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Abstract: Aiming at the autonomous decision-making problem in an Unmanned aerial vehicle (UAV)
pursuit-evasion game, this paper proposes a hierarchical maneuver decision method based on the PG-
option. Firstly, considering various situations of the relationship of both sides comprehensively, this
paper designs four maneuver decision options: advantage game, quick escape, situation change and
quick pursuit, and the four options are trained by Soft Actor-Critic (SAC) to obtain the corresponding
meta-policy. In addition, to avoid high dimensions in the state space in the hierarchical model, this
paper combines the policy gradient (PG) algorithm with the traditional hierarchical reinforcement
learning algorithm based on the option. The PG algorithm is used to train the policy selector as
the top-level strategy. Finally, to solve the problem of frequent switching of meta-policies, this
paper sets the delay selection of the policy selector and introduces the expert experience to design
the termination function of the meta-policies, which improves the flexibility of switching policies.
Simulation experiments show that the PG-option algorithm has a good effect on UAV pursuit-evasion
game and adapts to various environments by switching corresponding meta-policies according to
current situation.

Keywords: UAV pursuit-evasion game; hierarchical reinforcement learning; meta-policy; policy gradient

1. Introduction

Unmanned aerial vehicles (UAVs) [1–7] are used in many fields, such as intelligent
confrontation [8], target rounding [9] and intelligent transportation [10], because of their
characteristics of being unmanned, having good concealment and having no casualties.
UAV pursuit-evasion [11] involves a game between two UAVs with competing interests.
In the process of UAV pursuit-evasion, being able to make effective maneuvering deci-
sions [12] to destroy the other side and capture the other side is the key to victory. Among
these, the real-time intelligent maneuvering decision-making ability of UAV is the core of
problem solving. The maneuvering decision-making mechanism reflects the intelligence
level of a UAV in the pursuit-evasion game. Therefore, it is necessary to design an effective
maneuvering policy in the process of the UAV pursuit-evasion game.

At present, decision algorithms in UAV pursuit-evasion mainly include differen-
tial game theory [13], influence graph method [14], heuristic search algorithm [15], etc.
F. Yu et al. [13] take into account the impact of environmental impediments in the pursuit-
evasion game between UAVs and UGVs, qualitatively assess the pursuit problem of the
difference game and use the differential game in the pursuit-evasion game. Q. Pan et al. [14]
propose a cooperative maneuver decision method for multiple unmanned aerial vehicles
based on the influence graph theory. A state predicted influence diagram model is used to
analyze elements, and an unscented Kalman filter model is used for belief state updating.
Mikhail et al. [15] propose schemes to solve the pursuit-evasion problem using Apollonius
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circles and UAVs in a non-deterministic environment. However, the disadvantages of
traditional UAV pursuit-evasion decision methods are that the rule base is complicated and
difficult to cover all pursuit-evasion situations, and it has poor flexibility.

Since the 21st century, the development of artificial intelligence [16] has reached
its climax. Artificial intelligence methods such as deep learning [17] and reinforcement
learning [18] have been well applied in many high-tech fields. The application of artificial
intelligence to UAV pursuit-evasion has also achieved good results. Researchers regard
UAV as an agent in reinforcement learning, enabling them to gradually acquire optimized
polices in complex environments after a certain stage of trial-and-error learning in the
environment [19]. Deep reinforcement learning combines the perceptual ability of deep
learning with the decision-making ability of reinforcement learning in a general form,
providing a way to solve the problem of UAV pursuit-evasion [20–24]. Zhang et al. [20]
design a guiding reward function based on the Deep Deterministic Policy Gradient (DDPG)
algorithm for the UAV pursuit-evasion task and introduce a soft update strategy based on
a sliding average. A UAV swarm can successfully carry out pursuit missions. However, the
game between multi-UAVs and one UAV results in a significant advantage gap between the
opposing sides. Additionally, the two-dimensional simulation environment differs greatly
from actual pursuit-evasion tasks. Zhang et al. [21] construct a multi-agent coronal bidirec-
tional coordinated target prediction network (CBC-TP network) by vectorial extension of
the multi-agent depth Deterministic strategy gradient formula, so as to realize the process
of UAV pursuit-evasion. However, the pursuit-evasion game environment is singular, and
this paper does not comprehensively consider various situations. Fu et al. [22] propose
IL-DDPG, which combines the DDPG algorithm and imitation learning algorithm. At the
same time, the proportional guidance law is introduced as a guidance strategy. Compared
with the DDPG algorithm, it improves the search efficiency and realizes the fast tracking of
a pursuing UAV to avoid a UAV. However, the two-dimensional simulation environment
differs significantly from the real pursuit-evasion environment. Additionally, the trained
UAV can only perform the task of pursuit, resulting in limited functionality. Sun et al. [23]
study the pursuit-evasion game problem of multiple UAVs with multiple static obstacles in
a two-dimensional bounded environment and propose a multi-agent deep deterministic
policy gradient based on attention algorithm to solve the pursuit-evasion problem of multi-
UAVs. However, the paper does not take into account the threat posed by an opponent
UAV, and there is a lack of a game process between the opponent UAV and our UAV.
Vlahov et al. [24] discuss a framework for the development of reactive strategies that can
learn to exploit behaviors, apply the A3C algorithm to UAV pursuit decision-making and
verify the effectiveness of learning strategies through Monte Carlo experiments. However,
it does not consider the generalization of the algorithm. When the environment changes,
the performance advantage of the algorithm is not manifested. Additionally, it also does
not comprehensively consider multiple situational scenarios.

Although reinforcement learning has a good performance in the UAV pursuit-evasion
game, it also faces a problem: in the training process, due to the large state space, it may
lead to dimensional disaster, which in turn affects the convergence speed of training. In
addition, the pursuit-evasion environment changes in real time. The above algorithms do
not comprehensively consider the overall situation, and only one strategy is trained so that
the trained UAV can only complete the task of pursuit or evasion, and its performance is
relatively simple, which cannot realize the function of turning the defeat into victory.

At present, hierarchical reinforcement learning algorithms are widely used in many
fields [25–28]. Hierarchical reinforcement learning is for the performance of multiple
sub-tasks in a hierarchical manner, which improves the decision-making efficiency of the
model. Based on the above motivations, this paper considers applying the hierarchical
reinforcement learning algorithm to the intelligent decision-making of UAV pursuit-evasion.
Based on the framework of hierarchical reinforcement learning based on option [29], this
paper chooses to use a policy gradient (PG) algorithm to train the top-level policy selector
and proposes a UAV hierarchical maneuver decision-making method based on the PG-
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option. Four options of the advantage game (AG), quick escape (QE), situation change
(SC) and quick pursuit (QP) are designed by considering various situations in the UAV
pursuit-evasion game comprehensively, and the corresponding meta-policy is trained by
the SAC algorithm. The meta-policy termination function is designed to improve the
flexibility of meta-policy switching. The experimental results show that the UAV trained
by the PG option can flexibly switch meta-policies in the pursuit-evasion game and can use
different meta-policy combinations to deal with different complex scenarios, reflecting the
superiority and robustness of hierarchical maneuver decision-making method based on the
PG option in the future.

The main contributions of this paper are summarized as follows:

(1) Comprehensively considering the constraint information in the process of UAV
pursuit-evasion, this paper conducts a flight control model for a UAV and introduces
the concept of threat zone, which makes the simulation more realistic;

(2) Considering various situations in the process of UAV pursuit-evasion comprehen-
sively, four meta-policies are designed for UAV flight decision-making, which not
only enrich the maneuver library but also effectively improve the effectiveness of
the algorithm;

(3) A hierarchical maneuvering decision-making method for the UAV is designed to
ensure that the UAV can flexibly switch meta-polices under different situations and
achieve victory.

2. Problem Formulation and Preliminaries

In this section, to simplify the UAV pursuit-evasion scenario and subtract some unnec-
essary influencing factors, some assumptions are made for the scenario. The UAV flight
control model and threat zone model are established for subsequent experiments.

2.1. Scenario Description and Assumptions

In this paper, we focus on the problem of UAV maneuvering decisions in a one-to-one
UAV pursuit-evasion game. In the process of pursuit-evasion, many factors may affect
the flight of UAV, which can cause the model to be more complex. However, it is not
necessary to take all factors into account. Therefore, to pay more attention to our research
and simplify the complexity of scenario, this paper proposes the following assumptions:

(a) The UAV is assumed to be a rigid body, and the gravity acceleration is a unified value;
(b) This paper ignores the influence of earth curvature, earth rotation and earth revolution

on the UAV flight;
(c) To simplify the complexity of the UAV flight, this paper only considers the kinematics model.

The scenario is defined as a three-dimensional pursuit-evasion scenario. Therefore, a
three-dimensional kinematics model of a UAV is established, and the UAV is described by
physical quantities such as position, speed and attitude. The OXYZ northeast coordinate
system is established. The coordinate origin is O, which indicates the center point of the
scenario. The X-axis points to the north direction; the Z-axis points to the east direction; and
the Y-axis points to the vertical direction. The situation diagram of both sides in scenario is
shown in Figure 1.

The situation information of the red UAV is
→
Rm = (Xm, Ym, Zm) and

→
V = (vxm, vym, vzm).

The situation information of the blue UAV is
→
Rt = (Xt, Yt, Zt) and

→
V t = (vxt, vyt, vzt).

The relative position vector of red UAV and the blue UAV is
→
D, and the distance scalar

is d. The azimuth angle q represents the angle between the red UAV’s velocity
→
V and

→
D.

The formula is as follows:

→
D = (Xt − Xm, Yt −Ym, Zt − Zm) (1)
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q = acos(

→
D ·
→
V∥∥∥∥→D∥∥∥∥ · ∥∥∥∥→V∥∥∥∥ ) = acos(

(Xt − Xm)vxm + (Yt −Ym)vym + (Zt − Zm)vzm

d ∗ (
√

v2
xm + v2

ym + v2
zm)

) (2)

d =

∥∥∥∥→D∥∥∥∥ (3)
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Figure 1. The situation in UAV pursuit-evasion.

2.2. UAV Model

It is assumed that our UAV can obtain the position and speed of the opponent through
the ground command center. Our UAV needs to evaluate the current situation and make
maneuvering decisions to effectively capture the opponent.

In the process of UAV kinematics modeling, it is considered a rigid body and regarded
as a mass point. The kinematics equation of a three-degree-of-freedom UAV is as follows:

Xt+dT = Xt + Vt+dT ∗ cos(θt+dT) ∗ cos(ϕt+dT) ∗ dT
Yt+dT = Yt + Vt+dT ∗ sin(θt+dT) ∗ dT
Zt+dT = Zt + Vt+dT ∗ cos(θt+dT) ∗ sin(ϕt+dT) ∗ dT

(4)

where ϕ denotes the heading angle; θ denotes the pitch angle; V is the speed of the UAV;
[X, Y, Z] denotes the component of the UAV in coordinate axes.

To make the model more real, this paper sets the threat range with the UAV as the
center. The threat range is a conical area centered on the UAV and formed by the deviation
of the UAV’s speed direction from the qmax angle, which is called the threat zone in this
paper. The threat zone contains three important indicators: maximum threat distance Dmax,
minimum threat distance Dmin and maximum threat angle qmax. The two-dimensional
diagram of the threat zone is shown in Figure 2.
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When the distance between the two sides is less than the minimum threat distance
Dmin, it is considered that the two sides collide and crash, and our UAV failed. When the
continuous flight time of blue UAV in our threat zone that is defined as tin exceeds the
maximum time threshold tmax, it is considered that the red UAV successfully captured the
blue UAV. The formula is as follows:

tin > tmax
q < qmax

Dmin <

∣∣∣∣→D∣∣∣∣ < Dmax

(5)

3. Hierarchical Maneuver Decision Method for UAV Pursuit-Evasion Game

In this section, a hierarchical maneuver decision-making method for the UAV pursuit-
evasion game based on the PG option is proposed. Considering the situation of both sides
comprehensively, UAV maneuver decision-making be divided into the four meta-policies
of advantage game (AG), quick escape (QE), situation change (SC) and quick pursuit
(QP). Because different meta-polices perform different maneuvering characteristics, the
corresponding reward function is designed and trained by the SAC algorithm. Then, the
PG algorithm is integrated into the traditional hierarchical reinforcement learning to train
the upper policy selector, and the expert experience is introduced to design meta-policy
termination function. The structure of hierarchical decision-making is shown in Figure 3.
The hierarchical decision-making model designed in this paper consists of two policy
layers. There are four meta-polices at the bottom of the hierarchical decision model. The
meta-policies are pre-trained so that they can perform corresponding actions according
to the current pursuit-evasion situation when they are selected. There is a policy selector
at the top of the hierarchical decision model, which is used to select the corresponding
meta-policy according to the current situation.
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3.1. Meta-Policy Model Training Algorithm Based on SAC

For the four meta-policies training of AG, QE, SC and QP, the paper uses the maximum
entropy Soft Actor-Critic (SAC) algorithm to train them. SAC is a classical reinforcement
learning algorithm. The SAC [30–33] algorithm is an algorithm based on the Actor-Critic
framework, which can randomize the policy. At the same time, entropy is introduced to
represent the randomness of the policy. After being trained, the agent will achieve a balance



Drones 2023, 7, 449 6 of 20

between the reward value and the entropy, so that the agent can increase the exploration of
the state space while maximizing the reward and achieving the purpose of accelerating the
learning speed.

The four meta-policies all use the same state space, which is represented by nine tuples,
as shown in Formula (6).

state = [Xm, Ym, Zm, v, θ, ϕ, d, qm, qt] (6)

where Xm, Ym, Zm represents the projection of UAV ’s position on three coordinate axes; v
is the speed of our UAV; θ denotes the pitch angle of our UAV; ϕ is the heading angle of the
UAV; d denotes the distance between the opponent and our UAV; qm is the relative azimuth
of the opponent UAV related to our UAV; qt is the relative azimuth of our UAV related to
opponent UAV. qt and qm are shown in Figure 4, where the blue side is the opponent UAV
and the red side is our UAV.
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Maneuvering speed change rate, pitch angle change rate and heading angle change
the rate control of our UAV. The action space of each meta-policy can be represented by
triples in the form of Formula (7).

action_space = [
.
v,

.
θ,

.
ϕ] (7)

where
.
v denotes the acceleration;

.
θ denotes the change rate of pitch angle;

.
ϕ denotes the

change rate of heading angle.
When using a reinforcement learning algorithm to train agents, the design of the

reward function is often very important for training results. A good reward function is
often more intuitive and simple, which can make the agent move in the optimal direc-
tion. Different reward functions need to be set for different meta-policy to explore the
corresponding optimal policy.

To facilitate the setting of different reward functions for the four meta-policy trainings,
the following reward and penalty items are set:

• Rmq1 is the continuous angle penalty value for our UAV, which will continuously
penalize the agent in a round. The equation Rmq1 is: Rmq1 = −qm/180;

• Rmq2 is the sparse angle reward value for our UAV, which will reward the agent under
certain conditions in a round. The equation Rmq2 is as follows: Rmq2 = 1, i f qm < qmax;

• Rtq1 is the continuous angle penalty value for opponent UAV, which will continuously
penalize the agent in a round. The equation Rtq1 is as follows: Rtq1 = −qt/180;

• Rtq2 is the sparse angle reward value for opponent UAV, which will reward the agent
under certain conditions in a round. The equation Rtq2 is as follows: Rtq2 = 1, i f
qt < qmax;

• Rd1 will reward the agent when the opponent UAV is in the threat zone of our UAV.
The equation Rd1 is as follows: Rd1 = 1 , i f Dmin < d < Dmax;

• Rd2 will penalize the agent when the opponent UAV is out of the threat zone of our
UAV. The equation Rd2 is as follows: Rd2 = −3, i f d ≥ Dmax or d ≤ Dmin;

• Rd3 denotes the ratio of the distance between the two sides and maximum threat
distance. The equation Rd3 is as follows: Rd3 = d/Dmax.
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Then, we describe each meta-policy and set different reward function combinations
for different meta-policies:

• Advantage Game (AG): AG refers to two UAVs in the same scenario, and they
are in each other’s threat zone. In this situation, our UAV needs to escape
from the opponent’s threat zone as soon as possible and keep the distance between
two sides within a small range to facilitate our UAV to capture the opponent.
Therefore, for the AG, the total reward is RAG. The equation RAG is as follows:
RAG = w1 ∗ (Rmq1 + Rmq2)− w2 ∗ (Rtq1 + Rtq2) + w3 ∗ (Rd1 + Rd2 + Rd3/5). The pa-
per holds that the reward of both sides is equally important to the task of AG, so
w1 = w2 = 0.4. Furthermore, the primary task of AG is to ensure that UAV escapes
from the opponent’s threat zone quickly. Therefore, the weight of the distance reward
is small; that is w3 = 0.2.

• Quick Escape (QE): QE means that in the same scenario, our UAV is located in the
opponent threat zone, while the opponent UAV is not in our threat zone, and the
opponent’s advantage is greater than our advantage. The primary task of our UAV is to
maneuver quickly to escape the opponent’s threat zone. For the QE task, the total reward
is RQE. The equation RQE is as follows: RQE = w1 ∗ (Rtq1 + Rtq2)−w2 ∗ (Rd1 + Rd3/5).
In the QE task, angle reward and distance reward are equally important; that is
w1 = w2 = 0.5.

• Situation Change (SC): SC means that in the same scenario, both sides are not in the
other’s threat zone, but the opponent’s advantage is greater than our advantage. Our
primary task is to maneuver quickly to change the situation so that our advantage is
greater than the opponent’s advantage. For the SC task, the total rewards are RSC. The
equation RSC is as follows: RSC = w1 ∗ (Rmq1 + Rmq2)−w2 ∗ (Rtq1 + Rtq2) + w3 ∗ Rd3.
This paper believes that our angle reward and distance reward are equally important
to the SC task; that is w1 = w3 = 0.4, w2 = 0.2.

• Quick Pursuit (QP): QP means that in the same scenario, both the opponent and
our UAV are not in the opponent’s threat zone, and our UAV’s advantage is greater
than the opponent UAV’s advantage. The primary task of our UAV is to capture
the opponent UAV. Our UAV needs to maneuver quickly to make the opponent
UAV fall into our threat zone. The total rewards are RQP. The equation RQP is
RQP = w1 ∗ (Rmq1 + Rmq2) + w2 ∗ (Rd1 + Rd2/5). In the QP task, angle reward and
distance reward are equally important; that is w1 = w2 = 0.5.

The meta-policy uses the maximum entropy SAC algorithm for training. The network
structure set in this paper is shown in Figure 5.
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The input of the Actor neural network is the state value of both sides, and the output
is the speed change rate, pitch angle change rate and heading angle change rate of our UAV.
The input of the Critic neural network is the state value and action value, and the output is
the state action value (Q value). Experiments have shown that a wide and shallow fully
connected neural network with the same number of neurons performs better than a narrow
and deep network [34]. Therefore, both Actor and Critic networks are fully connected
neural networks with two hidden layers, and the number of hidden layer neurons is 256.
The activation function is Relu. In addition, the Actor neural network has two output
layers, which are used to output the mean µ and variance σ, respectively, and the final
action value can be obtained by sampling for agent execution.

Meta-policy training pseudo-code is shown in Algorithm 1.

Algorithm 1: Meta-Policy Training Algorithm

1. Randomly generated parameters: θ, ϕ1, ϕ2
2. Initialize the policy network πθ and two Soft-Q networks Qϕ1 , Qϕ2

3. Initialize the target network of the Soft-Q network, and let ϕ1′ ← ϕ1, ϕ2′ ← ϕ2
4. FOR t = 0, T:
5. Get state s
6. IF t < start_size:
7. a = random()
8. ELSE:
9. µ, log σ = πθ(s), a = tanh(µ + τ ∗ exp(σ))
10. The agent performs actions a and gets a reward r and the next state s′
11. Store the array < s, a, r, s′ > in the experience pool
12. IF Experience storage in the experience pool > batch_size:
13. Sampling batch_size group data < s, a, r, s′ > from the experience pool

14. Update Q function network parameters: θi ← θi − λQ
∧
∇θi

JQ(θi)

15. Update policy network’s weights: φ← φ− λπ

∧
∇φ Jπ(φ)

16. Adjust the parameters of temperature: α← α− λπ

∧
∇α J(α)

17. Update the parameters of the target network: ϕ1
′ ← ϕ + (1− τ)ϕ1

′

ϕ2
′ ← ϕ + (1− τ)ϕ2

′

18. END IF
19. Jump to step 6, let s← s′
20. END IF
21. END FOR

3.2. Hierarchical Decision Method Based on PG-Option

The traditional hierarchical reinforcement learning algorithm based on option divides
the target task into multiple options. Each option has its policy, which is called the meta-
policy. The meta-policy is selected by the top-level policy selector. In the traditional
hierarchical reinforcement learning algorithm based on this option, the policy selector
uses the ε-greedy algorithm to select the meta-policy with the highest reward return in the
current state as the decision. The problem with ε-greedy algorithm is that it generally does
not consider other possible situations from the whole. Each choice is only a local optimal
solution, and it takes a long time to capture the opponent. However, in a complex scene,
our UAV needs to remove danger as soon as possible to achieve victory.

To better solve the problem of the complex UAV pursuit-evasion game, the paper
designs a hierarchical decision model based on the traditional hierarchical reinforcement
learning algorithm framework and the policy gradient (PG) algorithm. Instead of the ε-
greedy policy, the neural network trained by the PG algorithm is used as the policy selector.
Compared with the ε-greedy algorithm, PG is easier to converge the training results and
can handle high-dimensional continuous state data.
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Since the policy selector evaluates the overall situation, the state space of the upper
policy selector adds the position [Xt, Yt, Zt] and speed vt of the opponent UAV based on
the meta-policy state space, which is shown in Formula (8).

all_states = [Xm, Ym, Zm, Xt, Yt, Zt, v, vt, θ, ϕ, d, qm, qt] (8)

The action space outputs the probability of four meta-policies. If a meta-policy is
selected, the final reward value will increase, which will increase the probability of this
probability, and vice versa.

When the policy selector model is trained, the reward function is shown in Formula (9).

R =

{
r(τ)/total_step i f Success
−3 i f Failed

(9)

where r(τ) is the sum of the rewards at the end of each round; total_step is the all simulation
step size in each round.

The policy selector can only be rewarded at the end of that moment. The success mark
is to capture the opponent UAV, and the failure mark is that the opponent UAV captures our
UAV or our UAV fails to capture opponent UAV within the maximum number of rounds.

In the process of training, the upper policy selector model is optimized by maximizing
the reward value, and the network parameter of the whole hierarchical model is set as
θ = (φ, ϕ). φ denotes the network parameters of the policy selector, and ϕ denotes the
network parameters of the meta-policy. The expected reward of the pursuit-evasion process
is shown in Formula (10).

J(θ) = Eτ∼πθ(τ)
[r(τ)] =

∫
τ∼πθ (τ)

πθ(τ)r(τ) (10)

Next, we take the derivative of Formula (10) which is shown in Formula (11):

∇θ J(θ) = Eτ∼πθ(τ)
[∇θ log πθ(τ)r(τ)] (11)

where πθ(τ) is as follows:

πθ(τ) = p(s0,0)
p−1

∏
i=0

πφ(gi|si,0)
Ti

∏
j=0

πϕ(ai,j|si,g, gi)p(si,j+1|si,j, ai.j) (12)

Each round is divided into p stages. s0,0 denotes the initial state of each round in
UAV pursuit-evasion game, and si,0 denotes the initial state of the UAV in the first stage.
At each stage, the UAV performs Ti steps, and πφ(gi|si,0) denotes the probability that the
meta-strategy gi is selected by the policy selector. πϕ(ai,j|si,j, gi) denotes the probability of
the current action. p(si,j+1|si,j, ai,j) denotes the state transition probability. In Section 2.1,
the meta-policy is trained to converge, so the state transition probability is 1. Formula (12)
can be rewritten:

πθ(τ) = p(s0,0)
p−1

∏
i=0

πφ(gi|si,0) (13)

Then, we take the derivative of Formula (13) which is shown in Formula (14):

∇θ log πθ(τ) =
p−1

∑
i=0
∇φ log πφ(gi|si,0) (14)

Therefore, Formula (11) can be written as:

∇θ J(θ) = Eτ∼πθ(τ)
[
p−1

∑
i=0
∇φ log πφ(gi|si,0)r(τ)] (15)
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In the process of model training, the optimization goal is to maximize the gradient of
Formula (15), to achieve the convergence of the policy selector model.

In addition, in the traditional hierarchical reinforcement learning algorithm based on
this option, for each time the agent performs an action and obtains a new state, the policy
will reselect the meta-policy according to the current state. However, in this way, when the
situation is complex, the switching of meta-policy is too frequent, which makes it difficult
for the UAV to meet such high-frequency switching, thus making it difficult to complete
the task.

To solve the above problems, the policy selector performs periodic state evaluation at
a frequency of 10 Hz and introduces expert experience to design meta-policies’ termination
functions to obtain the signs of meta-policy success and failure which are shown in Table 1.
After the end, the next meta-policy is selected. The framework of the model training is
shown in Figure 6.

Table 1. The signs of meta-policy success and failure.

Meta-Policy Success Failure

AG Out of the opponent UAV’s threat zone 1000 m Failed to break away from the opponent threat zone within
500 steps

QE Out of the opponent UAV’s threat zone 2000 m Failed to break away from the opponent threat zone within
500 steps

SC The relative azimuth of the opponent is less than 25◦ Our relative azimuth is not bigger than the opponent’s
relative azimuth within 500 steps

QP Successfully capturing the opponent The opponent failed to exist our threat zone within
500 steps
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The policy selector training pseudo-code is shown in Algorithm 2.

Algorithm 2: Hierarchical Maneuver Decision Algorithm Based on PG-Option

1. Randomly generate the policy selector network’s parameters φ; Initialize the experience pool D
2. Initialize state variables sDrevious, Initialize the initial state of the agent s0, s0 = sDrevious
3. FOR m = 1, M:
4. Initialization counting stage: p = 0
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5. Periodic selection of meta-policy gπ according to 10 Hz frequency
6. FOR t = 1, T:
7. Generate actions at and execute actions; Get reward value rt and new state s0+t
8. IF the current meta-policy execution ends:
9. Save (sDrevious, gπ , rt) into the experience pool
10. sDrevious = s0+t, p = p + l
11. END IF
12. IF the end of the current round:
13. IF capturing the opponent UAV:
14. Update the reward value rt = r(τ)/t
15. ELSE:
16. Update the reward value rt = −3
17. END IF
18. Update the network parameters of the policy selector φ, Clear the experience
pool D
19. Reinitialize the environment to obtain the initial state of the agent
20. END IF
21. END FOR
22. END FOR

4. Experiments and Results

In this section, the proposed hierarchical maneuver decision method will be numeri-
cally simulated in many scenes. Firstly, the training parameters and hardware conditions
of the simulation experiment are given. After the convergence of the four meta-policy train-
ings, the policy selector is trained and tested in the experimental scenario, which shows the
feasibility of the method. Finally, the algorithm is tested by multiple UAV pursuit-evasion
situations, and the simulation analysis is carried out to illustrate the generalization of the
method.

4.1. Parameters and Hardware

In this paper, to avoid the instability of simulation results due to the large performance
advantage gap between two UAVs, it is assumed that parameters of two UAVs are the
same, as shown in Table 2. The heading angle variation is the range of the maximum
allowable charge of the heading angle in the single-step execution of the UAV. The pitch
angle variation is the range of the maximum allowable change of the pitch angle in the
single-step execution of the UAV. The maximum speed of the UAV is the upper limit of the
speed of the UAV. The maximum time threshold when the UAV falls into the other’s threat
zone is 2 s. Each step takes 0.1 s.

Table 2. The parameters of UAVs.

Parameter Value

Our UAV pitch angle range [0◦, 4◦]
Our UAV heading angle range [0◦, 10◦]
Our UAV change range in speed [0 m/s, 10 m/s]
Our UAV threat distance range [1 km, 3 km]
Our UAV maximum speed 200 (m/s)
Our UAV Maximum threat angle 20 (◦)
Our UAV Maximum time threshold 2 (s)
Opponent UAV pitch angle range [0◦, 4◦]
Opponent UAV heading angle range [0◦, 10◦]
Opponent UAV change range in speed [0 m/s, 10 m/s]
Opponent UAV threat distance range [1 km, 3 km]
Opponent UAV maximum speed 200 (m/s)
Opponent UAV Maximum threat angle 20 (◦)
Opponent UAV Maximum time threshold 2 (s)
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The four meta-policies are trained using the SAC algorithm, and the hyperparameters
during training are as follows in Table 3. Batch_size is the number of samples extracted
by the UAV from the experience pool during each training. The discount rate denotes the
future reward discount when calculating the loss value. The optimization algorithm is the
Adam algorithm. The regularization coefficient of entropy is initialized to 1. The target
entropy is −3.

Table 3. The hyperparameters of SAC.

Hyperparameter Value Hyperparameter Value

Actor-network learning rate 3 × 10−4 Total number of rounds 10,000
Critic network learning rate 3 × 10−4 Max steps in one round 500

Experience pool size 100,000 Soft update parameters 0.005
Batch_size 64 Discount rate 0.99

Target entropy value −3 Regularization coefficient of entropy 1

When training the model, the Pytorch (v1.2.1) framework is used to design the neural
network and optimizer. The CPU is an Intel i5-10400F, and the GPU is an Nvidia RTX
3060Ti which can accelerate the training process of the deep neural network. The GPU
memory size is 12 G, and the computer memory is 32 G.

4.2. Results of Train and Simulation

In this paper, to train the PG-option hierarchical decision algorithm, the four meta-
policies must firstly be trained to converge. According to Figure 7, it can be seen that at
the beginning of training, our UAV adopts a random policy. After a period of training, the
reward value convergence tends to be stable, and our UAV has been able to complete the
corresponding tasks stably.
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In this paper, to train the hierarchical decision algorithm based on the PG option,
in the initial environment, the positions of both sides are randomly initialized within a
certain range, and the opponent UAV is added to the disturbance in the original
maneuvering mode.

Our UAV maneuvers use hierarchical decisions based on the PG-option algorithm.
The opponent UAV maneuvers according to the predetermined trajectory and will threaten
our UAV.

In this paper, the success rate is used to judge whether the policy selector network
converges or not. The specific method is to count the success rate of the UAV in the training
round. If the final success rate can converge within a certain range, it shows that the
network of policy selectors has been trained and converged.

Training is performed in the initial environment using Table 4. The random value
range is taken [−1000, 1000], and the success rate is counted every 50 rounds.

Table 4. Initialization information in the training scene.

X
(km)

Y
(km)

Z
(km)

Pitch
(◦)

Yaw
(◦)

Speed
(m/s)

Distance
(km)

Azimuth
(◦)

Our UAV 2 3.5 −3 2 50 70
7.457 97.3Opponent UAV −3.5 3 2 1 −40 75

It can be seen from Figure 8 that the final success rate is stable at about 82% under
the above training, indicating that the policy selector training has converged after about
7200 rounds.
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The trained model is tested in the training scene. Figure 9 shows the flight trajectory
of the opponent and our UAV in the training scene.

At the initial time, the two UAVs are far away. It can be seen from the XOZ view
that the height of the opponent UAV is lower than that of our UAV when the simulation
begins. After that, our UAV changes the pitch angle, raises the height and shortens the
distance between the two sides. From the XOY view, our UAV can reduce the opponent’s
azimuth angle against us, fly to the opponent’s tail and fix the opponent UAV in the threat
zone. Finally, the relative distance between the two sides is gradually shortened to meet
the conditions of capturing.

From Figure 10a, it can be seen that before 80 steps, our UAV reduces the relative
azimuth of the opponent UAV by rapidly rotating the heading angle and the pitch angle.
After that, the relative azimuth of our UAV has always been kept in a small range. From



Drones 2023, 7, 449 14 of 20

Figure 10b, it can be seen that our UAV can approach the target faster. After meeting the
distance conditions of the threat zone, our UAV can converge stably at about 2000 m.
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The selection of meta-policy is shown in Figure 11. At the beginning, the UAV chooses
SC for situation conversion. After 220 steps, our UAV chooses the QP method to ap-
proach the opponent to capture it, and the selected meta-policy is more in line with the
current situation.
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4.3. Generalization Simulation

To test whether the PG-option hierarchical decision algorithm can realize the intelligent
decision-making task under different initial situations, our UAV is placed in the pursued
situation and the active capture situation, respectively, and its flight trajectory is analyzed.

4.3.1. Active Capture Situation

The active capture situation means that the relative azimuth angle of both sides is
small at the beginning of the operation, and the overall situation is that the opponent UAV
and our UAV are maneuvering in opposite directions. A simulation will be carried out in
this situation. The initial state is shown in Table 5.

Table 5. Initialization information in active capture situation.

X
(km)

Y
(km)

Z
(km)

Pitch
(◦)

Yaw
(◦)

Speed
(m/s)

Distance
(km)

Azimuth
(◦)

Our UAV 2 2 3 2 50 70
7.991 29.6Opponent UAV −2 9 3.5 1 −40 80

The flight trajectory is shown in Figure 12. From Figure 12a, it can be seen that at the
beginning of the simulation, the height of the opponent UAV is higher than that of our
UAV. Our UAV adjusts its pitch angle and shortens the distance between the opponent
and our UAV. From Figure 12b, it can be seen that at the beginning of the simulation, both
sides of the opponent UAV and our UAV are maneuvering toward each other. Our UAV
continues to maneuver and threat around the tail of the opponent UAV.

It can be seen from Figure 13a that after the simulation, our UAV maneuvers towards
the opponent and reduces the relative azimuth of the opponent. The relative azimuth meets
the requirements of the threat zone from beginning to end. After our UAV escapes the
opponent threat area, our UAV keeps the opponent within its threat area.

From Figure 13b, it can be seen that after the simulation begins, the two sides ma-
neuver in opposite directions, and the distance between the opponent UAV and our UAV
decreases rapidly. When the distance between the opponent UAV and our UAV meets the
requirements of the threat zone, our UAV continues to maneuver and keeps the distance
between the opponent and our UAV in this range.
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The selection of meta-policy in active capture situation is shown in Figure 14. Under
the situation, our UAV begins to choose QP. At about 200 steps, because our UAV falls into
the opponent’s threat zone in the process of pursuing the opponent, it chooses SC. At about
830 steps, our UAV chooses QP and finally wins.

4.3.2. Pursued Situation

The pursued situation means that at the beginning of the operation, our relative
azimuth is small, and the opponent’s relative azimuth is large. The overall situation is that
the opponent UAV is at the tail of our UAV. A simulation will be performed in this situation.
The initial state of the pursued situation is shown in Table 6.
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Table 6. Initialization information in pursued situation.

X
(km)

Y
(km)

Z
(km)

Pitch
(◦)

Yaw
(◦)

Speed
(m/s)

Distance
(km)

Azimuth
(◦)

Our UAV 2.1 2.9 3.0 2 50 70
8.01 165.1Opponent UAV −1.8 8.7 3.6 1 70 90

The trajectory in pursued situation is shown in Figure 15. From Figure 15a, it can be
seen that after the simulation begins, our UAV increases its pitch angle and reduces the
distance between the opponent and us. When approaching the height of the opponent,
our UAV gradually reduces its pitch angle to prevent our UAV from being higher than the
height of the opponent. It can be seen from Figure 15b that after the simulation begins,
our UAV quickly adjusts the heading angle to reduce the relative azimuth of the opponent.
After adjusting the azimuth, our UAV maneuvers toward the opponent and shortens the
distance between the two sides. To further reduce the relative azimuth of the opponent,
our UAV begins to rotate the heading angle and maintain the tail-chasing situation of our
UAV against the opponent.

From Figure 16a, we can see that at the beginning of the simulation, the relative
azimuth is very large, and our UAV is in a state of being pursued. After that, our UAV
quickly reduces the relative azimuth and changes its unfavorable situation by maneuvering.
After meeting the angle requirements of the threat zone, the simulation continues, and the
azimuth has been meeting this requirement ever since.

The distance curve is shown in Figure 16b. It can be seen that at the beginning of the
simulation because our UAV is pursued by the opponent, our initial speed is faster. There-
fore, the distance between the opponent and our UAV will increase at the beginning. After
that, our UAV quickly changes the heading angle and maneuvers toward the opponent. At
the same time, the distance between the opponent and our UAV can always be maintained
in this range after meeting the distance requirements of the threat zone.

The selection of meta-policy in the pursued situation is shown in Figure 17. Under the
pursued situation, our UAV begins to choose the SC. At about 220 steps, our UAV chooses
the AG to occupy a favorable position. At about 1100 steps, our UAV chooses the QP and
successfully captures the opponent.
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5. Conclusions

Based on the background of intelligent decision-making in the UAV pursuit-evasion
game, this paper proposes a hierarchical maneuver decision-making method based on a
PG option. The framework of maneuver decision-making is divided into two parts: the
bottom is the four meta-policies of advantage game (AG), quick escape (QE), situation
change (SC) and quick pursuit (QP), and the top is the policy selector trained by the PG
algorithm. Delay evaluation and expert experience are introduced to effectively solve the
problem of frequent meta-policy switching. The simulation and experimental results have
shown that the method can choose reasonable meta-policies to control UAV maneuvering
under different pursuit-evasion situations to capture the opponent. Some future work
includes adding stationary or moving obstacles to simulation scenarios to make simulation
more complex.
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