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Abstract: The efficient movement of raw materials within organizations is fundamental to main-
taining the seamless progression of production processes. However, these logistical operations can
inadvertently compromise overall company efficiency, primarily due to the substantial time invested
in transporting materials. This paper introduces an innovative mathematical model specifically de-
signed to optimize the transport of raw materials via drones across multiple workstations. This model
employs a novel modification of the traditional multi-level Vehicle Routing Problem by incorporating
an additional index and accounting for the drone’s energy consumption. We employ a widely-
recognized solver for practical resolution and compare it with a heuristic algorithm. The resultant
strategies offer promising prospects for the organization studied, introducing robust solutions for
elevating the efficiency of raw material transportation.

Keywords: mathematical model; heuristic; minimum levels; drones in factory

1. Introduction

Integrating drones into diverse industrial production processes has become a cru-
cial asset. Many companies are harnessing this technology to enhance efficiency and
minimize expenses. By enabling the execution of tasks with increased speed, precision,
and safety, drones significantly boost productivity while reducing the likelihood of hu-
man errors. Moreover, they can access challenging or hazardous locations, mitigating the
risks associated with workplace accidents. Consequently, it is imperative to examine the
operational aspects of drones, encompassing both their movement dynamics and energy
consumption patterns.

Drones exhibit exceptional versatility in various industrial sectors due to their ability
to maneuver both vertically and horizontally. Vertical movement enables drones to reach
significant heights, proving particularly advantageous in photography fields [1,2]. In this
context, drones can effectively inspect buildings and structures with accessibility challenges.
Similarly, their capacity for horizontal movement renders them a highly efficient resource
for transportation and logistics tasks [3]. Drones can seamlessly transport materials and
products across multiple points within a given space. This highlights the inherent flexibility
of drones and their substantial contributions to diverse production processes.

Currently, using drones to transport raw materials inside buildings has become an
increasingly common practice in the industry. Drones allow both horizontal and vertical
routes to transport or collect essential items for the company. This technology means that
company personnel do not have to travel to perform these tasks, which increases efficiency
and makes it possible to make better use of time for other operational activities.

Optimizing routes for transportation and logistics tasks is crucial, as it ensures effi-
ciency and curtails costs [4]. Through strategic route planning, extra trips can be eliminated,
travel distances shortened, and cargo capacities maximized for each flight, thereby main-
taining overall process efficiency. Furthermore, minimizing routing reduces waiting and
delivery times, fostering seamless integration within a company’s productive workflow.
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Drones have the potential to transform manufacturing operations in the future radi-
cally. Their ability to automate inspection and maintenance tasks could significantly reduce
downtime and improve efficiency. Drones equipped with advanced scanning and imaging
technology could perform accurate and fast inspections of machinery and equipment,
detecting problems that may not be visible to the naked eye and thus preventing costly
breakdowns and stoppages. Moreover, with the growing evolution of robotic and drone
technology, in the future, drones can obtain a more active role in the production line, han-
dling and moving small parts or even participating in assembly processes. The adoption of
drones can also improve job safety by reducing the need for workers to perform dangerous
or high-risk tasks. These advantages could lead to significant cost and time savings while
improving quality and safety in the manufacturing industry.

In order to implement drone-based technological solutions, it is essential to account
for and manage variables related to the transported objects and the associated operational
costs. Energy expenses (batteries, fuel, others) must also be considered, as they are directly
linked to the load size and travel distances. The objective is to minimize operational costs
while ensuring the transported items arrive in optimal condition. A route planning design
that considers these constraints is required. This can be accomplished through adjustments
and Vehicle Routing Problem (VRP) formulations.

This paper proposes employing drones to transport raw materials between various
workstations within a company. To tackle this issue, we have devised mathematical models
inspired by the well-established Vehicle Routing Problem. Additionally, we introduce
a heuristic approach and compare it with a classic solver. Our contribution is a novel
variant called Minimal Levels VRP, which incorporates an extra index based on the factory’s
floor count, aiming to minimize drone trips between floors and subsequently reduce
vertical distances. For multiple reasons, including potential accidents, Unmanned Aerial
Vehicles (UAVs) should fly from the base to a designated floor and then return to the
base. Simultaneously, pertinent aspects, such as the calibration of the penalty factor, are
integrated into the model.

The experiment is executed on a large scale, utilizing a fleet that simultaneously
transports materials to the 128 workstations, also referred to as nodes, which constitute
the distribution network. The model is then solved to determine optimal drone routes
within the factory. The test model is conducted across various scenarios to assess the
effectiveness of available resolution models for optimization problems. This approach
enables the extrapolation of results for more complex networks, contributes to the real-
world implementation of the model, and evaluates the efficacy of these methods in internal
delivery dispatch.

The proposed mathematical model incorporates a new index within its variables,
providing a notably improved level of precision and efficiency compared to previous
models. This index is crucial for generating optimized routes that innovative assignments
can effectively implement on each manufacturing floor under study. In this way, it provides
a robust theoretical framework and offers practical solutions that can be easily applied in
the actual production plant setup, thus improving operational efficiency and productivity.

The following Section 2 provides a brief review of the existing literature on VRP
models, their origins, and applications; in particular, the available literature on VRP models
applied inside factories or industries. Section 3 provides a description of the problem and
the approached scenario. Section 4 presents the mathematical models used. In Section 5
a heuristic for the problem is defined. In Section 6 the computational experiments are
presented. Finally, Section 7 presents the conclusions.

2. Literature Review

The earliest application of the VRP focused on gasoline distribution to gas stations.
This formulation assigned trucks to fuel stations to fulfill demand while minimizing the
trucks’ travel distance. Subsequently, Clarke and Wright [5] formally generalized an algo-
rithm capable of serving a geographically distributed group of clients from a depot using
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a fleet of trucks, thus creating the Vehicle Routing Problem (VRP). Numerous applications,
formulations, and variants of the VRP have been developed to represent real-world scenar-
ios. Notable examples include the Vehicle Routing Problem with Time Windows (VRPTW),
which seeks to minimize route distances within a specified time frame [6,7]; the Multiple
Depot Vehicle Routing Problem (MDVRP), in which multiple depots are geographically
distributed along with associated vehicle fleets [8]; and the Capacitated Vehicle Routing
Problem (CVRP), employing vehicles of identical characteristics from a single depot with
known demand requirements. These variants apply to various vehicle types, but this
article specifically focuses on drones, which are constrained by their limited capacities.
This particular challenge has sparked interest in the formulation and resolution algorithms
for CVRP as VRP models must be adapted to accommodate the unique characteristics
of drones.

The utilization of drones for deliveries has been previously investigated, revealing
their potential to decrease transportation costs and reduce delivery times [9]. Moreover,
drones contribute to sustainable processes by lowering CO2 emissions [3]. However, var-
ious drone models differ significantly due to the specific requirements for transported
products and the locations where transportation occurs. These variables can constrain
drone capacity, as exemplified by transporting organs or blood products. In [10], the fea-
sibility of using drones for blood transport is explored, taking into account not only the
drone’s specifications (characteristics, costs, others) but also the implications of drone trans-
port for blood, which must arrive in optimal conditions at its destination. In [11], a network
of drones is optimized for transporting external defibrillators, a task with fewer transporta-
tion limitations than biological materials since defibrillators are more durable and do not
require the same level of care and precautions. In [12], drones serve as a last-mile distribu-
tion method for rescue operations during disasters, demonstrating their effectiveness by
reducing response times in catastrophic events.

In general, efficient delivery systems that reduce cost and time are crucial for address-
ing business operations and logistics challenges. Authors such as [13] have suggested that
effective distribution management improves service levels in various industries. By bet-
ter satisfying customer needs, businesses can increase sales, gain a larger market share,
and ultimately achieve higher profits.

Although the use of drones in large-scale external networks has been extensively
analyzed and associated with numerous applications, the implementation of these tech-
nologies within indoor environments still needs to be explored. Ref. [13] investigates
a problem where drone routing with limited capacities is applied to distribute goods in-
side a single-level warehouse. Similarly, ref. [14] presents the development of software
systems for using drones in internal transportation, featuring energy-efficient drones and
lightweight cargo-handling devices. However, these studies need to consider applications
for multi-level companies where different stages of the production process take place on
each floor, a common business practice. Additionally, they do not account for the limited
budget available for drone acquisition, as the purchase cost for these devices is often high,
rendering state-of-the-art technologies not always accessible.

Similar to the VRP, its variant, the CVRP, is an NP-Hard problem, as its complexity
grows with the increasing number of nodes to be visited. Finding optimal solutions using
exact techniques for large networks in combinatorial optimization problems is challenging,
and has led to utilizing two-stage heuristic and metaheuristic methods that find solutions
based on node clustering [13]. The Lin–Kernighan heuristic, one of the most efficient
methods, has laid the foundation for highly effective heuristics, such as the Lin–Kernighan-
Helsgaun method [15]. Another popular heuristic for solving VRP is the Clark and Wright
Algorithm, also known as the “Saving Algorithm”, which enables the identification of
optimal or near-optimal solutions for routing problems. In general, various resolution
algorithms differ in the number of steps and their implementation. For instance, this article
utilizes a two-phase heuristic to sort and assign routes. However, an alternative method
could be achieved by assigning and sorting, resulting in a different approach.
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2.1. Drones Inside the Factory in the Literature

Table 1 shows studies in which drones are used in processes associated with manufac-
turing and factory logistics. This search was carried out in the Web of Science (WOS) index
and the keyword “drones in factory” were used. The search yielded 45 results and the
most outstanding articles are those that were registered in this table. The article developed
by [16] is the most prominent as a review of the state of the art, they indicate that there
are very few applications for the use of drones within the factory, and many studies that
are still promising. In the article developed by [17], drones are used for merchandise
recognition through infrared technology located in the drone and a data acquisition and
control system is developed for the DHL postal company. The article [18] shows the use of
drones in security tasks both inside and outside the factory, while the article [19] shows an
application of drones for quality inspection in the factory. Finally, the articles [20–22] show
applications of the Internet of Things in the industrial field.

Table 1. Summary of applications for the use of drones in factories and logistics.

Author Methodology/Method Description Application Area

[16] Simulation virtual, Automatic drones for factory,
Virtual simulation, Inspection

The current and potential applications of
drones in product manufacturing
applications of drones in product

manufacturing are explored and the
opportunities and challenges involved

are examined

Review

[17] Inventory management, Business adoptions,
Smart city, Inventory control,

The development of a Supervision, Control
and Data Acquisition (SCADA) system is

proposed for the inventory management of
the DHL company, using drones

Inventory
management

[18] Smart city, Factory security, Surveillance, Indoor
environment, Minimize the human factor

This article introduces the application of
drones for specific tasks in industrial areas,

indoors and outdoors.
Factory safety

[19]

A virtual simulation of drone lights at
a manufacturing plant was developed to assess
the potential of drones for thermal inspection

of machines

This document informs about how to use
automatic drones for factory inspections

Factory quality
inspection

[20]
Smart logistics, Industrial IoT, Scheduling,

Super-resolution, Self-adaptive control,
Algorithm for large-scale surveillance

This paper shows an application that uses
drones equipped with CCTV cameras for

the container supervision
Smart logistic

[21]
Trajectory optimization, UAV communication,

algorithm search, unmanned aerial vehicle
motion planning optimization techniques

Major research challenges are reviewed and
reveal implementation gaps in IIoT

applications in logistics and manufacturing
Internet of Thinks

[22]
Trajectory optimization, UAV communication,

algorithm search, unmanned aerial vehicle
motion planning optimization techniques

A use case is built and then a modeling
environment is described and simulated

communications are evaluated

Industrial Internet
of Thinks

2.2. Our Contribution

In previous work, a 3D-VRP model exposed in [9] was developed using an objective
function that uses the distance between the nodes as a cost parameter of the objective
function, which was validated with six drones in a single case of application. In this
paper, the VRP MinLE model is presented using an objective function that minimizes
the energy consumed by the drone equipment, calibrating a parameter that penalizes the
energy consumption generated by vertical movement in relation to the energy consumption
consumed by horizontal movement.

This new model, with its one-or-two-floor rule, represents a shift from prior practices,
as it introduces a new, more controlled approach to drone operation, focusing on specific
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floors and minimizing any potential for overreach. It is a strategy that merges precision
with efficiency, ensuring the drone’s energy and resources are optimally used. It is worth
noting that this updated model not only benefits the operation of drones; it also avoids any
collateral damage within the company’s production processes, which is highly beneficial in
this scenario.

The contribution of this paper aims to extend the studies for UAV routing inside the
industries with more than one level, considering the goal that drones fly from the base
to a factory workstation and ideally return without making stops on other floors. This is
because it is desirable that at any given time there be a minimum of drones on a floor.
Two resolution methods available for implementation and the differences that make them
viable in practice are evaluated.

3. Problem Configuration

This article investigates the feasibility of using drones to transport necessary materials
from a factory’s warehouse to various workstations, thereby minimizing delivery time.
The proposed model is tested in a medium-sized, four-story shoe factory.

The factory comprises 128 workstations, distributed evenly with 32 workstations per
floor, grouped into 16 work areas. Each workstation is assigned a list of tasks related to shoe
manufacturing that must be completed during the day. The materials required for these
tasks are distributed in 2 kg bags. Since the tasks depend on customer demand, material
delivery must be consistently scheduled according to the requested batches. Because the
floors are the same with the same surface area, 32 jobs were assigned by floor, but they are
grouped by processes within the manufacturing process, following product flow. Thus,
on the fourth floor the leather is cut, on the third floor upper part of the shoe is sewn, on the
second floor the sole and the heel are made of the shoe, while on the first floor, the shoe is
assembled by joining the upper and sole and tacos.

Currently, the material distribution process is carried out by one person who collects
the bags of material from the warehouse on a cart. Subsequently, a team of eight people,
two on each floor, distributes the bags manually. This process takes, in the worst case, two
hours to cover all the workstations, a duration considered excessive, especially for the
morning shift, which is the most demanding and requires work to commence as quickly
as possible. After completing the tasks, the finished products are collected on carts and
transported to the warehouse, where they are checked and dispatches are rescheduled.
The collection process also takes, in the worst case, two hours.

This excessive time is due to two effects: first, the dealers attend to problems reported
by operators at the beginning of the shift such as lack of tools, minor failures of machines,
lack of materials, etc.; and second, time is lost in conversations personal. The implementa-
tion of the dispatch with drones avoids this exchange and leaves it to specialized personnel
from the maintenance and supply area who deal with failures of equipment and lack of
materials, respectively. The personnel that are released from this task are assigned to load
the drones in the dispatch area. Considering that a worker of this type in Chile repre-
sents a company expense of 9.000 euros annually. It can be established that the saving of
eight workers due to the use of drones brings a saving of 72.000 euros per year.

Figure 1 illustrates the layout of the first floor, which houses raw materials, products
under development, the finished product warehouse, and the request preparation room.
The second, third, and fourth floors have identical workstation layouts, as shown in Figure 2.
The arrows between work areas represent the transit routes for drones. Workstations or
nodes are numbered, making up the distribution network to be fulfilled.

For material transportation, 15 drones are considered, with specifications based
on [23,24]. These drones can carry loads of up to 25 kg, and have a weight of 5 kg,
leaving 20 kg available for load transportation.

We propose mathematical models and a heuristic approach to tackle the above-
mentioned problem. In the following section, we present two mathematical models inspired
by VRP and its adaptation to the three-dimensional challenge.
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Figure 1. Distribution of level 1 in the factory.

Figure 2. Distribution of level 2, 3, and 4 in the factory.

4. VRP Models

First, we consider the three-dimensional VRP for drone routing, or three-dimensional
CVRP, considering the limited load capacity of drones. Building upon this model, we
extend the VRP for minimal levels, contributing to the existing routing models. This study
employs this extended model for conducting tests and collecting results. Both models,
the 3D VRP and the VRP for minimal levels are characterized as follows.

4.1. 3D VRP Model

The 3D VRP model, derived from [25], enables the determination of material distri-
bution routes between the warehouse and workstations while minimizing the associated
energy cost. The objective function (OF) minimizes the total distances traveled indepen-
dently in both the horizontal plane and the vertical axis.

In order to establish mathematical models, it is imperative to define parameters
relevant to the routing problem. Consider G = {V, A} as a graph where V = {0, . . . , N}
represents an assortment of workstations or nodes, and A is a set of arcs (i, j) subject to
the condition that (i, j) ∈ V with i 6= j. The workstation with the index 0 is considered
the point of origin where all drones must leave. Each arc (i, j) is characterized by two
distinct costs: hij, signifying the horizontal distance between workstations i and j, and bij,
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representing the vertical distance between the same. Every workstation is associated with
a demand di, given that i ∈ V. Finally, a set of drones Q = {0, . . . , M} have a capacity C
and a value p, designating the maximum number of workstations a drone can service.

In order to describe the mathematical model, a set of variables corresponding to the
parameters delineated above needs to be defined. Initially, a binary variable xk

ij is defined
to be one if drone k is allocated to arc (i, j) ∈ A, and zero otherwise. Secondly, a variable yij
is defined to be one if the arc is incorporated into the solution and zero otherwise. Finally,
a variable ui is defined to correlate with the position in the path for node i. The model, thus
proposed, is as follows:

The 3D VRP is detailed as follows.

Objective function

MinZ =
N

∑
i=0

N

∑
j=0

(1− α) hij yij + α bij yij

The objective function considers a penalty parameter that constrains vertical move-
ments due to their higher associated risk of accidents and failures in the work journey.
Here, we define the parameter α, a penalization factor for the movements considered in
the model. This parameter between 0 and 1 has been intricately incorporated into the
mathematical model to effectively manage these vertical movement-related risks.

Subjected to:

Constraint (1) ensures that only one drone can be assigned per route.

M

∑
k=1

xk
ij = yij ∀ (i, j) ∈ A (1)

Constraint (2) mandates that each drone arriving at a node comes from only one node.

N

∑
i=0

yij = 1 ∀ i ∈ V (2)

Constraint (3) stipulates that each drone must go to a single node.

N

∑
j=0

yij = 1 ∀ i ∈ V (3)

Constraints (4) and (5) guarantee that all drones leaving the warehouse must return to
the same location.

N

∑
j=0

y0j = M (4)

N

∑
i=1

yi0 = M (5)

Constraints (6) and (7) ensure that each drone is not used more than once.

N

∑
j=1

xk
0j = 1 ∀ k ∈ Q (6)

N

∑
i=1

xk
i0 = 1 ∀ k ∈ Q (7)
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Constraint (8) prevents each drone from exceeding its maximum payload capacity.

M

∑
k=1

dj × xk
ij ≤ C ∀ (i, j) ∈ A (8)

Constraint (9) ensures route continuity.

N

∑
i=0

xk
ia =

N

∑
j=0

xk
aj; ∀ k ∈ Q; ∀a ∈ V (9)

Constraint (10) is a flow restriction, limiting the drone’s route sequence by the pair of
nodes that must be visited.

ui − uj + p× yij ≤ p− 1 ∀ (i, j) ∈ A (10)

Finally, constraints (11) and (12) indicate that the problem’s variables must be binary.

xk
ij ∈ {0, 1} ∀ (i, j) ∈ A; ∀ k ∈ Q (11)

yij ∈ {0, 1} ∀ (i, j) ∈ A (12)

4.2. VRP Model for Minimal Levels (VRP MinLE)

In order to minimize the visited levels during a drone’s flight, it becomes paramount to
integrate energy consumption into the objective function. This requires clearly defining the
energy costs corresponding to the drone’s horizontal and vertical maneuvers. The energy
expenditure linked with the drone’s vertical movement between nodes i and j is depicted
by VEij in the Equation (13). Conversely, the energy costs related to horizontal movement
between the same nodes are denoted by HEij in Equation (14).

VEij = ECCV wij bij tij (13)

HEij = ECCH wij hij tij (14)

where ECCV, ECCH correspond to the energy consumption cost for vertical and horizontal
movement, respectively; wij represents load in kilograms transported in arch ij by a drone; bij
and hij represents the vertical and horizontal distance traveled in the nodes i and j; and finally,
tij is the drone traveling time between node i and node j. Using the generic formula for velocity
as a substitution to simplify Equations (13) and (14), we obtain Equations (15) and (16).

VEij = ECCV wij
b2

ij

vij
(15)

HEij = ECCH wij
h2

ij

vij
(16)

Thus, the formula, integrating both parts, vertical and horizontal for energy consump-
tion, which we will call ET, is the following:

ET = VEij + HEij = ECCV wij
b2

ij

vij
+ ECCH wij

h2
ij

vij
(17)

It should be noted that this formula is used in the objective function divided into a
vertical part and a horizontal part and the vertical part is penalized by the factor α.
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Here, vij is the horizontal velocity of the drone in arc ij, whose average value within the
factory is 3 m

s . In the case of the problem analyzed, the values for the cost of consumption
are: ECCH = 1.076× 10−5 $USD

kg×m×s and ECCV = 1.846× 10−5 $USD
kg×m×s . It is important to

note that energy consumption is not linear; however, this document has been linearized.
Based on the 3D VRP, the VRP model is planned for minimal levels. In this model,

minimal traveling distances between levels are incorporated, minimizing the performed
trips between these, with the purpose of generating simpler routes.

The new VRP MinLE model considers a four-dimensional variable. Let O = {0, . . . , L}
be a set of building levels or floors associated with the problem; the variable xkl

ij indicates
with a value one if the drone k ∈ Q is assigned to the trip from the arc (i, j) ∈ A in level l ∈
O, and with a value of zero otherwise. The model is presented in the following equations:

Objective function

MinZ =
N

∑
i=0

N

∑
j=0

((1− α)× ECCH wij
h2

ij

vij
) yij + (α× ECCV wij

b2
ij

vij
) yij

Subjected to:
M

∑
k=1

xkl
ij = yij ∀(i, j) ∈ A; l ∈ O. (18)

N

∑
j=1

xkl
0j = 1 ∀k ∈ Q; l ∈ O. (19)

N

∑
i=1

xkl
i0 = 1 ∀k ∈ Q; l ∈ O. (20)

M

∑
k=1

djxkl
ij ≤ C ∀(i, j) ∈ A; l ∈ O. (21)

N

∑
i=0

xkl
ia =

N

∑
j=0

xkl
aj ∀k ∈ Q; l ∈ O; a ∈ N (22)

xkl
ij ∈ {0, 1} ∀(i, j) ∈ A; l ∈ O; k ∈ Q (23)

In which index l depends on the floor where the destination node is located. The func-
tionality of these restrictions follows the same logic as the previous model. However, it is
now incorporated the location of the node within the factory. In addition, the Equation (24)
is added for the fleet drones to visit the minimum number of levels.

N

∑
i=1

M

∑
l=1

xkl
ij = 1 ∀k ∈ Q j ∈ N (24)

This formulation increases the number of variables proportionally to the floor lev-
els. We would pass effectively from a case with 128 workstations and 245.760 variables
to 983.040.

A heuristic is a problem-solving approach that can generate solutions quickly. In the
next section, we provide a detailed description of the heuristic process required to obtain
solutions for the problem at hand. This heuristic process is essential to efficiently generate
feasible solutions within a short amount of time.

5. Heuristic Approach

Two fundamental processes are employed to generate a heuristic solution: clustering
and route generation. The first process, clustering, involves assigning workstations to
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a finite number of drones. The second process, route generation, focuses on creating valid
routes for each drone.

Algorithm 1 shows the general processes used to solve the problem. Initially, the algo-
rithm receives the number of drones m, the workstations or “nodes”, and the maximum
capacity of each drone C as input parameters. In line 1 of the algorithm, the empty so-
lution structure is defined. Line 2 employs the k-means clustering algorithm, a widely
used parametric algorithm in the literature, effectively generating m clusters based on the
three-dimensional distances between nodes. Lastly, lines 4, 5, and 6 generate routes for
each cluster established by the K-Means algorithm. The f orEach statement takes a cluster
(referred to as setNodes) and iteratively solves the subproblem using a Solver TSP, ulti-
mately adding the path to the solution.

Algorithm 1: Heuristic Algorithm
Input: m , nodes = {i = 0, . . . , n}, C
Result: Solution (Routes Set)

1 Solution← ∅;
2 Clusters← K-Means(nodes, m) ;
3 foreach setNodes ∈ Clusters do
4 routeDrone← SolverTSP(setNodes, C) ;
5 Solution← Solution + routeDrone
6 end
7 return Solution;

The Lin–Kernighan heuristic (LKH) library, a widely-used tool in operations research,
is employed to address the traveling salesperson subproblem. This library efficiently
implements the LKH for solving the TSP [15]. By executing the library with a subset
of workstations and diving the traveling salesman problem with pickups and deliveries
(TSPPD) while setting pickups to 0, feasible routes can be obtained for each subproblem.

6. Computational Experiments
6.1. Experiment Protocol

The mathematical models presented in this article were solved using a conventional
solver, specifically CPLEX 12.5.1. This solver was also employed to obtain the penalty
factor α. The solver was set with a time limit of one hour of execution (3600 s).

The heuristic was implemented in Python 3.0. For the clustering process, the K-Means
algorithm from the Sklearn 1.2 library [26] was utilized. In contrast, the LKH version 3
library was employed for route generation, as discussed in the previous section. The LKH
library is implemented in the C language, and its executable is invoked iteratively through
the Python script to ensure proper communication and accurate solution generation.

The tests of the model were performed in a computer with a processor Intel® Xeon®

E5–2660 v2 (8 cores) and 12 GB of RAM, including the CentOS Linux operative system,
version 7.5.1804.

To test the effectiveness of the model in different scenarios, different numbers of
workstations or nodes were chosen, thus generating networks of different complexity.
These scenarios were generated randomly using a uniform distribution to choose the
workstations in each plant; the only condition is the equal distribution on four floors.
The smaller instances are useful when we consider smaller factories, scenarios where not
all workers are present, or when there is a lower demand and not all stations are needed to
participate. On the other hand, some instances also limit drone loading, when transporting
both raw materials from warehouses, as well as in-process and finished products.

The generated scenarios for simulation are detailed in Table 2, where scenario number
8 corresponds to the original problem of the plant under study. In Appendix A the simulated
scenarios are shown.
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Table 2. Scenarios used for the application of the model.

Scenario Number Nodes Workstations by Floor Drone Drone Capacity (Kg)

1 16 4 5 8
2 32 8 10 8
3 48 12 10 10
4 64 46 10 14
5 80 20 10 14
6 96 24 15 20
7 112 28 15 20
8 128 32 15 20

6.2. Penalization Factor Calibration

Obtaining the appropriate calibration value for the penalty α contributes to reducing
the total cost associated with transportation, because the vertical distances traveled, which
have a higher cost, are reduced. This parameter represents the ratio of the increase in
costs to reco when traveling distances on the vertical axis versus in the horizontal plane.
To determine the value of the parameter, the model is run in CPLEX for different values of
α within [0.1, 0.9] with steps of 0.1 to facilitate subsequent calculations and interpretation
of the result, as well as to avoid extreme values (0.1 or close).

Table 3 shows the values obtained for the displacement distances for different values
of α, and these are illustrated in Figure 3.

Table 3. Total Traveled distances (mt) at different variations of the α parameter.

α XY (mt) Z (mt) Total (mt)

0.1 635.77 243 878.77
0.2 589.92 231 820.92
0.3 562.50 241 803.50
0.4 602.09 197 799.09
0.5 593.39 188 781.39
0.6 623.76 170 793.76
0.7 570.45 168 738.45
0.8 671.41 158 829.41
0.9 688.32 164 852.32

The objective is to find the value that minimizes the total distances traveled by the
drones. A considerable decrease in the total distances traveled is observed for α = 0.7, where
the lowest value is reached, corresponding to 738.45 m. With a mean of µ = 810.8455 m, this
value for the parameter has a negative deviation with respect to the mean of −72.3955 m,
showing that it is a value that is well below the mean and, therefore, that the distances
are greatly reduced. The value obtained for α represents an increase in the cost of 3 to
7 times for vertical versus horizontal distances, indicating that these have a higher cost and
should therefore be reduced by a greater amount. In addition, being a high value within
the scale, it minimizes the vertical distances traveled by a large amount, reaching one of its
lowest values at 168 m. Finally, this is the optimum value selected for the calibration of α in
the experiment.
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Figure 3. Total traveled distances at the variation of α penalty factor.

6.3. Results

Next, the reached results are presented by both methods in the scenarios described.
In addition, the obtained routes are detailed for scenarios 8, 20, and 128 nodes. These quan-
tities are selected to compare the model’s effectiveness and the methods in networks of
different sizes. It is important to remember that the workstations visited by the drones are
random; it is for solely satisfying the same quantity of stations per floor.

6.3.1. Method Comparison and Results

The comparison of the methods with the values obtained in the tests is detailed in
Table 4. This table presents the energy consumption cost (CE), the processing time (T),
and the relative error (RE), i.e., the difference between the obtained energy cost by the
optimal solution and the heuristic. The consumption costs are valued in dollars to use
a common standard; these costs are only referential for the comparison.

%RE =
CEheuristic − CEoptimal

CEoptimal
× 100%

Table 4. Comparison between CPLEX with VRP MinLe model and heuristic.

Scenario n m
CPLEX Heuristic

M CE (USD) Time (s) M %RE CE (USD) Time (s)

1 16 5 4 0.320 4.6 4 6.04 0.339 0.000
2 32 10 4 0.579 3600 4 25.49 0.726 0.001
3 48 10 5 0.845 3600 5 19.60 1.010 0.001
4 64 10 7 1.154 3600 7 20.04 1.386 0.001
5 80 10 10 1.541 3600 8 7.55 1.657 0.001
6 96 15 10 1.647 3600 7 15.26 1.898 0.001
7 112 15 10 1.99 3600 8 8.83 2.167 0.001
8 128 15 10 2.31 3600 9 11.97 2.597 0.001

Marked discrepancies can be observed between the performance of the exact solver and
the heuristic in terms of execution times. Upon examination of Table 4, it becomes evident
that CPLEX, a popular exact solver software, is found to reach the preset time limit of one
hour in seven out of eight presented test cases. This is seen to contrast significantly with
the agility of the heuristic, where superior temporal efficiency is displayed. Rather than a
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full hour being dedicated to each problem, as is the case with CPLEX, the heuristic is found
to address and resolve the same cases in just a fraction of the time, thus demonstrating its
dramatically faster performance.

The effectiveness and precision of the results are considerably higher when the solver is
used compared to the heuristic. Specifically, the results obtained through the CPLEX solver
stand out for their noticeable superiority over the heuristic, even reaching a differential of
up to 25.49% in favor of the solver in the most unfavorable scenario.

It is important to highlight that this gap is attributed to the suboptimal performance
of the heuristic, which manifests itself in unsatisfactory results. This fact underscores the
pressing need to develop and apply more sophisticated and efficient heuristics to deal with
the problem at hand.

Finally, fewer drones are generally utilized by the heuristic as compared to the model.
It was observed that in four instances, all available drones were used by CPLEX, while
fewer were used by the heuristic. However, it is important to note that this does not
necessarily imply a minimization of the total energy in the scenario. In fact, in scenario
6, even though 7 drones were employed, there was an RE of 15.26% in comparison with
CPLEX. This indicates that the routes generated by the heuristic may necessitate longer
distances to be covered, but this is offset by the usage of fewer drones.

An important aspect to highlight is the difference between energy costs obtained
for each scenario. As expected, energy costs for optimal solutions are lower than those
evaluated by the heuristic, with an average difference of around 13.035 %. On the other
hand, the optimal solution takes, in most cases, nearly one hour to be obtained, while the
heuristic solution takes only a few seconds.

6.3.2. Visual Analysis of Solutions

The assignment of routes to each drone varies between methods, but feasible routes
for the problem at hand are generated by both. The solutions for scenario 6 are exhibited in
Figures 4 and 5. Each route is assigned to a drone, with each color representing a floor and
each number corresponding to a specific workstation. It is notable that the workstations
are distributed almost equitably among the drones by the heuristic. This result is attributed
to the KMeans algorithm, which generates balanced clusters. This same characteristic is
observed in the scenario presented in Figures 6 and 7.

Finally, the results obtained for scenario 8 of 128 nodes are shown in Figures 6 and 7,
which correspond to the instance with all the nodes of the studied problem.

In Figure 8, the nodes and floors (levels) visited by the respective drones from 1 to 15
are represented. From Figure 8, it can be observed that eight drones visit only one floor,
while eight drones visit two floors. This graph validates the consistency of the model to
assign drones to the minimum number of levels, as management desired, to facilitate a
simple flight space design in the factory.

The heuristic implemented ensured an optimal allocation of drones across various
floors. In Figure 9, the assignment of drones, represented in distinct colors, to each worksta-
tion on the different levels is illustrated. It is noted that in this specific context (Scenario 5),
the first floor was serviced by two exclusive drones, while the maintenance of the rest of
the floors required the intervention of more than two drones.

The ideal for the resulting routes is for the drone to leave the base, visit only one
level to deliver the cargo, and then return to the warehouse. This is to have the minimum
number of trips between levels. In Table 5, we present a summary of the number of levels
visited by each drone, broken down by resolution technique, for Scenario 8.
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Figure 4. Optimal solution for scenario 6. The green color indicates the first floor, the red the second
level, the blue color indicates the third level and the yellow color the fourth.

Figure 5. Heuristic solution for scenario 6. The green color indicates the first floor, the red the second
level, the blue color indicates the third level and the yellow color the fourth.
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Figure 6. Optimal solution for scenario 9. The green color indicates the first floor, the red the second
level, the blue color indicates the third level and the yellow color the fourth.

Figure 7. Heuristic solution for scenario 8. The green color indicates the first floor, the red the second
level, the blue color indicates the third level and the yellow color the fourth.
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Figure 8. Floors (levels) visited by the respective drones.

Figure 9. Distribution of drones per floor for scenario 5.

Table 5. Drone quantity according to the number of visited levels of every solution for scenario 8.

Visited Levels Optimal Solution Heuristic Solution

One level 4 12

Two levels 5 2

Three levels 6 0

7. Conclusions

This paper introduces a novel Vehicle Routing Problem (VRP) model, termed the
Minimum Levels VRP. It builds on the 3D VRP model by [27], initially employed for
material distribution tasks. The advanced formulation presents a new parameter designed
to minimize the frequency of trips between factory levels for drones. This optimization trims
down the total distance the drones cover and curtails the related energy costs. A crucial
aspect of this model is the fine-tuning of the penalty factor, denoted as α for vertical
distances. After a comprehensive analysis of the results, an optimal α value of 0.7 is
determined by calculating optimal solutions. Pinpointing this optimal value is paramount
to the model’s successful execution as it significantly enhances the model’s performance.

This paper employs the CPLEX software to solve the proposed model and secure
optimal solutions. However, given the excessive and impractical resolution time observed,
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the heuristic technique LKH emerges as a viable alternative. This heuristic yields feasible
solutions, which are compared with the CPLEX results on critical implementation aspects,
including variations in energy consumption, disparities between optimal and heuristic
routes, and the number of floors the drones visit.

The routes derived from each method significantly differ. For more extensive net-
works, the heuristic method demonstrates superior efficacy, effectively minimizing the
number of levels traversed by the drones. A detailed analysis of the results obtained
for a 128-node scenario corresponding to the original factory problem reveals intriguing
insights. The energy cost of the heuristic solution rises by 11.97% relative to the optimal
solution. This increase is notably lower than the general average, leading to substantial
energy savings and averting mid-air drone discharges.

One of the primary objectives of the problem—reducing the number of floors visited
by the drones—is achieved remarkably well in this scenario, with 13 out of every 15 drones
remaining on a single floor for distribution. Therefore, the heuristic emerges as the more
efficient of the two methods for resolving this problem. Not only does it locate optimal
solutions with high precision, but it also fulfills a key problem objective by decreasing
inter-floor trips, resulting in an average energy consumption increase of only 13.5%.

Though this increase may initially seem significant, it becomes less relevant when
considering the superior quality of the heuristic solution. This solution encapsulates various
criteria, including a reduction in inter-level trips, energy conservation, and efficient route
search execution. Moreover, it is practical and ready for implementation.

The complexity of routing problems requires certain simplifications in our model. Fu-
ture work could account for in-flight battery or fuel limitations, especially in larger factories
or logistic centers, in contrast to our medium-sized factory scenario. Drone reusability,
another important factor, should have been considered in our problem, in which we as-
sumed a fleet size sufficient for demand. Given the high cost of drone technology, studying
scenarios with insufficient drones for concurrent demands could be valuable.

Furthermore, new resolution methods should be explored to improve results and
accommodate high-demand processes. Although cluster formation was straightforward
in this paper, the literature suggests more efficient node grouping and route assignment
methods. By addressing these factors, we aim to refine our model and its detailed re-
sults for practical implementation, enhancing its usability across various industries and
improving logistics.
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Appendix A

Table A1. Obtained results for scenario 1, 16 nodes.

Drone Optimal Solution Heusristic Solution (LKH)

Drone 1 0-1-0 0-34-35-40-0

Drone 2 0-35-75-66-34-0 0-66-75-56-0

Drone 3 0-12-19-25-00-1-0 0-1-25-19-12-0

Drone 4 0-83-96-56-40-0 0-97-83-96-0

Drone 5 0-97-125-103-0 0-103-118-125-0

Table A2. Obtained results for scenario 2, 32 nodes.

Drone Optimal Solution Heusristic Solution (LKH)

Drone 1 0-1-0 0-14-12-9-1-0

Drone 2 0-9-0 0-3935-34-0

Drone 3 0-19-12-0 0-40-47-50-0

Drone 4 0-14-56-31-22-0 0-66-58-56-0

Drone 5 0-25-58-50-34-0 0-73-81-75-0

Drone 6 0-3547-40-29-0 0-19-22-31-25-0

Drone 7 0-75-81-73-66-0 0-88-93-83-0

Drone 8 0-88-96-93-83-0 0-96-102-97-0

Drone 9 0-97-102-111-103-0 0-118-111-103-0

Drone 10 0-118-128-125-121-0 0-121-125-128-0

Table A3. Obtained results for scenario 3, 48 nodes.

Drone Optimal Solution Heusristic Solution (LKH)

Drone 1 0-19-83-81-73-9-0 0-4-14-12-9-1-0

Drone 2 0-14-22-32-31-24-0 0-18-25-19-22-24-0

Drone 3 0-25-58-59-50-18-0 0-34-35-36-32-0

Drone 4 0-1-12-4-0 0-39-40-47-46-50-0

Drone 5 0-36-68-75-66-34-0 0-66-58-59-56-53-0

Drone 6 0-35-46-47-40-39-0 0-68-75-76-81-73-0

Drone 7 0-53-118-108-98-97-0 0-111-119-118-108-0

Drone 8 0-76-93-94-96-88-0 0-121-126-128-125-0

Drone 9 0-56-128-126-125-121-0 0-87-88-94-93-83-0

Drone 10 0-102-103-111-119-87-0 0-96-103-102-98-97-0
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Table A4. Obtained results for scenario 4, 64 nodes.

Drone Optimal Solution Heusristic Solution (LKH)

Drone 1 0-1-0 0-4-8-13-14-12-9-0

Drone 2 0-8-40-39-47-46-36-4-0 0-18-25-28-24-22-20-19-0

Drone 3 0-9-34-42-50-57-25-18-0 0-65-66-57-58-59-61-0

Drone 4 0-22-24-31-32-28-20-13-0 0-68-75-76-82-81-73-0

Drone 5 0-12-108-111-104-103-102-35-0 0-34-36-3539-40-31-32-0

Drone 6 0-19-51-59-61-56-53-14-0 0-87-88-93-94-89-83-0

Drone 7 0-66-65-97-98-114-121-58-0 0-96-95-103-102-98-97-0

Drone 8 0-73-81-82-89-94-93-83-0 0-87-88-95-96-76-75-68-0

Drone 9 0-87-88-95-96-76-75-68-0 0-108-114-118-119-111-104-0

Drone 10 0-118-125-126-128-127-120-119-0 0-120-127-128-126-125-121-0

Table A5. Obtained results for scenario 6, 96 nodes.

Drone Optimal Solution Heusristic Solution (LKH)

Drone 1 0-1-0 0-1-2-9-11-4-8-7-0

Drone 2 0-2-0 0-18-19-12-14-16-15-13-0

Drone 3 0-4-0 0-23-24-21-22-20-26-25-0

Drone 4 0-9-0 0- 56-61-59-60-58-57-0

Drone 5 0-11-0 0-69-70-68-73-66-65-0

Drone 6 0-8-15-16-23-24-31-32-22-21-14-0 0-33-34-35-36-31-32-28-0

Drone 7 0-33-65-97-99-107-108-113-106-98-34-0 0-81-82-76-75-80-79-0

Drone 8 0-13-46-53-47-40-39-7-0 0-89-83-85-86-88-87-0

Drone 9 0-35-36-68-69-70-79-80-87-45-37-0 0-37-38-39-40-45-46-42-0

Drone 10 0-12-20-28-26-25-0 0-95-96-94-93-91-90-0

Drone 11 0-42-49-50-57-58-60-59-52-51-19-0 0-101-103-102-99-98-97-0

Drone 12 0-18-82-89-90-91-83-81-73-66-0 0-49-50-51-52-54-53-47-0

Drone 13 0-56-88-120-119-111-104-103-101-102-38-
0 0-106-113-108-107-111-104-0

Drone 14 0-54-61-93-94-96-95-86-85-76-75-0 0-119-120-117-118-121-114-0

Drone 15 0-127-128-126-125-118-117-123-124-121-
114-0 0-123-124-125-126-128-127-0
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