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Abstract: A mathematical model for the target tracking problem is proposed. The model makes
it possible to describe conditions when the time for an observer to receive the results of indirect
observations of a moving object depends not only on the state of the observation environment but
also on the state of the object itself. The source of such a model is the observation process, by
stationary means, of an autonomous underwater vehicle, in which the time for obtaining up-to-date
data depends on the unknown distance between the object and the observer. As part of the study of
the problem, the equations of the optimal Bayesian filter are obtained. But this filter is not possible to
implement. For practical purposes, it is proposed to use the conditionally minimax nonlinear filter,
which has shown promising results in other complex tracking models. The conditions for the filter’s
evaluation and its accuracy characteristics are given. A large-scale numerical experiment illustrating
the filter’s operation and the observation system’s features with random delays are described.

Keywords: target tracking; stochastic dynamic observation system; stochastic filtering; optimal
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1. Introduction

The problem of tracking a maneuvering object using a model with random factors
is a typical application of stochastic filtering theory and methods [1]. In addition to
navigation, these methods are widely used in other areas, sometimes entirely unexpectedly,
such as medicine, industry, economics, and telecommunications [2–7]. The model and
problem statement discussed in the article are inspired by the popular modern applied
field of autonomous underwater vehicles (AUVs) [8]. Many works are devoted to AUV
applications, most of which are related to control tasks. The special issue of [9] sufficiently
illustrates the scope and magnitude of the research interest in this area. Moreover, let us pay
attention to the fact that researchers use many new methods as tools, primarily due to the
development of machine learning (a typical example is work [10], and there are many such
works [11]). At the same time, the conventional tasks of target tracking remain in demand;
one can find many new and exciting things in them [12–20]. Here it is necessary to note
the tasks of tracking multiple targets [21,22], the solution of which, as well as conventional
statements, is provided by stochastic filtering methods.

The Kalman filtering model, algorithm [23], and many different suboptimal filters have
become widely used. The simplest algorithms of this kind, starting with the extended Kalman
filter [24] and modern developments of the odorless or cubature Kalman filters [25–27], can be
effective in individual applications. Such ideas have found many applications and options
for development/improvement. An excellent attempt to systematize the results in this area
was made in [28]. To date, many more works have appeared devoted to the research and
improvement in such suboptimal filters [29–32], including those applied to target tracking
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tasks of AUVs [33]. However, no fundamentally new ideas have been proposed, and the
initially existing shortcomings remain. The essence of these disadvantages is that none of
these filters guarantees accurate characteristics for at least any broad class of models. That
is, the estimates do not guarantee either the absence of bias or the limitation of the error, at
least by the variance of the estimated state. This means there is always a danger that the
filter will be unstable in another model and the estimate will diverge. The only guarantee
is a practical experiment with a specific model and a fixed set of parameters.

It should be noted that the problem of delayed observations is well known in the
field of application under discussion. Such delays are due to a prominent characteristic of
acoustic meters: the dependence of the acoustic wave propagation velocity on temperature,
salinity, and water pressure [34]. This attracted attention in the above-mentioned study [20],
and a solution was found by combining measurement data from acoustic sensors with
information from other sensors in the onboard inertial navigation system. A more typical
way to deal with delayed observations is to estimate the delay time and consider it by
adjusting the usual filter [35]. Interestingly, the delay in observations is explained by nature
not only for underwater observations but also in some chemical processes [36].

It should be understood that models with a deterministic delay time have limited use
because, in reality, the delay time is random and significantly depends on the observation
conditions, and most importantly, it changes during tracking. Moreover, these changes
can be significant. In the model proposed in this article, the time delay of observations is
described by a random process, which is a known function of the state of the observation
system. Such a description of delays makes the model as adequate as possible when
describing the results of the acoustic sensors.

At the same time, formally, the model of the observation system remains a Markov
process model with discrete time. Hence, the classical Bayesian filtering procedure can be
applied to it [37], i.e., obtaining recurrent relations for the a posteriori probability density is
possible. The next section of the article shows these relations. However, this formal success
turned out to be relevant only to justify the impossibility of practical implementation of
either the optimal filter itself or its suboptimal simplifications. The reason for this is that
the formal reduction of the equations of the observation system to the traditional form
enormously increases the dimension.

An alternative to suboptimal filters is the conditionally minimax nonlinear filtering
(CMNF) [38]. Initially and in development [39], this method focused on applications
in aircraft tracking tasks, which remain relevant for modern tasks [40]. However, the
same approach has shown effectiveness in specific tasks for AUVs. So, in [19], an already
modified CMNF for tracking underwater vehicles was shown, but with an emphasis on
the efficiency of using Doppler sensors. It turned out that the CMNF algorithm does not
require refinement for the proposed model with random delay. It is only necessary to clarify
the conditions of existence. Section 3 of the article contains the statement required.

It turned out to be more challenging to adapt the typical filter structure to the task
of AUV tracking. A standard filter structure using a prediction via a system state model
and a correction in the form of a residual did not show good results when processing the
acoustic observations. Nevertheless, the flexibility of the CMNF method made it possible to
adjust the filter structure, consider the physical properties of observers, and obtain a very
effective estimate as a result. Within the framework of the numerical experiment presented
in Section 4 of the article, we show the process of physically justified adjustments to the
filter structure. Section 5 contains concluding remarks, including considerations on options
for further development of the proposed method.

2. Observation System Model and Optimal Filtering

The model uses discrete time. It is assumed that the filtering process, i.e., the calcula-
tion of the first state estimate, begins at the moment t = 0. The maximum possible delay is
known and is equal to T; therefore, the state of the system xt begins to form at the moment
t = −T. Thus, t = −T,−T + 1, . . . , 0, 1, . . . , and the initial state is set at the moment−T− 1.
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Three variants of recording the equations of the observation system are considered. The
first one has the most general form:

xt = ϕt(xt−1, wt), x−T−1 = η,
yt = ψt(xt−τt , vt), τt = θt(xt).

(1)

The second version of the recording is a discrete analog of the diffusion process:

xt = ϕt(xt−1) + ϕw
t (xt−1)wt, x−T−1 = η,

yt = ψt(xt−τt) + ψv
t (xt−1)vt, τt = θt(xt).

(2)

The latter version is the most particular, but the most frequently used. This model
is used by many suboptimal filters. It is also the most convenient for optimal Bayesian
filtering. The system with state-independent noise is written as follows:

xt = ϕt(xt−1) + wt, x−T−1 = η,
yt = ψt(xt−τt) + vt, τt = θt(xt).

(3)

In (1)–(3) xt ∈ Rpx represents the system state vector; wt ∈ Rpw is the discrete white
noise modeling perturbations of the system; η ∈ Rpx is the initial state vector; yt ∈ Rqy is the
vector of indirect observations; vt ∈ Rqv is the discrete white noise modeling measurement
errors; vectors η, wt, vt are assumed to be independent in aggregate. The model of observa-
tions delays, τt, is given by a vector of the same dimension as the observations themselves.
The elements of the vector, τt ∈ Rqy , set the time delays for the corresponding components
of the vector yt. Namely, each component (τt)i is a random sequence with values in the
set {0, 1, . . . , T}, i.e., (τt)i ∈ {0, 1, . . . , T} for i = 1, . . . , qy. We consider xt−τt as a composite

vector containing the states xt with all the shifts (τt)i, i.e., xt−τt =

(
x′t−(τt)1

, . . . , x′t−(τt)qy

)′
.

This notation makes accurate (1)–(3) and further relations.
The problem of estimating the state xt from observations ys, s = 0, 1, . . . , t, is consid-

ered, and the evaluation accuracy criterion x̂t is the mean square, i.e., E{‖xt − x̂t‖2}, E{x}
is the mathematical expectation of the vector x, and ‖x‖ is the usual Euclidean norm of
the vector x.

Thus, the random observation delay (τt) is the only difference between the considered
problem statement and the traditional one of filtering the state of the observation system in
discrete time. This difference does not exist formally because the following shows how to
bring systems (1)–(3) into the traditional recording form. Therefore, the optimal solution is
a conditional mathematical expectation of xt relative to observations ys, s = 0, 1, . . . , t. So,
it is enough to know the a posteriori probability density of xt relative to ys, s = 0, 1, . . . , t.
Next, the a posteriori density for system (3) and t = 0, 1, . . . , will be written out in the
form of recurrent Bayesian relations [37] under conditions when the necessary probability
densities exist, i.e., under certain restrictions on the continuity of nonlinear functions and
perturbations in (3). We avoid unnecessarily cumbersome relations with no practical value
by limiting the discussion of the optimal filter to the system (3). For formal conclusions,
system (3) is sufficient.

The non-Markov observation system (3) can be written as a Markov process with an
extended state vector. Formally, this extended process will have the same form (3), but
with τt = 0.

The extended state vector is further denoted by xt ∈ R(T+1)px and is a composite
vector, consisting of all the states of the system from time t− T to the current moment t,
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i.e., xt =
(

x′t−T , . . . , x′t−1, x′t
)′. The notation ′ is used here for the transpose operation. The

equation for xt has the following form:

(xt)
px
1 = (xt−1)

2px
px+1,

. . .

(xt)
Tpx
(T−1)px+1 = (xt−1)

(T+1)px
Tpx+1 ,

(xt)
(T+1)px
Tpx+1 = ϕt

(
(xt−1)

(T+1)px
Tpx+1

)
+ wt,


xt−T
. . .

xt−1
xt = ϕt(xt−1) + wt


where (x)j

i denotes a sub-vector of vector x with elements from i-th to j-th.
Denoting such a transformation of the state vector by Φt, and the corresponding

additive noise by wt = (0′, . . . , 0′, x′t)
′, we obtain the equation of state in the following form:

xt = Φt(xt) + wt. (4)

To obtain the relation for the observer, we define the matrix function Ψt(xt) ∈ R(T+1)×qy

as follows:

Ψt(xt) =


ψ′t

(
(xt)

px
1

)
ψ′t

(
(xt)

Tpx
(T−1)px+1

)
. . .

ψ′t

(
(xt)

(T+1)px
Tpx+1

)

 =


ψ′t(xt−T)

ψ′t(xt−T+1)
. . .

ψ′t(xt)

.

Thus, the rows of this matrix contain all possible observations at time t due to delays
τt without noise. To describe the delays themselves, we also introduce the matrix function
Θt(xt) ∈ Rqy×(T+1), which takes values by the following rule:

(Θt(xt))i,j = 1, if (θt(xt))i = T − j + 1,
(Θt(xt))i,j = 0, else,

i = 1, . . . , qy, j = 1, . . . , T + 1.

Thus, the element (i, j) of the matrix Θt(xt) takes the value 1 if the observation (yt)i
corresponds to the delay (τt)i = T − j + 1.

These two notations allow us to write the equation of observations in the following form:

yt = Θt(xt)Ψt(xt) + vt. (5)

Thus, (4) and (5) are the canonical form of a Markov observation system with discrete
time and additive independent noises.

Further, the values that the function Θt(xt) can take are denoted by [Θt]k, k = 1, . . . ,
qy(T + 1). The sequence number k can be set by putting

k = jk,1 + (T + 1)jk,2 + . . . + (T + 1)qy−1 jk,qy , (6)

where jk,i is the row number of the i-th column of the matrix [Θt]k, in which there is 1.
These notations make it possible to recalculate the possible values of the observer

function Θt(xt)Ψt(xt). Denote the value of this function with the same number k from (6)
by [ΘtΨt]k; then,

[ΘtΨt]k = [ΘtΨt(xt)]k =



(
ψt

(
xt−jk,1

))
1(

ψt

(
xt−jk,2

))
2

. . .(
ψt

(
xt−jk,1

))
qy

.
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Here, (ψt)i is the i-th coordinate of the vector ψt. Thus, [ΘtΨt]k consists of observations
without noise, shifted by the delay values corresponding to the ordinal number k given for
the matrix k by the relation (6).

In addition, the possible values of the time delay vector τt are numbered as follows:

[θt(xt)]k = [τt]k, ([τt]k)i = T − jk,i + 1, i = 1, . . . , qy.

The designations could be more convenient, but they are needed to represent the
optimal Bayesian filter. To this end, we introduce the following rules for the designation of
probabilistic characteristics. For random vectors x ∈ Rp, y ∈ Rq via (x′, y′)′ ∈ Rp+q denote
the composite vector using the notation ′ (transpose).

The probability densities used below will be denoted as follows: fx(X) is the marginal
density of x, fx,y(X, Y) is the density of the composite vector (x′, y′)′, and fx|y(X|Y) is the
conditional density of x relative to y under the additional assumption fy(Y) > 0.

Additionally, we list all the symbols used:

• Symbol x is used to denote random vectors in the notations of the original observation
system (3);

• Symbol X is used to denote arguments of probability densities corresponding to x;
• Symbol x is used to denote random vectors in the extended state notation in the

observation system (4) and (5);
• Symbol X is used to denote arguments of probability densities corresponding to x;
• Notations yt and Yt are used for the vector of all observations up to and includ-

ing the moment t, i.e., yt = (y′0, . . . , y′t)
′, and for the corresponding probability

density argument.

For the conditional distribution of the state xt of the observation systems (4) and (5)
with respect to observations ys, s = 0, . . . , t, it is possible to formally write the recurrent
Bayesian relations for the a posteriori probability density [37]:

fxt |yt
(
Xt
∣∣Yt) = ∫

fxt |xt−1
(Xt|Xt−1) fxt−1|yt−1

(
Xt−1

∣∣Yt−1)dXt−1· fyt |xt(Yt|Xt)∫ ∫
fxt |xt−1

(Xt|Xt−1) fxt−1|yt−1(Xt−1|Yt−1)dXt−1· fyt |xt(Yt|Xt)dXt
.

This expression can be used only if all probability densities exist in it. For systems
(4) and (5), this is not the case for the transition density fxt |xt−1

(Xt|Xt−1). In addition, it is
necessary to take into account the explicit form of density fyt |xt(Yt|Xt).

The transformations performed in the following theorem allow us to use instead of
the transition density fxt |xt−1

(Xt|Xt−1) of the expanded state and the transition density
fxt |xt−1

(Xt|Xt−1) of the initial state. Accordingly, we can instead compute instead
∫
·dXt−1,

which is calculated according to the space R(T+1)px and the integral
∫
·dXt−T−1 according

to the space Rpx . In addition, an explicit form of density, fyt |xt(Yt|Xt), is written.

Theorem 1. Let T > 1 be given for system (3) and fulfilled:

• The probability density of perturbations fwt(Wt),t = −T,−T + 1, . . . , is continuous and the
vectors wt have finite second-order moments;

• The probability density of observation errors fvt(Vt), t = 0, 1, . . . , is continuous, and the
vectors vt have finite second-order moments;

• The probability density of the initial state fη(X−T−1) is continuous, and the vector η has finite
second-order moments;

• Function ϕt(x) and ψt(x) are continuous and satisfy the condition of linear growth, i.e., there
exists a constant C: ‖ϕt(x)‖2 + ‖ψt(x)‖2 < C(1 + ‖x‖2), x ∈ Rpx .

Then, for the a posteriori probability density ρt = ρt
(
Xt
∣∣Yt) of the extended state xt =

(x′t−T , . . . , x′t−1, x′t)
′, t = 0, 1, . . . , of the system given by the relation (4), with respect to
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observations yt = (y′0, . . . , y′t)
′, t = 0, 1, . . . , and the estimates of the optimal Bayesian filter

x∗t = E
{

xt
∣∣Yt} of the system (3) statext, the following recurrent equalities are performed:

ρt =
fwt (Xt−ϕt(Xt−1))∑k I(θt(Xt)=[τt ]k) fvt (Yt−[ΘtΨt(Xt)]k)

∫
ρt−1dXt−T−1∫

( fwt (Xt−ϕt(Xt−1))∑k I(θt(Xt)=[τt ]k) fvt (Yt−[ΘtΨt(Xt)]k)
∫

ρt−1dXt−T−1)dXt
,

x∗t =
∫

Xtρt
(
Xt
∣∣Yt)dXt, x∗t = (x∗t )

(T+1)px
Tpx+1 ,

(7)

with an initial condition

ρ−1
(
X−1

∣∣Y−1) = ρ−1(X−1) = ρ−1(X−T−1, . . . , X−1)
= fη(X−T−1) fw−T (X−T − ϕ−T(X−T−1))· . . . · fw−1(X−1 − ϕ−T(X−2))

and the numbering rule for k = 1, . . . , qy, defined in (6).

In the recurrent equalities of the theorem for a posteriori densities ρt
(
Xt
∣∣Yt), argu-

ments are omitted, and the recording of the sum is simplified. Note that there are no formal
reasons preventing computer implementation (7). However, there needs to be more realism
in performing such a computer calculation due to the increase in dimension, the scale of
which determines the value of T. In the numerical experiment discussed later in the article,
T = 50. So, even with small px = 2 and qy = 4, the integrals in (7) will be in the space R100,
and the summands will be 404. With such parameters, calculations according to (7) cannot
be performed in practice. This confirmed the need for realistic prospects for using classical
filtering algorithms in the problem under consideration that both the extended observation
system (4) and (5), and Theorem 1 were needed.

Proof of Theorem 1. Let us constitute the desired a posteriori density in the following form:

fxt |yt
(
Xt
∣∣Yt) = fxt ,yt

(
Xt, Yt)

fyt(Yt)
=

fxt ,yt−1,yt

(
Xt, Yt−1, Yt

)
fyt(Yt)

=
fxt ,yt−1

(
Xt, Yt−1) fyt |xt(Yt|Xt)

fyt(Yt)
.

Next, for the first multiplier fxt ,yt−1
(
Xt, Yt−1) we perform the following transformations:

fxt ,yt−1
(
Xt, Yt−1) = fxt−T ,...,xt ,yt−1

(
Xt−T , . . . , Xt, Yt−1)

=
∫

fxt−T−1,xt−T ,...,xt ,yt−1
(
Xt−T−1, Xt−T , . . . , Xt, Yt−1)dXt−T−1

=
∫

fxt |xt−1,yt−1
(
Xt
∣∣Xt−1, Yt−1) fxt−1,yt−1

(
Xt−1, Yt−1)dXt−T−1

=
∫

fxt |xt−1
(Xt|Xt−1) fxt−1|yt−1

(
Xt−1

∣∣Yt−1)dXt−T−1· fyt−1
(
Yt−1)

=
∫

fxt−1|yt−1
(
Xt−1

∣∣Yt−1)dXt−T−1· fxt |xt−1
(Xt|Xt−1) fyt−1

(
Yt−1)

=
∫

fxt−1|yt−1
(
Xt−1

∣∣Yt−1)dXt−T−1· fwt(Xt − ϕt(Xt−1)) fyt−1
(
Yt−1).

For the second multiplier fyt |xt(Yt|Xt), it holds

fyt |xt(Yt|Xt) =
qy(T+1)

∑
k = 0

I(Θt(Xt) = [Θt]k) fyt |xt(Yt|Xt, Θt(Xt) = [Θt]k)

=
qy(T+1)

∑
k = 0

I(θt(Xt) = [τt]k) fyt |xt ,τt=[τt ]k
(Yt|Xt, τt = [τt]k)

=
qy(T+1)

∑
k = 0

I(θt(Xt) = [τt]k) fvt(Yt − [ΘtΨt(Xt)]k).
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And finally, we obtain

fxt |yt =

∫
fxt−1 |yt−1 dXt−T−1· fwt (Xt−ϕt(Xt−1))∑k I(θt(Xt)=[τt ]k) fvt (Yt−[ΘtΨt(Xt)]k)

fyt (Yt)/ fyt−1(Yt−1)

=
fwt (Xt−ϕt(Xt−1))∑k I(θt(Xt)=[τt ]k) fvt (Yt−[ΘtΨt(Xt)]k)

∫
fxt−1 |yt−1 dXt−T−1∫

fwt (Xt−ϕt(Xt−1))∑k I(θt(Xt)=[τt ]k) fvt (Yt−[ΘtΨt(Xt)]k)
∫

fxt−1 |yt−1 dXt−T−1dXt
.

In the last equation, the arguments for the densities fxt |yt
(
Xt
∣∣Yt) and fxt−1|yt−1

(
Xt−1

∣∣Yt−1)
are omitted, the summation ∑

qy(T+1)
k=0 is denoted as ∑k , and it is taken into account that the

coefficient fyt
(
Yt)/ fyt−1

(
Yt−1) is a normalizing factor.

Conditions of boundedness of the second-order moments and linear growth of the
functions of the system are sufficient for the existence of second-order moments of xt and
yt: E{‖xt‖2}+ E{‖yt‖2} < ∞, and optimal in mean square sense estimate E

{
xt
∣∣Yt}. �

3. Conditionally Minimax Nonlinear Filter

The main statements of the conditionally minimax nonlinear filtering (CMNF) theory
are in the works [33,34]. Further, they are formulated briefly, considering the features of
the surveillance system under consideration.

CMNF estimate x̂t of the state xt by the observations yt has the form of prediction-
correction: x̂t = x̃t + ∆x̂t. A basic predictive function ξt = ξt(x) is used to calculate the
prediction x̃t. As a simple example for system (1), we can take ξt(x̂t−1) = ϕt(x̂t−1, E{wt}).
The basic correction function ζt = ζt(x, y) is used to calculate the correction ∆x̂t. As a simple
example for observations (1), we can give the residual, i.e., ζt(x̃t, yt) = yt − ψt(x̃t, E{vt}).
Conditionally minimax prediction x̃t and correction ∆x̂t are solutions to the following
optimization problems:

x̃t = Ξ̃t(ξt), Ξ̃t = argminΞt
maxFz E

{
‖xt − Ξt(ξt)‖2

}
, z = (x′t, ξ ′t)

′,

∆x̂t = x̂t − x̃t = Ẑt(ζt), Ẑt = argminZt
maxFz E{‖xt − x̃t − Zt(ζt)‖2}, z = (x′t − x̃′t, ζ ′t)

′,
(8)

whereFz denotes the distribution of the vector z = (x′, y′)′. It is assumed thatFz ∈ F (mz, Dz)
is a class of all probability distributions with mean mz and covariance Dz. Thus, the basic
prediction and correction are refined best (in the sense of proximity in the mean square to the
estimated state) under the assumption that only the second-order moment characteristics
of the estimated x and observed y variables are known.

We emphasize that the options for choosing the structural functions ξt and ζt are not
limited by anything. In practice, such a choice may be an independent task, the solution of
which will allow taking into account the nature of a particular dynamic system. Such an
example is given in the article’s next section devoted to experimental research.

The worst distribution in problems (8) is the normal one, and the corresponding best
estimate in the mean square sense is determined by the normal correlation theorem [41].
Thus, solutions (8), i.e., optimal in the minimax sense functions Ξ̃t(ξt) and Ẑt(ζt) are linear
as follows:

x̃t = Ftξt + ft, ξt = ξt(x̂t−1),
x̂t = x̃t + Htζt + ht, ζt = ζt(x̃t, yt),

(9)

were
Ft = cov(xt, ξt)cov+(ξt, ξt), ft = E{xt} − FtE{ξt},
Ht = cov(xt − x̃t, ζt)cov+(ζt, ζt), ht = −HtE{ζt}.

(10)

In (10), the notation cov(x, y) is the covariance of x and y, + is the Moore-Penrose
pseudoinverse.
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Alongside this, the prediction x̃t and the state estimate x̂t are unbiased and provide
the following estimation accuracy:

K̃t = cov(xt − x̃t, xt − x̃t) = cov(xt, xt)− Ftcov(ξt, xt),
K̂t = cov(xt − x̂t, xt − x̂t) = K̃t − Htcov(ζt, xt − x̃t).

(11)

It is essential to understand that the relations (9) and (10) determine the conditionally
optimal Pugachev filter [42–44], the linear structure of which is postulated initially. Ac-
cordingly, the CMNF concept complements this filter with a minimax justification of the
structure. The second element of the CMNF concept is a method of practical determination
of the coefficients Ft, ft, Ht and ht by the Monte Carlo method. The practically used filter is
obtained by replacing (10) mathematical expectations and covariances with their statistical
estimates from computer simulation.

The primary attention should be paid to the fact that for the presented model of a
stochastic observation system with random delays, the CMNF estimate is determined by
the same fundamental relations (8)–(10), initially written for the canonical form of the
Markov system. At the same time, delays τt are not ignored, and their statistical properties
are considered in the filter parameters (9). A more subtle account of the phenomenon of
delayed observations can be provided due to flexibility in the choice of structural functions
ξt and ζt. This will be demonstrated in the next section of the article. Here it remains for
each of the variants of the model version (1) or (2) (note that entry (3) is a simple case of
(2)) to formulate the conditions for the existence of solution (10). This is conducted in the
following statement.

Theorem 2. Let the following conditions hold:

• For the observation system (1): there is a function Cϕ(w) > 0, w ∈ Rpw , such that
E{Cϕ(wt)} < ∞, t = −T,−T + 1, . . . , 0, 1, . . . , and ‖ϕt(x, w)‖2 < Cϕ(w)(1 + ‖x‖2),
x ∈ Rpx ; there is a function Cψ(v) > 0, v ∈ Rqv , such that E

{
Cψ(vt)

}
< ∞, t = 0, 1, . . . ,

and ‖ψt(y, v)‖2 < Cψ(v)(1 + ‖y‖2), y ∈ Rqy ; there are constants Cξ > 0 and Cζ > 0,
such that for the structural functions of the CMNF, it holds: ‖ξt(x)‖2 < Cξ(1 + ‖x‖2) and
‖ζt(x, y)‖2 < Cζ(1 + ‖x‖2 + ‖y‖2);

• For the observation system (2): Disturbances wt, observation errors vt, and initial conditions
η have normal distributions (or any distributions with all finite moments); there are constants
C > 0 and D > 0, such that ‖ϕw

t (x)‖2+‖ψv
t (y)‖

2 + ‖ϕt(x)‖2+‖ψt(y)‖2 + ‖ξt(x)‖2 +

‖ζt(x, y)‖2 < C(1 + ‖x‖D + ‖y‖D). Then, the prediction x̃t and the estimate x̂t of the
conditional minimax nonlinear filter (8) exist, are described by the relations (9) and (10), and
ensure the quality (11).

Proof of Theorem 2. The statement is an adaptation of the existence theorems of the CMNF
estimate formulated in [38]. The proof is based on two propositions. First, it is the solution
of the minimax problems (8). The worst distribution of z = (x′, y′)′ on the class F (mz, Dz)
is the normal distribution. Therefore, the minimax estimate of x is the estimate of normal
correlation, i.e., a linear function of observations y. Secondly, it is necessary to check the
sufficiency of the theorem conditions for the existence of the second-order moments of the
functions used, i.e., covariances of vectors (x′t, ξ ′t)

′ and (x′t − x̃′t, ζ ′t)
′. This becomes obvious

if we use the canonical Markov form for writing (1) and (2) using the extended vector xt
defined in (4). Since ‖Θt(xt)‖ = 1, the existence of the necessary moments follows from
the existence theorems [38]. �
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4. Tracking an AUV Moving in a Plane at a Constant Speed
4.1. Observation System Model

For the practical study of the proposed model with random delayed observations and
the filtering algorithms (9) and (10), a simple movement model in a plane with constant
velocity is chosen. This example is of a model nature and does not pretend to be practical,
since at this stage of research, it is important to make sure that the proposed methodology
is fundamentally effective. For this reason, the model parameters are given “extreme”
numerical values for practice. In particular, this applies to average speeds and maneuvering
speeds. This technique puts the algorithm in much worse conditions than can be the case
in practice.

It is assumed that the AUV moves at a depth in the horizontal plane Oxy. Random
noise is added to the current speed at each moment, simulating chaotic maneuvering. The
coordinates of the AUV trajectory are denoted, as is customary, as x(t) and y(t). Note
that these designations should be distinct from the designations of the state vector xt and
observations yt in the original models (1), (2), or (3). The unit of position measurements is
in kilometers (km), time is in hours (h), and speeds are measured in km/h. The continuous
movement model is sampled in increments of δ = 0.0001 h, corresponding to a frequency
of about three measurements per second. For the convenience of a graphical representation
of the results, it is assumed that the movement begins at time t = 0 and ends at time
t = 1000, i.e., the movement lasts 6 min. The systematic constant AUV speed values are
vx = 25 km/h and vy = 12.5. During the movement, the AUV moves an average of 3 km.
The Gaussian vector gives the initial position of the AUV (x(0), y(0))′, which has the mean
(6.25; 12.5)′ and the covariance diag

{
2.52; 52}.

The same type of observers are located at two points on the same Oxy plane: the first
has coordinates

(
0, ly

)
, ly = 6.25, i.e., it is located 6.25 km from the origin on the Oy axis,

the coordinates of the second are (lx, 0), lx = 12.5, i.e., 12.5 km from the origin on the Ox
axis. Assuming that acoustic sonars are used for observation and that the speed of sound in
water is equal to vs = 5400 km/h, it is possible to determine the maximum possible delay
of observations T = 50, i.e., the maximum value by which observations can be delayed is
18 s. Accordingly, the filtering process and the first estimate appear at time T, i.e., 18 s after
the start of movement (we can assume after the target is detected).

The source of the observer model is typical acoustic sonars [45,46] that measure the
bearing and Doppler frequency shift. So, we can assume that the azimuth angle and
range are measured, i.e., the AUV acoustic signature is considered known. Each observer
measures the range and the direction cosine to the target with an additive measurement
error. The error vector is assumed to be the Gaussian with mean (0, 0, 0, 0)′ and the
covariance diag

{
0.0012, 0.0052, 0.0012, 0.0052}. One can use the work [47] to understand

the accuracy parameters of real devices. The scheme of movement and observation is
illustrated in Figure 1.

So, we have the following observation system. The state vector has the form

x(t) = x(t− 1) + δvx + wx(t),
y(t) = y(t− 1) + δvy + wy(t).

(12)

Describing chaotic velocity changes vector
(
wx(t), wy(t)

)′ is assumed to be Gaus-
sian with mean (0, 0)′ and two variants of covariances: (1) diag

{
0.00252; 0.00252} and

(2) diag
{

0.012; 0.012}. Accordingly, in the first case, the AUV can change the speed by
about 25 km/h, and in the second, by about 100 km/h. Thus, case (2) is about a high-speed
maneuvering target. For the presented calculation, it is more interesting because it gives a
very diverse trajectory.

The measurements performed are denoted by d1(t), d2(t) (distances measured by the
first and second observers) and c1(t), c2(t) (direction cosines measured by the first and sec-
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ond observer). The vector of observation errors is denoted by
(
vd1(t), vd2(t), vc1(t), vc2(t)

)′.
Thus, the observation vector is as follows:

d1(t) =
√
(x(t− (τt)1))

2 +
(
y(t− (τt)1)− ly

)2
+ vd1(t),

c1(t) =
(y(t−(τt)1)−ly)√

(x(t−(τt)1))
2+(y(t−(τt)1)−ly)

2 + vc1(t),

d2(t) =
√
(x(t− (τt)2)− lx)

2 + (y(t− (τt)2))
2 + vd1(t),

c2(t) =
(x(t−(τt)2)−lx)√

(x(t−(τt)2)−lx)2+(y(t−(τt)2))
2
+ vc2(t).
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Taking into account the selected sampling step δ and the speed of sound in water
vs, the values (τt)1 and (τt)2 are expressed in terms of the observer distances up to the
AUV, i.e.,

(τt)1 = min
{

T,
[√

(x(t))2 +
(
y(t)− ly

)2/(δvs)

]}
,

(τt)2 = min
{

T,
[√

(x(t)− lx)
2 + (y(t))2/(δvs)

]}
.

(14)

In (14), the notation [x] is used for the floor function of x, and the potential possibility
of removing an observed object at a distance for which the delay value becomes greater
than the specified maximum T is taken into account.

4.2. CMNF Structure

To implement the CMNF algorithm, it is required to determine the structure of the
filter, i.e., to select the basic prediction function ξt = ξt(x) and the basic correction function
ζt = ζt(x, y). The linear model of movement (12) does not require clarification of the typical
choice of the structure due to the system, i.e.,

ξt(x̂t−1) = ϕt(x̂t−1, E{wt}) =
(

x̂(t− 1) + δvx
ŷ(t− 1) + δvy

)
.
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We can also try and choose a residual as the basic correction structure, i.e.,

ζt(x̃t, yt) = yt − ψt(x̃t, E{vt}) =



d1(t)−
√
(x̃(t))2 +

(
ỹ(t)− ly

)2

c1(t)−
(ỹ(t)−ly)√

(x̃(t))2+(ỹ(t)−ly)
2

d2(t)−
√
(x̃(t)− lx)

2 + (ỹ(t))2

c2(t)− (x̃(t)−lx)√
(x̃(t)−lx)2+(ỹ(t))2


. (15)

In theory, even the fact that the delay τt is not taken into account in the residual (15)
should not interfere with the operation of the filter. However, the first experiments have
already shown that the structure (15), although it gives a working filter, could have a higher
accuracy. The apparent idea is to supplement (15) with a delay estimate of the form (14), i.e.,

(τ̃t)1 =
√
(x̃(t))2 +

(
ỹ(t)− ly

)2/(δvs),

(τ̃t)2 =
√
(x̃(t)− lx)

2 + (ỹ(t))2/(δvs),
(16)

but two different delays did not lead to an improvement in the result.
A positive result was obtained when the observations’ physical nature was considered

in the correction structure. Namely, if we assume that there is no noise in (13), we can
determine the AUV’s position by recalculating the distances and cosines into Cartesian
coordinates. Such a transformation gives the following correction structure:

ζt(x̃t, yt) =


√
(d1(t))

2 − (c1(t)d1(t))
2 + (τ̃t)1vx

c1(t)d1(t) + ly + (τ̃t)1vy
c2(t)d2(t) + lx + (τ̃t)2vx√

(d2(t))
2 − (c2(t)d2(t))

2 + (τ̃t)2vy

. (17)

In addition to the geometry of observations in correction (17), the delay estimate (16)
is also used. Thus, (17) are two estimates of the AUV position that each observer could give
independently without considering measurement errors. Combining these estimates and
taking into account the impact of errors is already the filter’s task, i.e., of the relations (10).

It should be noted that the demonstrated flexibility in selecting the estimate structure
is the key advantage of the CMNF.

4.3. Computer Simulations

In each of the performed computer computations, we simulated two independent
beams of 100, 000 trajectories of the observation system (12)–(14) and CMNF estimates (9).
On the first beam, the filter parameters were calculated according to the formulas in (10)
and their accuracy according to Formula (11). Accordingly, the statistical average replaced
mathematical expectations according to the Monte Carlo method. On the second beam,
the actual quality of the CMNF estimate x̂t= (x̂(t), ŷ(t))′ was evaluated. The mean square
deviations of the estimate errors determine the estimation accuracy of the coordinates of
the AUV position. These values, denoted by σx̂(t), σŷ(t), were calculated from the second
beam of trajectories, and can be called practical accuracy.

The values
√(

K̂t
)

1,1 and
√(

K̂t
)

2,2 represent the theoretical accuracy of the CMNF
estimate. We calculated these values using Formula (11) and compared them with σx̂(t)
and σŷ(t), respectively.

Calculations were performed for two variants of maneuvering speed (let us call them,
conditionally, a maneuver of 25 km/h and a maneuver of 100 km/h) and two correction
options: the main (17) and the residual (15). For a qualitative assessment of the results, each
of the calculations was repeated under the assumption that T = 0, i.e., in a model that does
not consider the observation delays. The following series of figures illustrate the results.
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Figure 2 shows several AUV trajectories (x(t), y(t))′ for a maneuver of 25 km/h (left)
and a maneuver of 100 km/h (right), and the corresponding CMNF estimates (x̂(t), ŷ(t))′

calculated using correction (17). This figure and the following ones show the same trajecto-
ries from the simulated beam, i.e., the same set of random variables forms the states and
estimates, and the difference is only in the value of the model parameters (in Figure 2, these
parameters are variances of wx(t) and wy(t)). This figure gives a qualitative idea of the
filtering results and explains why the trajectories for a maneuver of 100 km/h are more
interesting to study.
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A formal analysis of filtering quality is presented in Figure 3. This figure gives quan-
titative estimates of the effectiveness of target tracking, shows the extent of deterioration
in the quality of estimates between a maneuver of 25 km/h and a maneuver of 100 km/h,
and also confirms the applicability of the Monte Carlo method for the practical synthesis
(training) of CMNF, since the theoretical and practical accuracy are very close.

The same illustrations, as shown in Figures 2 and 3, are repeated in the following
Figures 4 and 5 with a single change: instead of correction (17), we use the correction (15).
These figures support the above statement about the correction in the form of a residual
that is not very suitable for the model under consideration. Not only did the filtering
quality turn out to be very low, but the difference between the theoretical and practical
accuracy of the CMNF is also unacceptably large. The latter circumstance can be dealt
with by increasing the size of the training beam used for approximate calculations using
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Formula (10), but it is impossible to improve the quality compared to the theoretical ones√(
K̂t
)

1,1 and
√(

K̂t
)

2,2 in any case.
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The last group of figures is given in order to illustrate the influence of the main factor
of the model proposed here: the delay of observations τt. We should immediately note that
it is not advisable to consider figures of both variants of the maneuver, so for graphical
presentations, we have limited ourselves to only the maneuver of 100 km/h, as it is more
beautiful. Accordingly, the same trajectories and the exact figures above are given to
compare corrections (15) and (17). Figure 6 shows the trajectories, and Figure 7 illustrates
the filtering accuracy.

These visual and quantitative figures illustrate the real difference between models
with and without observation delays. Nevertheless, they also show that the quality of a
universal filter with a simple correction that needs to consider the specifics of the movement
observation model needs to be higher. Of course, as seen in Figure 7 on the right, the
difference between the theoretical and practical accuracy of the CMNF estimates will
disappear as the size of the training beam increases. However, the absolute advantage of
the “smart” correction will remain.

Finally, the calculations’ results are presented in tabular form. Namely, Table 1 shows
the average values of the quality indicators for all sets of parameters. The average value is
understood as averaging over time, for example Ê{σx̂(t)} = 1

T ∑T
t=1 σx̂(t), etc.

Table 1. Average indicators of filtering accuracy.

Model with Delays

Basic correction function ζt(x̃t, yt)

«Geometric correction» (17) «Residual» (15)

Real accuracy Theoretical accuracy Real accuracy Theoretical accuracy

Ê{σx̂(t)} Ê
{

σŷ(t)
}

Ê
{√(

K̂t
)

1,1

}
Ê
{√(

K̂t
)

2,2

}
Ê{σx̂(t)} Ê

{
σŷ(t)

}
Ê
{√(

K̂t
)

1,1

}
Ê
{√(

K̂t
)

2,2

}
Maneuver wx(t), wy(t)~25 km/h

21.76 22.06 21.45 21.90 329.26 352.23 293.69 283.14

Maneuver wx(t), wy(t)~100 km/h

57.61 54.31 56.88 54.13 414.72 394.69 348.55 352.25

Model without delays

Maneuver wx(t), wy(t)~25 km/h

16,73 17,37 16,24 16,98 212,93 146,11 139,75 119,33

Maneuver wx(t), wy(t)~100 km/h

28.72 27.76 27.88 27.16 321.76 235.99 232.61 196.23
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5. Conclusions

Summing up the article, we repeat the main provisions:

• In target tracking tasks where acoustic sonars are used, it is necessary to take into
account the random delay of observations according to model (1) or its simplified
versions, (2) and (3);

• The optimal solution of the tracking problem for the simplest model, (3), described by
a Bayesian filter, can be written out but cannot be implemented practically;
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• The method of conditionally minimax nonlinear filtering can be applied to a model
with random observation delays;

• In problems with observers of the “geometric” type, the use of simple universal filters
can lead to unsatisfactory results even in simple observation conditions; taking into
account the physical nature of observations can dramatically improve the quality
of filtering.

The presented relatively complete picture of the model with random delays of indirect
observations and the problem of filtering its state includes a theoretical description of the
model and the optimal Bayesian filter, a practically consistent algorithm of conditionally
nonlinear minimax filtering, an applied experiment with a model of AUV movement close
to practice and observations of it with typical sonars. At the same time, the following
question remains open. Many parameters used in the experimental model can indeed
be known or established experimentally. But part of the parameters, and above all, the
systematic component of the AUV velocity vt =

(
vx, vy

)′, cannot be known in advance.
Thus, the possibility of identifying these parameters in parallel with goal tracking comes
to the forefront. In addition, the constancy of speed also does not look like a realistic
assumption. So, for practical purposes, we need to learn how to identify the speed in
a reasonably short observation period and repeat the identification process as necessary.
Further research is supposed to be devoted to this issue.
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