://dx.doi.org/10.1109/TSMC.2022.3231299
http://dx.doi.org/10.1109/TCSS.2022.3179659
http://dx.doi.org/10.3390/drones7050297
http://dx.doi.org/10.1007/s10458-019-09421-1
http://dx.doi.org/10.24963/ijcai.2021/70
https://openreview.net/forum?id=MdiVU9lMmVS
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/TCSS.2023.3239034
http://dx.doi.org/10.31577/cai_2023_2_257
http://dx.doi.org/10.1109/ACCESS.2019.2943253

Drones 2023, 7, 476 22 of 22

34. Azzam, R.; Boiko, I.; Zweiri, Y. Swarm Cooperative Navigation Using Centralized Training and Decentralized Execution. Drones
2023, 7, 193. [CrossRef]

35. Wang, B.; Li, S.; Gao, X.; Xie, T. Weighted mean field reinforcement learning for large-scale UAV swarm confrontation. Appl.
Intell. 2023, 53, 5274–5289. [CrossRef]

36. Zhang, H.; Cheng, J.; Zhang, L.; Li, Y.; Zhang, W. H2GNN: Hierarchical-Hops Graph Neural Networks for Multi-Robot
Exploration in Unknown Environments. IEEE Robot. Autom. Lett. 2022, 7, 3435–3442. [CrossRef]

37. Boehmer, W.; Kurin, V.; Whiteson, S. Deep Coordination Graphs. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, Virtual Event, 13–18 July 2020; Volume 119, pp. 980–991.

38. Li, S.; Gupta, J.K.; Morales, P.; Allen, R.E.; Kochenderfer, M.J. Deep Implicit Coordination Graphs for Multi-agent Reinforcement
Learning. In Proceedings of the AAMAS ’21: 20th International Conference on Autonomous Agents and Multiagent Systems,
Virtual Event, 3–7 May 2021; pp. 764–772.

39. Ruan, J.; Du, Y.; Xiong, X.; Xing, D.; Li, X.; Meng, L.; Zhang, H.; Wang, J.; Xu, B. GCS: Graph-based Coordination Strategy for
Multi-Agent Reinforcement Learning. arXiv 2022, arXiv:2201.06257.

40. Niu, Y.; Paleja, R.R.; Gombolay, M.C. Multi-Agent Graph-Attention Communication and Teaming. In Proceedings of the AAMAS
’21: 20th International Conference on Autonomous Agents and Multiagent Systems, Virtual Event, 3–7 May 2021; pp. 964–973.

41. Littman, M.L. Markov games as a framework for multi-agent reinforcement learning. In Machine Learning Proceedings 1994;
Elsevier: Amsterdam, The Netherlands, 1994; pp. 157–163.

42. Oliehoek, F.A.; Amato, C. A Concise Introduction to Decentralized POMDPS; Springer: Berlin/Heidelberg, Germany, 2016.
43. Zhang, Y.; Yang, Q.; An, D.; Zhang, C. Coordination Between Individual Agents in Multi-Agent Reinforcement Learning. In

Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; pp. 11387–11394.
44. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. Stat 2017, 1050, 20.
45. Fan, J.; Wang, Z.; Xie, Y.; Yang, Z. A theoretical analysis of deep Q-learning. In Proceedings of the Learning for Dynamics and

Control, Online Event, 10–11 June 2020; pp. 486–489.
46. Tsitsiklis, J.N. Asynchronous stochastic approximation and Q-learning. Mach. Learn. 1994, 16, 185–202. [CrossRef]
47. Zheng, L.; Yang, J.; Cai, H.; Zhou, M.; Zhang, W.; Wang, J.; Yu, Y. MAgent: A Many-Agent Reinforcement Learning Platform for

Artificial Collective Intelligence. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans,
LA, USA, 2–7 February 2018; pp. 8222–8223.

48. Jaderberg, M.; Czarnecki, W.M.; Dunning, I.; Marris, L.; Lever, G.; Castañeda, A.G.; Beattie, C.; Rabinowitz, N.C.; Morcos, A.S.;
Ruderman, A.; et al. Human-level performance in first-person multiplayer games with population-based deep reinforcement
learning. arXiv 2018, arXiv:abs/1807.01281.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/drones7030193
http://dx.doi.org/10.1007/s10489-022-03840-6
http://dx.doi.org/10.1109/LRA.2022.3146912
http://dx.doi.org/10.1007/BF00993306

	Introduction
	Related Work
	Multi-UAV System Based on Multi-Agent Reinforcement Learning
	Large-Scale Partially Observable Multi-Agent Reinforcement Learning
	Graph Neural Networks (GNNs)

	Motivation and Preliminaries
	Partially Observable Markov Decision Process
	Partially Observable Mean Field Q-Learning
	Graph Attention Network

	Approach
	Graph Attention Module
	Mean Field Module
	Theoretical Proof
	Algorithm

	Experiments
	Environment and Tasks
	Evaluation
	Hyperparameters

	Results and Discussion
	Reward
	ELO Calculation
	Results
	Visualization
	Ablation Study

	Conclusions
	References

