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Abstract: Detecting, tracking, and classifying unmanned aerial vehicles (UAVs) in a swarm presents
significant challenges due to their small and diverse radar cross-sections, multiple flight altitudes,
velocities, and close trajectories. To overcome these challenges, adjustments of the radar parameters
and/or position of the radar (for airborne platforms) are often required during runtime. The runtime
adjustments help to overcome the anomalies in the detection, tracking, and classification of UAVs.
The runtime adjustments are performed either manually or through fixed algorithms, each of which
can have its limitations for complex and dynamic scenarios. In this work, we propose the use of
multi-agent reinforcement learning (RL) to carry out the runtime adjustment of the radar parameters
and position of the radar platform. The radar used in our work is a multibeam multifunction phased
array radar (MMPAR) placed onboard UAVs. The simulations show that the cognitive adjustment
of the MMPAR parameters and position of the airborne platform using RL helps to overcome
anomalies in the detection, tracking, and classification of UAVs in a swarm. A comparison with other
artificial intelligence (AI) algorithms shows that RL performs better due to the runtime learning of
the environment through rewards.

Keywords: artificial intelligence (AI); classification; cognitive; detection; multibeam multifunction
phased array radar (MMPAR); reinforcement learning (RL); swarm; tracking; unmanned aerial
vehicles (UAVs)

1. Introduction

Unmanned aerial vehicles (UAVs), commonly referred to as drones, have gained
tremendous popularity over the past decade [1,2]. Nowadays, UAVs are used in numerous
applications [3,4], and their usage is expected to increase in the future [5]. However, UAVs
can also be exploited for malicious purposes, posing significant threats [6]. The main reason
behind these threats is the limitations in the early detection, tracking, and classification
of malicious UAVs at long ranges due to their small radar cross-section (RCS) and their
ability to fly close to the terrain [6]. Additionally, the challenges of detecting, tracking,
and classifying UAVs are heightened when they fly in a swarm, as these UAVs can have a
varying RCS and velocity, and follow complex, time-varying trajectories in close proximity
to each other.

Numerous research efforts are underway to develop novel methods for UAV detection,
tracking, and classification [7]. Detection methods can be broadly classified into two
categories: non-radar-based and radar systems [6]. Popular non-radar-based methods
include electro-optical/infrared, radio frequency (RF) analysis, and the analysis of sound
emissions from the UAV [6,8]. The majority of non-radar systems have no active emissions.
The passive detection of UAVs using non-radar systems has limitations discussed in [6].
Compared to non-radar methods, radar-based methods are popular and are widely used
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for the detection, tracking, and classification of UAVs. Radar-based methods can be further
classified into conventional and non-conventional methods. Conventional radar systems
are monostatic and rely on active RF transmissions, but they have limitations in detecting
and tracking small UAVs due to their small RCS and ability to fly close to clutter [6,9]. Non-
conventional radar systems, on the other hand, can detect and track small UAVs, although
their operation is often restricted to specific types of UAVs and environmental scenarios.
Popular non-conventional radar systems for UAV detection, tracking, and classification
include micro-Doppler radars, phase-interferometric radars, multistatic radars, and passive
radars [10–12].

Cognitive radars, another non-conventional radar system, are capable of outperform-
ing conventional radar systems in complex and dynamic scenarios [13]. Cognitive radars
provide a high level of situational awareness by continuously monitoring the environment
and adjusting the radar parameters accordingly [14]. Cognitive radars are also able to
support autonomous operations and are less reliant on input from human operators. Addi-
tionally, cognitive radars can use various artificial intelligence (AI) algorithms for optimal
parameter adjustments based on the situation at hand. For example, in [15], a non-linear
transformation-based machine learning approach is used for adaptively adjusting the
detection threshold. In [16], different aspects of cognition implemented through neural
networks are discussed. Reinforcement learning (RL) is also a popular method to introduce
cognition into radar systems. In [17], deep RL is used for optimal radar performance by
varying the bandwidth and center frequency in spectrally congested environments.

In this work, we present the implementation of a network of airborne UAVs equipped
with a multibeam multifunction phased array radar (MMPAR) for the detection, tracking,
and classification of malicious UAVs in a swarm. The multifunction beams used in our
work are shown in Figure 1. The parameters of the MMPAR and the position of the
UAV carrying MMPARs are controlled cognitively through the multi-agent RL algorithm.
Multiple airborne MMPARs onboard UAVs are used to detect, track, and classify malicious
UAVs in a swarm. The anomalies during the detection, tracking, and classification of UAVs
in a swarm are identified and optimum actions are taken to remove the anomalies. The
optimum actions are based on the highest Q-values to remove corresponding anomalies.
We compare our RL approach with other AI algorithms and show that RL handles the
anomalies better due to its runtime feedback from the environment in the form of rewards.
Additionally, when no target is detected, the MMPAR onboard the UAV can serve as a
communication relay, providing communication to ground nodes. Overall, our approach
provides the following advantages:

• Common UAVs cannot carry a large multifunction radar due to weight and power
constraints. To overcome this limitation, we propose an approach that employs multi-
ple small MMPARs carried by UAVs. These radar nodes are networked to provide a
cumulative radar response, allowing us to detect, track, and classify malicious UAVs
in a swarm.

• By using multiple MMPAR nodes, our approach eliminates the risk of a single-point
failure due to malfunction or external jamming.

• Using multiple MMPAR nodes onboard UAVs provides superior spatial coverage and
mobility compared to a single radar node on the ground.

• The use of multiple radar beams in MMPAR and the ability to adaptively schedule the
beams help to accurately resolve multiple targets in the range, Doppler, and angular
domains. This is because the multiple beams provide better spatial coverage and
resolution, while adaptive scheduling ensures that the beams are directed towards
areas of interest, where potential targets may be present. Additionally, the use of
multiple beams also helps to mitigate the effects of clutter and interference, which can
degrade radar performance.

• The multifunction beams generated by the MMPAR can be used for other tasks in
addition to the main radar task. For example, the beams can be used for communica-
tion purposes or for RF passive listening, which can be performed simultaneously by
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sharing the radar resources adaptively. This allows for the efficient utilization of the
MMPAR resources, enabling the UAVs to perform multiple tasks with a single device.

• Anomaly detection and removal is an important aspect of our approach, as it helps
to reduce false alarms and improve the accuracy of the system. By using RL, the
system is able to learn from its environment and adjust its parameters to improve its
performance. This can help to identify and remove anomalies in real time, leading to
the more reliable and efficient detection, tracking, and classification of UAVs.

• Our approach works optimally in complex and dynamically changing scenarios, e.g.,
UAV swarms, clutter, and jamming.

φ(t)

θ(t)

−3dB line on beam

(x(rad)(t), y(rad)(t), z(rad)(t), v(rad)(t))

[P(i,j)
(TX)(t), f(i,j)

(c)(t), BW(i,j)
 (t), Ƭ(i,j)

 (t), G(i,j)
 

(θ(b)(t),φ(b)(t)), P(i,j)
(av) (t), PRF(i,j)

 (t), PC(i,j)
 (t), 

Wav(i,j)
 (t) ,Pol(i,j)

 (t)]

North

i-th radar onboard UAV and j-th beam

Figure 1. Six multifunction beams j = 1, 2, · · · , 6, originating from an i-th MMPAR onboard a UAV.
The parameters of all beams are different.

To the best of our knowledge, MMPAR using multi-agent RL to detect, track, and
classify UAVs in a swarm is not available in the literature. A comparison of our work with
the corresponding literature is provided in Table 1. The rest of the paper is organized as
follows: Section 2 provides the details of the MMPAR setup onboard UAV, the multi-agent
RL used in our work is given in Section 3, simulation setup and results are provided in
Section 4, and Section 5 concludes the paper.

Table 1. Comparison of our approach with other popular radar-based approaches in the literature.

Functionalities Our Approach [18] [19] [20] [21] [22]

Phased array
multifunction,

multibeam
steering (simul-
taneously) and
adaptive beam

scheduling

X 7 7 7 7 7

Airborne and
mobility in air X 7 7 X X 7
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Table 1. Cont.

Functionalities Our Approach [18] [19] [20] [21] [22]

Networked
radar nodes X 7 7 X X 7

Multi-agent RL X 7 7 X X 7

Anomalies in
detection,

tracking, and
classification
identification
and removal

X 7 7 7 7 7

Cognitive or
adaptive

adjustment of
radar

parameters or
radar platform

position
adjustment

X X X X X X

Multi-target
detec-

tion/tracking/
classification

X X X 7 7 X

Performance
degradation in
complex and

dynamic
environments

No No Not reported Not reported No Not reported

Communications
relaying

capability in
addition to

radar operation

X 7 7 X 7 7

Xshows present, and 7 shows absent.

2. Multibeam Multifunction Phased Array Radar Onboard UAVs

In this section, the beam steering and scheduling of MMPAR are discussed. The details
of MMPAR and target parameters are also provided in this section.

2.1. Steering and Scheduling of Multifunction Phased Array Beams

In our approach, we consider that there are N UAVs, each of which carries an MMPAR.
The MMPAR on multiple UAVs is networked through communication beams. Each MMPAR
has B steerable phased array beams. Each beam performs a given function. The radiation
pattern of the j-th beam for j = 1, 2, · · · , B is given as F j

(
θ, φ
)
= F(arr)

j (θ, φ
)
× F(ant)(θ, φ

)
,

where F j
(
θ, φ
)

is the overall radiation pattern of the j-th beam, and θ, and φ represent

the angles in the azimuth and elevation planes, respectively, F(arr)
j and F(ant) are the

array factor of the j-th beam and antenna radiation pattern of individual elements of the
array, respectively. Each j-th beam is steerable in the range [−θ

(lim)
j : ∆θ : θ

(lim)
j ] and

[−φ
(lim)
j : ∆φ : φ

(lim)
j ], where, θ

(lim)
j and φ

(lim)
j are the scanning limits of the beam in the

azimuth and elevation planes, respectively, and |θ(lim)
j | > |φ(lim)

j | ∀j. The angular step
between any two steering angles in the azimuth and elevation planes is represented as ∆θ
and ∆φ, respectively.
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Our approach uses six beams, as shown in Figure 1, denoted by B = 6. These beams
include two communication beams, a volume search beam, a cued search beam, a track
beam, and a passive RF listener beam. Each beam has unique characteristics that depend
on its function. For instance, the half-power beamwidths of the communication, volume
search, and passive RF listener beams are larger compared to the cued search beam. The
tracking beam has the highest angular resolution and gain and is used to estimate the
final parameters of the target. Although the large beamwidths of the volume search,
communication, and passive RF listener beams allow for large spatial area coverage during
a scan, the angular resolution is relatively small. Furthermore, to maintain simplicity,
we have taken the steering limits of the beams to be the same in both the azimuth and
elevation planes.

Algorithm 1 outlines the working of the MMPAR and beam scheduling. The six
beams are scheduled adaptively based on the detected targets. At the beginning of the
update interval δt, beam scheduling requests are received. The scheduling of beams for the
duration δt is determined based on the received requests, the current state of the beams,
the target state, and the priority sequence. The details of the functions performed and the
scheduling of the beams are as follows:

• There are two communication beams, as shown in Figures 1 and 2. One communication
beam facilitates communication between the UAVs and is always available with the
highest scheduling priority. The other communication beam forms a link between
the ground station (GS) and the MMPAR onboard the UAV, allowing the MMPAR to
function as a communication relay. Both communication beams and the volume search
beam operate simultaneously during a given δt. However, when a target is detected
by the volume search beam, the second communication beam ceases operation, and
communications from the second beam are transferred to other GS nodes.

(x(rad)(t), y(rad)(t), z(rad)(t), v(rad)(t))

Volume search beam scanning in the azimuth and elevation 

planes, respectively: [−θ(lim)
 θ

(lim)] [−φ(lim)
 φ

(lim)
 ] 

Communication beams aligned to 

fixed nodes on ground

Communication node

−θ(lim)
 

θ(lim) 

−φ(lim)

φ(lim)
 

Communications with other 

radar platform onboard UAV 

Figure 2. The UAV carrying the MMPAR moves in a straight line at a constant velocity. MMPAR
emits volume search and communication beams when no target is detected. Once a target is detected,
the communication link with ground nodes is handed over to other ground communication nodes.

• To improve the detection and tracking of UAVs, the volume search beam is designed
with the largest coverage among all the beams. This enables the radar to scan a vast
volume of space during the given time interval δt. However, once a target is detected,
the scheduling priority of the volume search beam corresponding to that target is
reduced for future update intervals. This approach ensures that the other beams
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with higher scheduling priority can focus on tracking the target with more accuracy
and efficiency.

• The cued search beam is used to confirm the presence of a target detected by the vol-
ume search. Both the cued search and volume search beams can scan simultaneously.

• The tracking beam is directed towards the coordinates provided by the cued search
beam after a time interval of δt. As the coverage area of the track beam is significantly
larger than the physical tracks covered by a target during δt, the target remains within
the coverage area. Due to its high angular and range resolution, the tracking beam
can distinguish between multiple targets in the range and angular bins, and estimate
their position, RCS, and Doppler estimates. Additionally, the tracking beam has a
higher priority (after confirming target presence) than other beams. Targets are tracked
adaptively, meaning that mobile/fast-moving targets are visited frequently compared
to static/slow targets to update their state. Figure 3 illustrates the interaction of
different types of beams with targets.

Communication link between 
UAVs

UAV Swarm

MMPAR onboard UAV1

MMPAR onboard UAV2

Active RF emission by the target

(x(rad)(t), y(rad)(t), z(rad)(t), v(rad)(t)) (σ(tar), x(tar)(t), y(tar) (t), z(tar) (t), v(tar) (t) , C(tar)(t))

Malicious UAVs in the swarm

Figure 3. Two UAVs equipped with MMPAR are utilized to detect malicious UAVs operating
as a swarm. The multifunction beams of MMPAR are employed for searching, tracking, passive
listening (for active RF emissions), and classifying targets. However, one of the malicious UAVs in
the swarm is causing interference with its active RF emissions. Additionally, one of the beams is
utilized for communication between the radar platforms.

• The passive RF listener beam is not scheduled in a fixed sequence but rather is
randomly applied at different time intervals of δt. Its purpose is to detect active RF
emissions from a malicious UAV, including intentional RF emissions for jamming and
the RF link of the UAV for further analysis. Figure 3 illustrates the passive RF listener
beam that is used to detect directed RF emissions from a malicious UAV.
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Algorithm 1 Pseudo-code for beam scheduler and working of MMPAR

1: procedure RADARBEAMSCHEDULER
2: % Beam scheduling and radar operation.
3: % i = 1, 2, · · · , N are the number of MMPAR, each onboard a UAV.
4: % Input to the procedure are the MMPAR beams and corresponding resources:

S(rad)
i,j (t), ∀i,j = 1, 2, · · · , 6, given in (11).

5: At the start of every update interval δt:
6: RF passive listener beam applied if rand > 0.5, where rand is a random generator in the

range [0 1).
7: if No target is detected then
8: Volume search and communication beams continue during δt.
9: end if

10: if a target is detected then
11: Request the handover of current relay-based communications to the GS nodes.
12: Store the coordinates of the target during the current volume search

as
(

x(tar,vol)(t), y(tar,vol)(t), z(tar,vol)(t)
)
.

13: At the same δt, direct the cued search beam toward the coordinates of the target
obtained during volume search.

14: if cued search confirms the target then
15: Store the coordinates of the target as

(
x(tar,cue)(t), y(tar,cue)(t), z(tar,cue)(t)

)
.

16: At the next update interval t + δt, direct the track beam toward the estimated
position of the target obtained from the cued search. The coordinates of the
target after applying the track beam are estimated as

(
x(tar,trk)(t + δt), y(tar,trk)

(t + δt), z(tar,trk)(t + δt)
)
. The RCS and Doppler estimates of the target are also

obtained.
17: At every next update interval (provided the target is present in the previous interval)

the track beam will be assigned the highest priority. The state of the target S(tar)
i is

updated at every δt.
18: Also, the targets are tracked adaptively, i.e., targets with high maneuverability

are visited often compared to slow-moving targets.
19: else
20: Confirm targets again using volume search.
21: end if
22: else
23: Continue using communication and search beams.
24: end if
25: During all δt, the communications between the MMPAR onboard UAVs continue.

26: return The target state, S(tar)
i .

27: end procedure

2.2. MMPAR Parameters

The radar parameters assigned to each type of beam are unique. The configurable
radar and radar platform parameters are provided in Table 2. The range of radar parameters
provided in Table 2 can be represented as

P(TX) = P(TX,max) : ∆P(TX) : P(TX,min), (1)

f (c) = f (c,max) : ∆ f (c) : f (c,min), (2)

BW = BW(max) : ∆BW : BW(min), (3)

τ = τ(max) : ∆τ : τ(min), (4)

θ(b) = θ(b,max) : ∆θ(b) : θ(b,min), (5)

φ(b) = φ(b,max) : ∆φ(b) : φ(b,min), (6)

PRF = PRF(max) : ∆PRF : PRF(min), (7)

PC = PCk , k = 1, 2, · · · , N(PC), (8)

Wav = Wavk , k = 1, 2, · · · , N(Wav), (9)

Pol = Polk , k = 1, 2, · · · , N(Pol), (10)
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where P(TX,max) and P(TX,min) are the maximum and minimum transmit power, respectively,
∆P(TX) represents the step change in the transmit power, f (c,max) and f (c,min) are the
maximum and minimum center frequency, respectively, and ∆ f (c) is the step change in
the center frequency. The maximum and minimum bandwidth ranges are represented
by BW(max) and BW(min), respectively, ∆BW is the step change in the bandwidth, τ(max)

and τ(min) are the maximum and minimum pulsewidths, respectively, and ∆τ is the step
change between the pulsewidth values. The maximum and minimum azimuth half-power
beamwidths are represented as θ(b,max) and θ(b,min), respectively, and ∆θ(b) is the step
change in the beamwidth in the azimuth plane. φ(b,max) and φ(b,min) are the maximum and
minimum half-power beamwidths in the elevation plane, and ∆φ(b) is the step change in
the beamwidth in the elevation plane. The maximum and minimum ranges of the PRF are
represented as PRF(max) and PRF(min), respectively, and ∆PRF is the step change in the
PRF. N(PC) is the number of intrapulse modulation options available, N(Wav) is the number
of waveform types available, and N(Pol) is the number of polarization options available.
Moreover, the range (magnitude) of the velocity of an i-th airborne radar platform (UAV) is
given as v(rad,max)

i : v(rad,min)
i .

Different types of beams are assigned different radar parameters from (10). The
parameters assigned to simultaneously scheduled beams should be smaller than or equal to
the total resources of the parameters available. The parameters assigned to beams remain
the same unless a change is recommended by the cognitive block. Let S(rad)

(i,j) (t) represent

the j-th beam at the i-th radar onboard the UAV at time t. The beam S(rad)
(i,j) (t) and the

corresponding radar parameters assigned are given as

S(rad)
(i,j) (t) =

[
P(TX)
(i,j) (t) f (c)

(i,j)(t) BW(i,j)(t) τ(i,j)(t)

G(i,j)
(
θ(b)(t), φ(b)(t)

)
P(av)
(i,j) (t) PRF(i,j)(t) PC(i,j)(t)

Wav(i,j)(t) Pol(i,j)(t)
]

. (11)

Table 2. Radar and radar platform parameters.

Serial # Radar Parameter Representation

1 Transmit power P(TX)

2 Center frequency f (c)

3 Bandwidth BW
4 Pulsewidth τ

5 Antenna gain based on beamwidths in the azimuth and elevation planes G
(
θ(b), φ(b))

6 Pulse repetition frequency PRF
7 Power aperture product

(
where A

(
θ(b), φ(b)) is the subarray aperture size

)
P(av) = P(TX,max)τPRFA

(
θ(b), φ(b))

8 Intrapulse modulation/pulse compression PC
9 Waveform type Wav

10 Polarization Pol
11 Radar platform position

(
x(rad),y(rad), z(rad))

12 Radar platform velocity ~v(rad)

3. Reinforcement Learning in Our Approach

In this section, we first discuss the states of the targets, followed by a discussion of
anomalies in the detection, tracking, and classification of targets. We then present the
implementation of multiagent Q-learning to remove these anomalies. Additionally, we
discuss the implementation of supervised AI algorithms for the same purpose.
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3.1. State of the Targets

We consider that there are M malicious UAVs (taken as targets) in the swarm. Each
MMPAR onboard a UAV detects a subset of the total targets given as k = 1, 2, · · · , Mi. The
RCS, position, and velocity estimates (based on Doppler) of the k-th target detected by i-th
MMPAR are represented as ρ

(tar)
(i,k) ,

(
x(tar)
(i,k) ,y(tar)

(i,k) ,z(tar)
(i,k)

)
, and ~v(tar)

(i,k) , respectively. Classification

is performed by assigning a class category C(tar)
(i,k) to each target based on its RCS and velocity.

For simplification, we defined two class categories. One class category is the fixed wing
and the other is the rotary wing.

Moreover, each k-th target is detected at a given signal-to-noise ratio (SNR) on i-th
MMPAR, represented as SNR(tar)

(k,i) . The SNR for the search, cued, track, and passive listening
beams are given, respectively, as

SNR(sr,tar)
(k,i,j) =

P(av)
(i,j) t(s)

(i,j)σ(k,i)

4πΩ(i,j)R4
(k,i)kT(s)

i Li

, j = 3, (12)

SNR(cue,tar)
(k,i,j) =

P(TX,max)
(i,j) G2(θ(b)

(i,j), φ
(b)
(i,j)

)
λ2

i σ(k,i)

(4π)3R4
(k,i)kT(s)

i B(n)
i Li

, j = 4, (13)

SNR(trk,tar)
(k,i,j) =

P(TX,max)
(i,j) G2(θ(b)

(i,j), φ
(b)
(i,j)

)
λ2

i σ(k,i)

(4π)3R4
(k,i)kT(s)

i B(n)
i Li

, j = 5, (14)

SNR(pl,tar)
(k,i,j) =

EIRP(tar)G
(
θ
(b)
(i,j), φ

(b)
(i,j)

)
λ2

i(
4πR(k,i)

)2kT(s)
i B(n)

i Li

, j = 6, (15)

where t(s)
(i,j) and Ω(i,j) are the scan time and solid angle, respectively, for the volume search

beam (j = 3) at i-th radar, T(s)
i , Li, and B(n)

i represent the system temperature, cumulative
losses, and noise bandwidth of the radar receiver, respectively, at the i-th radar, k is the
Boltzman constant, R is the range of the target, and EIRP(tar) is the effective isotropic
radiated power (EIRP) emitted by the active RF emitter onboard a target. The cumulative
losses are due to the atmosphere and obstructions from the clutter. The clutter includes birds
and buildings. The birds and buildings are modeled using non-homogeneous point clutter.

The RCS, position, velocity, class category, and detected SNR (obtained during tracking
and passive listening) are considered as the state of the target. The current state of the
targets (numbered as k = 1, 2, · · · , Mi) observed at the i-th UAV are given as

S(tar)
i (t) =


ρ
(tar)
(i,1) (t) x(tar)

i,1 (t) y(tar)
(i,1) (t) z(tar)

(i,1) (t)

ρ
(tar)
(i,2) (t) x(tar)

i,2 (t) y(tar)
(i,2) (t) z(tar)

(i,2) (t)
...

...
...

...
ρ
(tar)
(i,Mi)

(t) x(tar)
i,Mi

(t) y(tar)
(i,Mi)

(t) z(tar)
(i,Mi)

(t)

~v(tar)
(i,1) (t) C(tar)

(i,1) (t) SNR(trk,tar)
(i,1) (t)

~v(tar)
(i,2) (t) C(tar)

(i,2) (t) SNR(trk,tar)
(i,2) (t)

...
...

...
~v(tar)
(i,Mi)

(t) C(tar)
(i,Mi)

(t) SNR(trk,tar)
(i,Mi)

(t)

 .

(16)
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Similarly, the past states of the targets over nδt observation intervals stored in correspond-
ing arrays are given as

S(tar)
i (t− δt : t− nδt) =


ρ
(tar)
(i,1) x(tar)

(i,1) y(tar)
(i,1) z(tar)

(i,1)

ρ
(tar)
(i,2) x(tar)

(i,2) y(tar)
(i,2) z(tar)

(i,2)
...

...
...

ρ
(tar)
(i,Mi)

x(tar)
(i,Mi)

y(tar)
(i,Mi)

z(tar)
(i,Mi)

~v(tar)
(i,1) C(tar)

(i,1) SNR(trk,tar)
(i,1)

~v(tar)
(i,2) C(tar)

(i,2) SNR(trk,tar)
(i,2)

...
...

...
~v(tar)
(i,Mi)

C(tar)
(i,Mi)

SNR(trk,tar)
(i,Mi)

.

(17)

Both the current and past states of the targets over nδt update time intervals are provided
to the RL cognitive block shown in Figure 4.

Anamoly (1)

Actions Q-value

a11 Q11

a12 Q12

.

.
.
.

a1N
(1) Q1N

(1)

Anamoly (2)

a21 Q21

a22 Q22

.

.

a2N
(2) Q2N

(2)

.
          .
          .

.               

.

.                          

.

.

.

Anamoly (6)

a61 Q61

a62 Q62

.

.

a6N
(6) Q6N

(6)

Evaluation

Analyze anomaly, 
then select 

action based on 
highest Q-value.

 If previous 
action did not 

remove the 
anomaly, then 

select an action 
with second 

highest Q-value, 
update the Q-

table  and repeat

Anomaly-action-Q-value table (from training)

Si
(tar)(t)

Si
(tar)(t− δt : t− nδt)

Anomaly classifier

Policy/Goals
Terrain 

information
No action
required

Yes

No

Anomaly detector

Ai(t) Based on
 Q-learning 

RL Cognitive Block

Policy

Action, a

Figure 4. The RL cognitive block for the i-th MMPAR onboard a UAV at time instance t takes in the
states of the target, Si

(tar)(t), and Si
(tar)(t− δt : t− nδt). Additionally, the radar parameters and

position of the radar platform are provided as an action set, Ai(t). The Q-values in the table are
obtained based on rewards for state–action pairs (see Algorithm 2). The RL follows a simple policy of
removing anomalies through optimum actions, selecting the best action based on Q-value. During
the evaluation phase, the Q-values can be updated (see Algorithm 3).

3.2. Anomalies

An anomaly can be defined as a random fluctuation in the state of a target, which
can be caused by external factors such as clutter and RF interference in the environment,
or by limitations in radar processing. Such limitations include range and Doppler am-
biguities, range resolution, angular resolution, radar receiver sensitivity, and dynamic
range. Anomalies for different types and scenarios of radar systems are covered in the
literature [23–25]. Anomalies are expected to increase in complex and dynamic scenarios,
such as those involving time-varying clutter and UAV swarms. These anomalies can result
in the inaccurate detection, tracking, and classification of targets. At a given time t, an
anomaly in the state of a k-th target observed at i-th MMPAR can be represented as
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ρ′
(tar)
(i,k) (t) = ρ

(tar)
(i,k) (t) + X(rcs)(t),

x′(tar)
(i,k) (t) = x(tar)

(i,k) (t) + X(pos)(t),

y′(tar)
(i,k) (t) = y(tar)

(i,k) (t) + X(pos)(t),

z′(tar)
(i,k) (t) = z(tar)

(i,k) (t) + X(pos)(t),

~v′
(tar)
(i,k) = ~v(tar)

(i,k) + X(v)(t),

C′(tar)
(i,k) (t) = C(tar)

(i,k) (t) + X(C)(t),

SNR′(tar)
(i,k) (t) = SNR(tar)

(i,k) (t) + X(SNR)(t), (18)

where ρ′
(tar)
(i,k) (t), x′(tar)

(i,k) (t), y′(tar)
(i,k) (t), z′(tar)

(i,k) (t),
~v′

(tar)
(i,k) , C′(tar)

(i,k) (t), and SNR′(tar)
(i,k) (t) represent

the target state with anomalies due to random fluctuations, and X(rcs)(t), X(pos)(t), X(v)(t),
X(C)(t), and X(SNR)(t) are the random processes for RCS, position, velocity, classification,
and SNR, respectively, and are represented by Gaussian processes.

Algorithm 2 Pseudo-code for multi-agent RL algorithm using Q-learning and MMPAR
data

1: procedure STATEANOMALYACTIONREWARD

2: The input to the algorithm are target states S(tar)(t), radar parameters S(rad)(t), radar platform
position

(
x(rad),y(rad), z(rad)), and policy for a given scenario.

3: Consider that we are at i-th MMPAR onboard a UAV.
4: if S(tar)

i (t) and S(tar)
i (t− δt : t− nδt) do not conform to the policy for anomaly then

5: Identify the anomaly.
6: if Anomaly is already present in the anomaly list then
7: For a k-th anomaly, pth state, reward r, and j-th action from Table 3, the

corresponding Q-value is calculated as:

8: New Q
(

S(tar)
i,k,p (t), ai,k,p,j(t)

)
= Q

(
S(tar)

i,k,p (t), ai,k,p,j(t)
)

+β

[
ri,k,p,j(t)

(
S(tar)

i,k,p (t), ai,k,p,j(t)
)
+ γmaxQ′

(
S′(tar)

i,k,p (t), a′i,k,p,j(t)
)

−Q
(

S(tar)
i,k,p (t), ai,k,p,j(t)

)]
where β is the learning rate, r is the reward, γ is the future discount rate, and Q′

represents maximum expected future rewards given a future state S′, and action a′.
9: Update the Q-learning table.

10: else
11: Update the anomaly list.
12: end if
13: end if
14: return Q-learning table given in Table 4.
15: end procedure

An anomaly detector is used to identify anomalies during radar processing. In Figure 4,
an anomaly detector for i-th MMPAR onboard a UAV is shown. The inputs to the anomaly
detector are the present and past states of the targets, S(tar)

i (t) and S(tar)
i (t− δt : t− nδt),

respectively (provided in Section 3.1). The anomaly detector in Figure 4 also contains a
policy and an anomaly classifier block corresponding to a given terrain. An anomaly is
identified by comparing the current and past states of a target over duration nδt with a
given policy. The anomaly detection procedure is described in Algorithm 2. A list of the
possible anomalies during the detection, tracking, and classification of UAVs in a swarm is
provided in Table 5.
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Table 3. There are six anomalies identified in our approach. Three states can arise after an anomaly
occurs and an action is taken. Rewards are assigned for each state and action. The total reward
for an action corresponding to a state is the addition of a fixed reward and overhead of the action
represented by O. The Q-values are calculated using this reward (see Algorithm 2).

Anomalies States Reward for a1 Reward for a2 Reward for a(a)
N

Anomaly not
removed

[
r1,1,1 =

−10 + O1
]
, Q1,1

[
r1,1,2 =

−10 + O2
]
, Q1,2

· · ·
[
r1,1,N(a) = −10 +
ON(a)

]
, Q1,N(a)

Anomaly (1)
Anomaly removed
but reappears after

t > δt

[
r1,2,1 =

5 + O1
]
, Q1,1

[
r1,2,2 =

5 + O2
]
, Q1,2

· · ·
[
r1,2,N(a) =

5 + ON(a)

]
, Q1,N(a)

Anomaly removed
and does not

reappear

[
r1,3,1 =

8 + O1
]
, Q1,1

[
r1,3,2 =

8 + O2
]
, Q1,2

· · ·
[
r1,3,N(a) =

8 + ON(a)

]
, Q1,N(a)

...
...

...
... · · · ...

Anomaly not
removed

[
r6,1,1 =

−10 + O1
]
, Q6,1

[
r6,1,2 =

−10 + O2
]
, Q6,2

· · ·
[
r6,1,N(a) = −10 +
ON(a)

]
, Q6,N(a)

Anomaly (6)
Anomaly removed
but reappears after

t > δt

[
r6,2,1 =

5 + O1
]
, Q6,1

[
r6,2,2 =

5 + O2
]
, Q6,2

· · ·
[
r6,2,N(a) =

5 + ON(a)

]
, Q6,N(a)

Anomaly removed
and does not

reappear

[
r6,3,1 =

8 + O1
]
, Q6,1

[
r6,3,2 =

8 + O2
]
, Q6,2

· · ·
[
r6,3,N(a) =

8 + ON(a)

]
, Q6,N(a)

Table 4. Anomaly and possible actions to remove said anomaly in a given scenario. The rewards and
Q-values corresponding to actions are also provided.

Anomaly (Observed from Target
Returns after Duration nδt) Actions Q-Values

a2↓ Q1,2
a3↑ Q1,3

Low number of targets detected a5 Q1,5
a8↓ Q1,8
a12 Q1,12

a1↑↓ Q2,1
a6↑ Q2,6

Detection SNR below threshold a7↑ Q2,7
a12 Q2,12

a1 Q3,1
Velocity changes above threshold a4↑ Q3,4

a12 Q3,12

Scenario a1↑↓ Q4,1
a8↓ Q2,8
a4↑ Q4,4

RCS changes above threshold a8↓ Q4,8
a9 Q4,9
a12 Q4,12

a1↑↓ Q5,1
Active RF emissions from a UAV a3↓ Q5,3

a12 Q5,12

a2↓ Q6,1
a3↑ Q6,3
a5 Q6,5

Classification of targets changing a6↑ Q6,6
a7↑ Q6,7
a8↓ Q6,8
a12 Q6,12
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Algorithm 3 Pseudo-code for evaluation and comparison of RL-based approach with other
AI algorithms

1: procedure EVALUATION-RL-AI
2: % For RL evaluation
3: Create a dynamically changing scenario by introducing multiple targets and randomness

representing noise and clutter, and active RF interference emissions.
4: Identify anomalies and select optimum action based on Q-value. See Table 4.
5: if Anomaly persists after an optimum action then
6: Take the action with lesser priority (smaller Q-value than the previous).
7: if Anomaly is removed after lesser priority action then
8: Update the Q-learning table with an updated Q-value for the new action.
9: else

10: Select another action with a lower priority and repeat.
11: end if
12: end if
13: Calculate the percentage of recurrence of anomalies after corrective actions are applied.
14: % For supervised AI algorithms
15: For an anomaly, the AI algorithm is trained with an optimum action label based on the

target state S(tar)
i (t) and radar parameters S(rad)

i (t).
16: Calculate the percentage of recurrence of anomalies for different supervised
17: AI algorithms.
18: return Percentage recurrence of anomalies for RL and supervised AI algorithms.
19: end procedure

Table 5. List of anomalies observed at nδt update intervals.

Serial # Anomalies

1 Targets not correctly detected (because targets are not resolved in range and angular domains).
2 Targets detected with SNR below a threshold (either due to clutter or RF interference).
3 Velocity variations above a threshold.
4 RCS fluctuations above a threshold.
5 Active RF emissions from malicious UAVs.
6 Classification of targets changes (due to the above listed anomalies).

3.3. Multi-Agent Q-Learning

If an anomaly persists for a duration of nδt, then corrective action is required to remove
the anomaly. Such corrective action involves changing the runtime radar parameters and/or
repositioning the radar platform. Table 6 provides a list of possible actions to remove the
anomalies listed in Table 5. The combined set of available actions Ai(t) at a given time t
and at the i-th MMPAR can be represented as

Ai(t) =
[

S(rad)
i (t)

(
x(rad), y(rad), z(rad))]. (19)

Choosing an action from Table 6 may not result in an optimal outcome. It is preferable
to select an action that can maximize current and future returns, i.e., remove current and
potential future anomalies with minimum overhead. After an action is taken, we can
reach three states given in Table 3. Each state has an associated fixed reward. There is
also an overhead for each action represented by O. The total reward is the addition of a
fixed reward for the state–action pair and overhead for the action shown in Table 3. This
reward is used to calculate the Q-value given in Algorithm 2. The optimum Q-values
are obtained after multiple iterations of training. Overall, the anomalies, corresponding
optimum actions, and Q-values are listed in Table 4.
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Table 6. Possible actions to eliminate anomalies for the accurate detection, tracking, and classification
of UAVs in the swarm.

Serial # Action Action Label

1 Change of center frequency a1
2 Change of pulsewidth a2
3 Change of bandwith a3
4 Change of PRF a4

5 Introduce intrapulse modulation or
change of type of intrapulse modulation a5

6 Change of number of pulses a6
7 Change in transmit power a7
8 Change of antenna beamwidth a8

9 Change in the polarization of the phased
array a9

10 Change in type of sounding signal a10
11 Changes in the beam scheduling a11

12 Change of position of the radar platform
onboard UAV a12

Algorithm 2 provides the implementation of multi-agent Q-learning using MMPAR
data. Each MMPAR onboard a UAV acts as an RL agent. The state of each agent is
represented by the current and previous states of the targets after an anomaly is detected.
Q-values are learned using the Q-learning algorithm and rewards from the environment for
a given state–action pair. The optimum action based on the Q-value is updated in Table 4.
To evaluate the Q-learning table in a simulated environment scenario, multiple targets,
noise, clutter, and active RF emissions as interference are introduced to create a complex
and dynamic scenario. Algorithm 3 outlines the evaluation procedure.

The learning rate in Algorithm 2 is controlled through β. We prefer to adopt a balanced
learning rate for our approach. Therefore, we set the value of β = 0.75 initially and then
gradually decrease β as the number of samples from Q(s, a) increases. This approach will
help the convergence of RL and at the same time ensure a balanced learning rate. Similarly,
we set the value of the future discount rate γ to 0.85 to balance the current and future
rewards in our approach.

A Markov decision process (MDP) is a mathematical framework used to model
decision-making problems in situations where outcomes are partly random and partly
under the control of a decision maker. In the case of the presented approach, the MDP
represents the states of the targets, the occurrence of anomalies, the actions taken to remove
the anomalies, and the corresponding Q-values shown in Figure 5.

The goal of the MDP is to achieve an anomaly-free state for radar operation. If an
anomaly arises, the best action is chosen based on the optimum Q-value to remove the
anomaly and move to the desired state, as shown in Figure 5. If the action based on
an optimum Q-value is not able to remove the anomaly, the Q-value is updated for the
state–action pair using a negative reward. A second priority action is used to remove the
anomaly if the first action fails, and the process repeats. By using an MDP, the approach
can systematically and optimally address anomalies in radar operation.

3.4. Anomaly Removal Using Supervised AI Algorithms

In addition to RL, supervised AI algorithms are also used to remove anomalies. The
AI algorithms used are Naive Bayes (NB), Classification Decision Tree (CDT), Linear
Discriminant Analysis (LDA), and Random Forest (RF). The AI algorithms are trained
to provide the best action label corresponding to an anomaly in a given scenario. The
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training data D(Tr) and model for the AI algorithms of the i-th MMPAR onboard a UAV
after anomaly identification are given as

D(Tr) =
[
S(tar)

i Ai
]
, (20)

Mdl1 = f (NB)
(

D(Tr), C(Tr)
)

, (21)

Mdl2 = f (CDT)
(

D(Tr), C(Tr)
)

, (22)

Mdl3 = f (LDA)

(
D(Tr), C(Tr)

)
, (23)

Mdl4 = f (RF)
(

D(Tr), C(Tr)
)

, (24)

where Mdl1, Mdl2, Mdl3, and Mdl4 are the AI models corresponding to NB, CDT, LDA, and
RF classifiers, respectively, f is the modeling function of the classifier, and C(Tr) is the class
identifier assigned to training data. The class identifiers here are action labels, provided in
Table 6. During the evaluation phase, the optimum action (class label) is predicted as

C(eval) = predict
(

Mdlp, D(Eval)
)

, (25)

where p = 1, 2, 3, 4, D(Eval) represents the evaluation data of the target collected by the
radar, and predict represents the prediction function.

Anomaly1
Anomaly2

⋮
Anomaly6

Target state

Anomaly1

Anomaly2

Anomaly6

Compare Yes

Desired state
(anomaly-free)

Figure 5. A Markov decision process is used to represent our approach. Initially, the state of the
target is examined for anomalies at a particular radar onboard a UAV. If an anomaly is detected,
a set of actions is available to correct the anomaly and transition to the desired state. Each action
corresponds to a Q-value. The action with the highest Q-value is selected.

4. Simulation Setup and Results

In this section, the simulation setup, results of our approach, and comparison of our
approach with the supervised AI algorithms are provided.

4.1. Simulation Setup

The simulations are carried out in Matlab. The MMPAR onboard the UAV is generated
using the Matlab Radar Toolbox. The parameters of the radar are provided in Table 7.
The radar resources shared by different beams (obtained from the range of parameters in
Table 7) are provided in Figure 6. The maximum azimuth and elevation scan limits are
[−55◦ : 55◦] and [0◦ : −35◦] in the azimuth and elevation planes, respectively. The update
rate for the system simulation is f (u) = 20 Hz, and the corresponding update interval is
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δt = 50 ms. The cumulative losses of the i-th radar represented by Li vary between 0 and
12 dB.

Table 7. Simulation parameters of the radar.

Serial # Radar Parameters Parameter Values

1 P(TX,max):P(TX,min) 100× 103 W : 500× 103 W
2 f (c,max): f (c,min) 1.2 GHz : 4.3 GHz
3 BW(max):BW(min) 10× 106 Hz : 50× 106 Hz
4

[
θ(b,max) : θ(b,min)], [φ(b,max) : φ(b,min)] [15◦ : 1◦], [14◦ : 1◦]

5 PRF(max):PRF(min) 1400 : 1600
6 Number of pulses 5 : 25
7 Wav Noise radar waveform
8 Pol Vertical
9 Radar noise figure 5 dB

Bandwidth (M
Hz)

Beamwidth (A
z
o )

Beamwidth (E
lo )

Beam Gain (d
Bi)

Pulsewidth (x10
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PRF (x10
2 )

PAP (x10
3 )
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V
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Two communication beams
Volume search beam
Cued search beam
Tracking beam
RF passive listener beam

Figure 6. Resource distribution among the beams. The PAP presented here is for a peak transmit
power of 150× 103.

We consider two UAV platforms, each equipped with an MMPAR. These UAVs are
labeled as UAV1 and UAV2, respectively. Both UAV1 and UAV2 start from an initial
position and follow a straight-line trajectory at a constant velocity towards the targets.
UAV1 has three targets in front of it, while UAV2 scans six targets. All targets are airborne
and within the range of the radars. Figure 7 shows a snapshot of UAV2 carrying MMPAR
scanning the six targets using volume, cued, and track beams at different time instances. At
the top figure, the positions of the beams and targets at different sectors of the azimuth and
elevation planes are shown. In the bottom figure, an (x, y) plot of the beams is presented,
and the position of targets is shown. It can be observed from Figure 7 that only volume
and cued search beams are used at t1 for targets 1 and 6. At time t2, volume and cued
search beams are used for targets 2, 3, 4, whereas a track beam is used for targets 1 and 5.
In Figure 8, an airborne platform carrying a malicious RF emitter emits a beam towards
UAV1 carrying MMPAR. The RF listener beam of MMPAR onboard UAV1 is used to listen
to the RF emissions. The other two targets do not emit RF energy, as shown in Figure 8.
Furthermore, suburban and urban terrains are considered in the simulations. In both the
suburban and urban terrains, clutter consisting of birds and buildings is considered. The
height of the buildings in the urban terrain is larger than in the suburban terrain. The
clutter is modeled as non-homogeneous point clutter occurring at random intervals of
simulation. The clutter reduces the SNR of the radar beams. The fluctuation in the SNR of
different beams due to clutter is modeled using Equations (12)–(15).
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(a) (b)
Figure 7. Volume search, cued search, and track beams used by MMPAR onboard UAV2 to detect
and track targets are shown. At the top of the figure, volume and cued beams and targets located at
different sectors of the azimuth and elevation planes are shown. At the bottom of the figure, the (x, y)
plot of beams that originated from the MMPAR radar is shown. There are six target UAVs following
distinct trajectories in the scenario. The search and tracking of targets by different beams at time t1

and t2 are shown in subfigures (a) and (b), respectively. (a) Beams at time t1. (b) Beams at time t2.

The targets have assigned trajectories determined by their initial and final waypoints.
The targets move with an average displacement of 26.6 km, 31.7 km, and 1.3 km in the x, y,
and z coordinates, respectively, and their average velocity is 450 m/s. The RCS values of
the targets are 1 m2 and 3 m2, and the Swerling1 RCS fluctuation model is employed for
the simulations. The active RF emitter carried by one of the targets in Figure 8 has an EIRP
of 200 dBi.

4.2. Results and Analysis

The simulations introduce anomalies to the radar environment by adding randomness
according to (18). The simulation duration is 200 s, comprising 4000 update intervals. The
first two anomalies and their respective priority actions for the MMPAR onboard UAV2
are shown in Figures 9 and 10. For the first anomaly in Figure 9, the goal is to have above
300 correctly detected targets throughout the simulation duration, and if the number of
correctly detected targets is 300 or less, it is considered an anomaly. Anomaly1 is obtained
for both suburban and urban scenarios. The priority actions taken to remove the anomaly
include increasing the peak power, reducing the beamwidth, and increasing the number
of pulses and bandwidth. The peak power varies between 150× 103 and 400× 103, the
beamwidth is reduced by 1 degree in both the azimuth and elevation planes, the number of
pulses is increased from 10 to 35, and the bandwidth increases from 10× 106 to 35× 106.
The results show that the priority actions help to increase the number of correctly detected
targets above the anomaly threshold of 300. Furthermore, it can be observed that the
number of correctly detected targets is smaller for the urban scenario compared to the
suburban scenario, mainly due to tall building clutter in the urban scenario.
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MMPAR 

onboard UAV Active RF 

Beam by 

malicious UAV

Target UAV

Target UAV

Target UAV 

with active RF 

emitter

Passive RF 

listener beam

Figure 8. Onboard a malicious UAV, there is an active RF emitter. Meanwhile, the MMPAR onboard
UAV1 generates a passive RF listener beam that can detect active RF emissions and determine their
direction of arrival. This includes both direct (from active RF emitter) and reflected emissions from
a target within the range of the active RF beam. The directions of arrival (DoA) are represented by
straight lines.

In Figure 10, the second anomaly from Table 4 is shown, and we aim to keep the
number of targets detected above the SNR threshold of 10 dB above 300. The priority
actions are shown for both suburban and urban scenarios. The three priority actions
selected based on the highest Q-values include increasing peak power, decreasing the
beamwidth, and increasing the number of pulses. As illustrated in Figure 10, applying the
priority actions increases the number of occurrences when the SNR of the detected targets
is above the threshold. Similar to Figure 9, the number of targets above the SNR threshold
for suburban scenarios is higher compared to urban scenarios. The other anomalies and
corresponding actions from Table 4 can also be plotted.
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Figure 9. Anomaly1 at MMPAR onboard UAV2 occurs when the number of correctly detected targets
over a fixed simulation duration is less than 300. Corresponding actions are taken to remove the
anomaly, which include varying the peak power in the range of 150× 103 W: 50× 103 : 400× 103 W,
reducing the beamwidth [2 3] by 1◦ as

[
[2 2] [1 2] [1 1]

]
, changing the number of pulses to 10 : 5 : 35,

and changing the range of the bandwidth as follows:10× 106 Hz: 5× 106 : 35× 106 Hz. These
actions help increase the number of correctly detected targets. Anomaly1 and the corresponding
actions using RL at UAV2 for suburban and urban scenarios are shown. (a) Anomaly1 and actions for
suburban scenarios. (b) Anomaly1 and actions for urban scenarios.
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Figure 10. Anomaly2 occurs when the number of targets detected with an SNR above the 10 dB
threshold is less than 300. Similar actions to those in Figure 9 are taken to remove the anomaly and
increase the number of targets detected with an SNR above 10 dB. Anomaly2 and corresponding
actions using RL to remove Anomaly2 at UAV2 for suburban and urban scenarios are shown.
(a) Anomaly2 and actions for suburban scenarios. (b) Anomaly2 and actions for urban scenarios.

The MMPAR onboard UAV1 uses a passive RF listener beam to detect active RF
emissions from a target UAV, as depicted in Figure 8. The frequency sweep is performed
using the passive listener beam to detect the active emissions, and the direction of arrival is
determined by the same beam, shown as a line in the figure. Another line in Figure 8 shows
the detection caused by the reflection of RF energy from a non-emitting target within the
emitter beam footprint towards the RF listener beam.

4.3. Comparison of RL with Other AI Algorithms

In addition to RL, we also utilize the four supervised AI algorithms discussed in
Section 3.4 to address anomalies. These algorithms predict the best action to remove
the anomaly, and we compare their effectiveness with the Q-learning RL algorithm. The
difference between the actual and estimated positions at MMPAR onboard UAV2 for
suburban and urban scenarios is shown in Figure 11. The position error in Figure 11 is
lowest for RL and highest without using any algorithm for anomaly removal. The position
error is higher for the urban scenario compared to the suburban due to the tall building
clutter in the urban scenario. Moreover, the average position error values for NB, CDT,
LDA, and RF are close for urban compared to suburban scenarios. We also compare
the percentage of anomaly recurrence after applying the optimal action, as outlined in
Algorithm 3. Figure 12 shows the results of this comparison.
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Figure 11. Difference between the actual and estimated positions (position error) of targets for
MMPAR at UAV2 for suburban and urban scenarios. The position error due to radar anomalies, using
RL and other AI algorithms and without any algorithm for anomaly removal, is shown. The average
position error is lowest for RL and highest when no algorithm is used. (a) Target position error for
suburban scenarios. (b) Target position error for urban scenarios.
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Figure 12. The percentage of anomaly recurrence after taking optimum actions based on Q-values
is presented in the graph for suburban and urban scenarios. The simulations were conducted over
a duration of 200 seconds for MMPAR onboard UAV1 and UAV2. It is observed that the highest
percentage of anomaly recurrence occurs when no AI algorithm is used, while the lowest percentage
is obtained using RL. Additionally, the percentage of anomaly recurrence is higher for six targets as
compared to three targets. (a) Suburban scenario. (b) Urban scenario.

Figure 12 shows that RL outperforms other supervised AI algorithms in handling
anomalies. This is mainly due to RL’s continuous situational awareness of environment
feedback in the form of rewards and the ability to update its policy during runtime. In
contrast, once a supervised AI algorithm is trained, it tries to find the best match based on
training without taking any runtime feedback from the environment. Furthermore, the
performance of supervised AI algorithms is expected to decrease in complex and dynamic
scenarios with rapidly changing environments. Additionally, the recurrence percentage
of anomalies is higher for all AI algorithms when six targets are present compared to
three targets.

The runtime calculation demand is smaller for RL compared to supervised AI al-
gorithms. Only basic initial training is required for the RL algorithm in our approach
to learn about the best action for an anomaly (see Algorithm 2). During the runtime, a
calculation overhead for our approach will only arise when an optimum action has not
been selected and due to sub-optimum action, we have to select another action. On the
other hand, supervised AI algorithms require a large dataset for training. The size of the
training dataset can vary with the environment. Also, the results of supervised AI algo-
rithms directly depend on the training dataset. Overall, the runtime calculation demand
for supervised AI algorithms is higher compared to RL. The class label (action) selection
based on comparison with the training data results in high runtime calculation demand for
supervised AI algorithms. Moreover, if a new anomaly scenario arises that has not been
covered in the training, it will be difficult to select an optimum action for the new anomaly
using supervised AI learning. On the contrary, RL will be able to learn about the optimum
action for the new anomaly scenario from the environment.

5. Conclusions and Future Work

In this work, we have used MMPAR onboard UAVs to detect, track, and classify mali-
cious UAVs in a swarm. In addition to radar operation, the MMPAR onboard UAVs in our
study can also support communications. During radar operation, we identify and remove
anomalies in the detection, tracking, and classification using optimal actions. Multi-agent
RL is utilized to select optimal actions for a given anomaly. The optimal actions are chosen
based on the highest Q-values from Q-learning. We have also provided a performance com-
parison of RL with selected supervised AI algorithms. The results show that the RL-based
approach is better at handling anomalies in a dynamic environment compared to super-
vised AI algorithms. In our future work, we plan to implement centralized multi-agent
Q-learning and compare the results with the current decentralized multi-agent Q-learning.
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We also plan the real-world implementation of our proposed method. Major limitations for
real-world implementation are the large weight, power, and computation requirements of
MMPAR. Therefore, MMPAR is challenging to place on small and medium-sized UAVs.
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