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Abstract: The deployment of unmanned aerial vehicles (UAVs) has significantly improved the
efficiency of data collection for wireless sensor networks (WSNs). The freshness of collected infor-
mation from sensors can be measured by the age of information (AoI), which is an important factor
to consider in data collection. For data collection during long-term mission, the energy limitation
of UAVs may cause mission interruption, which makes supplementation of the UAVs’ energy more
necessary. To this end, we introduce the mobile unmanned vehicle (MUV) to guarantee the UAVs’
energy supplementation. In this paper, we investigate the problem of multi-UAVs and single-MUV
cooperative trajectory planning (MUSM-CTP) for data collection in WSNs with consideration for
the AoI the collected data and the limited battery capacity of UAVs. The objective of this problem is
to find cooperative flight trajectories for multiple UAVs and to determine the MUV’s travel plan to
replace batteries for the UAVs, such that the average AoI of all collected data is minimized. We prove
the NP-hardness of the problem and design the algorithm via three phases to solve this: determining
candidate hover points based on the affinity propagation (AP) clustering method, constructing the
flight trajectories of multiple UAVs based on the genetic algorithm (GA), and designing a travel plan
for the MUV. The simulation results verify the effectiveness of the proposed algorithm in improving
the freshness of the information collected from all of the sensors.

Keywords: unmanned aerial vehicle; wireless sensor network; age of information; mobile unmanned
vehicle; cooperative trajectory planning

1. Introduction

Wireless sensor networks (WSNs) have been deployed in various domains of human
life to provide a wide range of applications, such as intelligent transportation, environmen-
tal monitoring, event detection, and target tracking. Generally, the WSN consists of a large
number of sensor nodes (SNs) powered by batteries. In traditional WSNs, the information
obtained by the sensors is usually collected and forwarded to the destination by receivers in
a multi-hop manner, which may quickly deplete the battery of the receiver, greatly reducing
the network connectivity, data transmission performance, and the lifespan of the WSN.
Additionally, the location of the base station (BS) is limited by geographic conditions such
as terrain and altitude. The geographic isolation between the BS and SNs and the complex
environment invisibly increases the difficulty and delay of data collection.

As the pace of design and production accelerates, unmanned aerial vehicles (UAVs)
have become significant drivers in various fields. In WSNs, UAV-assisted data collection
has emerged as a promising method for data collection due to the exceptional flexibility
and maneuverability of the UAVs [1]. Compared to conventional ground-based equipment,
UAV-assisted data collection exhibits superior environmental adaptability. UAVs act as
airborne base stations or relays [2,3]. They approach numerous small, energy-limited SNs
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to improve efficiency and coverage. At the same time, the UAVs establish low-altitude and
line-of-sight communication links with ground-based SNs to collect perception information
from the environment. Each UAV reduces the transmission energy required for data
collection via short-range, reliable communication, thus prolonging the lifespan of the
entire WSN.

In the UAV-assisted data collection in WSNs, there are two important influencing
factors for the network performance: the energy supply of the UAVs and the freshness of
the collected information. Firstly, although the utilization of UAVs for data collection in
WSNs offers numerous advantages, the limited energy capacity of UAVs imposes an energy
constraint on the conduction of long-term and energy-intensive flight missions. Therefore,
the energy issue is a fundamental bottleneck in the implementation of UAV-assisted WSNs.
To address this challenge, UAVs can supplement their energy supply by replacing onboard
batteries by returning to the BS or fixed charging station, which may increase energy
consumption and task completion time. To overcome these problems, we attempt a novel
approach to enhance the performance of energy-limited UAVs by introducing a mobile
unmanned vehicle (MUV) as a mobile charging station for UAVs. The MUV is equipped
with a large number of spare batteries and offers the flexibility to compensate for the battery
capacity of UAVs while minimizing the impact of onboard energy restrictions. The mobility
and speed advantages of the MUV make it possible to perform these replacements quickly
and easily. Furthermore, MUV-based energy supplementation is a cost-effective and
scalable solution that can be deployed in a distributed manner for simultaneous charging.
Secondly, the freshness of information has become increasingly important for applications
such as autonomous driving and forest fire monitoring, which can be measured by a
new performance metric called the age of information (AoI) [4]. The AoI describes the
time elapsed since the latest received update was generated. A lower AoI means that the
collected information is more up-to-date, while a higher AoI may be inconsistent with
the current state, potentially resulting in the loss of its meaning. Designs based on AoI
can ensure the freshness of real-time status information updating systems, which is very
different from traditional network designs based on delay and throughput. Therefore, AoI
has attracted more and more attention [5–7].

Based on the energy supply of UAVs and the freshness of collected information,
this paper considers a new WSN architecture composed of multiple SNs, multiple UAVs,
and one MUV. We study the cooperative trajectory planning problem of UAV-and-MUV-
assisted data collection in AoI-based WSNs, whose goal is to jointly optimize the flight
trajectories of UAVs and the travel plan of the MUV such that the average AoI of the entire
WSN is minimized. The contributions of this paper can be summarized as follows:

• We consider a new WSN architecture comprising multiple SNs, multiple UAVs, and
one MUV. In this architecture, multiple UAVs are used as mobile data collectors to
collect sensed data from SNs deployed on the ground, and an MUV repowers all the
UAVs by replacing batteries. We identify the multi-UAVs and single-MUV cooperative
trajectory planning (MUSM-CTP) problem, with the goal of minimizing the average
AoI of the entire WSN. Then, we prove that this problem is NP-hard.

• In order to solve the MUSM-CTP problem, we propose a three-phase algorithm,
the multi-UAVs and single-MUV cooperative trajectory planning algorithm (MUSM-
CTPA), which is composed of clustering based on affinity propagation (AP), the UAVs’
flight trajectory planning based on the genetic algorithm (GA), and the MUV’s travel
plan based on the greedy idea.

• We conducted extensive simulation experiments to demonstrate the effectiveness of
the proposed algorithm for solving the MUSM-CTP problem.

The remaining parts of this paper are organized as follows. Section 2 introduces the
related literature. In Section 3, we introduce related models and the formal definition of
our problem. In Section 4, we propose the MUSM-CTPA algorithm to solve the problem.
The simulation results are presented in Section 5. Section 6 summarizes this paper.
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2. Related Works

UAV-assisted WSNs have attracted a lot of attention in both academia and industry.
Most existing works have focused on maximizing the UAV’s communication coverage
range [8], system throughput [9], and energy efficiency [1], or minimizing the UAV’s
transmission delay [10] and energy consumption [11]. The related works will be introduced
from four aspects: resource allocation, path planning, information freshness, and energy
supply in UAV-assisted data collection. The comparison and summary of the contributions
from related works are presented in Table 1.

Table 1. Literature Comparison.

Related Works
Contributions

Resource Allocation Path Planning Information Freshness Energy Supply

[1,12–17]
√

[1,12–14] × ×
[18–22] ×

√
[19] [18,22]

[5,23–27] [24,26,27] [24–27]
√

×
[28–34] [31,32] [29–32] ×

√

manuscript
√ √ √ √

√
indicates presenting features in all literature. × indicates missing features in all literature.

Researchers have extensively studied the efficient mobility management and resource
allocation problems in UAV-assisted data collection. In [1], Y. Zeng et al. studied energy-
efficient communication between the UAV and ground SNs by optimizing the trajectory
of the UAV. A distributed wireless sensor network data collection method is proposed
in [12]. The UAVs are used as data transmission nodes to connect separated distributed
regions. A UAV-assisted WSN data collection framework is proposed in [13], where UAVs
are used as relays to collect sensed data from SNs. In [14], the task completion time is
minimized by optimizing the flight path and wake-up time allocation of the UAV. Gong et al.
studied the minimization of UAV flight time for collecting sensor data from the starting
point in [15]. An HAP-assisted RSMA-enabled VEC system is proposed in [16], where
vehicular edge computing (VEC) offers service by utilizing high-altitude platforms (HAPs)
and rate-splitting multiple access (RSMA) techniques. In [17], the authors investigated
enhancing the service experience of Internet of Things devices (IoTD) by optimizing the
limited computation, communication, and energy resources in both HAPs and UAVs when
the terrestrial base station (TBS) is underserved.

Trajectory planning is a very important topic in UAV communication consumption.
In [18], the cooperative flight trajectories of multiple UAVs are designed by balancing
data collection, charging, and collision avoidance. In [19], multiple UAVs act as mobile
relay nodes between sensors and base stations. The flight trajectories of multiple UAVs
are planned on the premise of minimizing the received packet AoI and equipment energy
consumption. In [20], UAV trajectories and SN wake-up scheduling are jointly optimized to
minimize the maximum completion time. In [21], a low-complexity algorithm is designed
to maximize the total uplink power by jointly optimizing the UAV’s position, height,
and antenna beam width. The authors of [22] investigated the problem of online cooperative
charging schedules using multiple wireless charging vehicles (WCVS) in a WRSN, where
each WCV arranges its charging scheduling path by responding to the interdependence
of temporal and spatial correlations of different charging requests. The above works
focused on optimizing 2D or 3D UAV trajectories and user schedules based on time or
energy allocation to improve performance, such as energy efficiency and completion time;
however, they ignore the information freshness.

The freshness of sensed information is crucial in delay-sensitive applications. Fresh-
ness as an important metric is called the AoI [23], which is defined as the time elapsed since
the latest update [5]. Due to the importance of the AoI and the popularity of UAVs in IoT
systems, AoI-aware UAV-assisted WSN design has attracted increasing interest. In [24],
a centralized information-sharing mechanism among multiple UAVs is designed to avoid
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multiple visits to the same user by the UAVs. The AoI is minimized by joint optimization
of task allocation, interaction point selection, and UAV trajectory. In [25], the trajectory and
data collection mode of the UAVs are jointly optimized to minimize the average AoI of
all sensors, where a UAV is allowed to collect data in hover, fly, or mixed modes. In [26],
a trajectory planning strategy for UAVs is proposed to minimize the maximum AoI of the
WSN by balancing the upload time of sensors and the flight time of the UAVs. In [27],
an end-to-end artificial intelligence-based UAV trajectory planning framework is proposed
by balancing accuracy and efficiency, and the flight path with the minimum AoI is obtained.

Due to the limited onboard energy of UAVs, it is necessary to replenish energy during
their mission. Many researchers have devoted themselves to methods of obtaining energy
when UAVs are used as mobile data collectors or mobile edge computing servers. In [28],
Suzuki et al. investigated an automatic battery replacement system for UAVs, which in-
cluded a ground station with replaceable batteries for supplying UAVs. In [29], Luo et al.
investigated a laser-charged UAV-assisted wireless rechargeable sensor network. The laser
beam directions are uniformly deployed in the monitoring environment to charge the UAV
by firing the laser beam. In [30], Fu et al. proposed a reinforcement learning method to
design a path for UAVs to collect sensor data and replenish energy using fixed charging
stations. In [31], the problem of UAV-assisted data collection in wireless sensor networks
with “mobile charging stations” is studied for the first time from the perspective of collabo-
rative trajectory planning. In [32], Zhu et al. investigated the problem of UAV-assisted data
collection in large-scale wireless sensor networks based on a truck carrying spare batteries
for the UAV’s battery replenishment. In [33], the author introduced denial of charge (DoC)
into a WRSN and forms an on-demand charging model. A large-scale WRSN with multiple
chargers is proposed in [34]; the authors focused on minimizing the charging delay with
directional charging schemes.

Since the AoI characterizes the freshness of sensed data in terms of destination, most
research works have been devoted to solving the AoI minimization data collection schedul-
ing problem in WSNs. Energy-constrained UAVs need to replenish their energy during the
data collection process to continue working. The scheme of returning to the base station
or fixed charging station to replace the battery is not only expensive but also increases the
energy consumption and task completion time of the UAVs. This is because UAVs need
to travel back and forth to the BS regardless of their location, and using fixed charging
stations to replace batteries also increases the working time and reduces the flexibility of
UAVs. To overcome these problems, this paper studies the collaborative trajectory planning
problem of UAV-and-MUV-assisted data collection based on the AoI in WSNs.

3. System Model and Problem Definition
3.1. System Model

We consider a set of n wireless sensors S = {s1, s2, . . . , sn} located in the two-dimensional
region, a set of m UAVs F = { f1, f2, . . . , fm}, a charging MUV, and a BS, as shown in Figure 1.
In this paper, we use the three-dimensional Cartesian coordinate system XYZ to mark the
position of the sensors and UAVs. The sensors are randomly distributed in a given area to
monitor the environment. Each SN si ∈ BS ∪ S is located at the position of si = (xi, yi, 0),
and di,j represents the horizontal distance between si and sj. Assume that each sensor si ∈ S
generates Vi units of sensing data.

We employ m rotary-wing UAVs F as airborne mobile data collectors to collect data
from SNs. Each UAV fk ∈ F has the same maximum battery capacity Emax and minimum
energy threshold E0. All UAVs start their data collection task from BS at the same time
and fly at fixed height h and constant speed v. Let T represent the flight period of the
UAVs. At any time, t ∈ T, fk is located at posk(t) = (xk(t), yk(t), h), and its remaining
energy is denoted by Ek(t). The coverage radius of UAVs when hovering at an altitude
h with a transmission range R is r =

√
R2 − h2. In this paper, we adopt a one-to-one

transmission mode for data collection, where the UAVs can collect data from SNs within
the coverage area with a radius r and deliver the data to the BS after completing the data
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collection task. The other constraints, such as UAV acceleration or turning angle, are out of
consideration here.

Sensor UAV MUV BSBattery Replace

Figure 1. System model.

An energy-free MUV is used to replace the batteries of UAVs such that the UAVs
have sufficient energy to complete their data collection tasks. The MUV only needs to
replace the battery for fk when the remaining energy Ek(t) is not higher than the energy
threshold E0. The MUV starts from BS and travels simultaneously with F along a fixed path
L. The MUV has a maximum speed vmax during the travel process and finally returns to the
BS. When a UAV lands on the stationary MUV, the MUV replaces the UAV’s battery with a
fully charged battery, which takes a fixed amount of time. After the battery replacement,
the remaining energy Ek(t) of fk is set to Emax. At a particular time, the MUV can replace
the battery of only one UAV.

To ensure that a feasible solution exists for the research problem, we assume the
following conditions: (1) A UAV with an initial energy level can collect data from at least
one area and return to the BS, regardless of where the area is located in the monitored
region. (2) The remaining energy of a UAV can support it to fly to the battery replacement
point on L and wait for the arrival of the MUV to replace its battery. (3) Any two data
collection areas are disjoint from each other. (4) The MUV carries a sufficient number of
batteries when it departs from the BS.

3.2. Data Collection Model

In order to collect data from the SNs, the UAVs need to hover over the SNs for a period
of time. We use v(si) to represent a circular data collection area with a radius of up to
r, whose center is si. Let |v(si)| indicate the number of SNs in area v(si). We consider
the data transmission between F and S is the line-of-sight communication links (LoS).
In one-to-one transmission mode, when fk hovers directly above si, si is represented as the
hover point ci

k and takes ti
c,k time to collect data from all of the SNs in v(si), one by one, in

sequence. During this period, the si packages its sensing information into a packet with a
time stamp Ti and length Li and then transmits the marked packet to fk. Without losing
generality, we assume that F takes off at T0 = 0. The channel power gain of the LoS link
from si to fk can be modeled as g = βh−2, in which β represents the channel gain of the
reference distance. When si uploads data at a constant power Pi, its data upload rate on
LoS link can be expressed as

Ri = B log2

(
1 +

g · Pi
σ2

)
= B log2

(
1 +

β

h2σ2 Pi

)
, (1)

where B represents the system bandwidth, and σ2 represents the noise power of the UAV
receiver. Each sensor si obtains the sensing data of the Vi unit to be collected. In order
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to ensure that si ∈ v(si) within ti
c,k successfully upload all the data to fk, the following

inequality needs to be satisfied.

ti
c,kRi >

|v(si)|

∑
i=1

Vi. (2)

Compared with the data uploading time of SNs and the flight time of UAVs, it is
assumed that the sampling time and communication cost of each sensor can be ignored.

3.3. Power Consumption Model

When the UAV performs data collection tasks, both flight and hover operation need
to consume energy, and the energy consumption of the UAV mainly consists of these two
parts. This paper uses the propulsive power consumption model of the rotary-wing UAV
proposed in [10]. Therefore, the power consumption of a UAV flying at a speed of v can be
described as

Pf = P0

(
1 +

3v2

U2
tip

)
+ P1

(√
1 +

v4

4v4
0
− v2

2v2
0

) 1
2

+
d0ρsv3 A

2
, (3)

where P0 and P1 are two physical constants associated with the UAV and flight environment,
Utip represents the tip velocity of the rotor blade, v0 represents the average rotor-induced
velocity during hovering, d0 represents the body drag ratio, s represents the rotor stiffness,
ρ represents the air density, and A represents the rotor disk area.

Since v = 0 when the UAV is hovering, we bring v = 0 into Equation (3) and the power
consumption of UAV can be expressed as

Ph = P0 + P1. (4)

Let τ denote the flight period of fk from the completion of this battery replacement to
the next battery replacement, and let η denote the set of SNs where fk collects data in (0, t),
where t ∈ τ. We define the binary variable Xi(t) ∈ {0, 1} for arbitrary si ∈ S, Xi(t) = 1,
which indicates that si transmits data to fk at the time instant t, and Xi(t) = 0 indicates that
si does not transmit data to fk at the time instant t. According to the energy change process
of fk, the residual energy of fk at any time t ∈ τ can be expressed as

Ek(t) = Emax −
∫ t

0

(
Xi(t) · Ph + Pf

)
dt > 0, si ∈ η. (5)

Let Emax represent the maximum battery capacity of the UAV. When the current
residual energy Ek(t) of fk is not higher than the energy threshold E0, the MUV shall
replace the battery of fk. The UAV battery will be restored to a full charge when it is
accessed by the MUV. Therefore, the current residual energy of the fk ∈ F must meet
Ek(t) 6 Emax.

3.4. AoI Model

The freshness of the data collected from the SN is measured by its AoI. Let ∆k
i (t)

represent the AoI of the data collected by fk from si at a time t. According to the definition
of AoI, it can be described as

∆k
i (t) =

(
t−Uk

i

)+
, (6)

where 1 6 k 6 m, (a)+ = max{0, a}. Uk
i is the timestamp when fk collects data from si.

In fact, when t < Uk
i , si is not yet served at time t, we define ∆k

i (t) = 0.
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Let Uk
T denote the observation time for fk to transmit the collected data to BS. When fk

returns to BS, the average AoI of all its collected data can be defined as

∆k =
1

N(k)

N(k)

∑
i=1

∆k
i

(
t = Uk

T

)
, (7)

where 1 6 N(k) 6 n denotes the number of SN served by fk. The average AoI of the whole
network can be defined as

∆ =
1
n

m

∑
k=1

N(k)

∑
i=1

∆k
i

(
t = Uk

T

)
. (8)

3.5. Problem Definition

Before giving the formal definition of our problem, we introduce a series of notations:
We first use Uk to represent the flight trajectory of fk. During the phase in which fk collects
data from SNs, Ck represents the set of hover points collected by fk in Uk; TC,k represents
the set of hover times corresponding to the hover points of fk in Ck. Each hover point
ci

k ∈ Ck has a corresponding hover time ti
c,k ∈ TC,k. During the phase in which the MUV

replaces the battery for fk, Bk represents the set of battery replacement points of fk in
Uk; TP,k represents the set of waiting times in Bk for fk to wait for the MUV to arrive at
the corresponding battery replacement point, where P represents waiting for the arrival
of the MUV. Each battery replacement point bl

k ∈ Bk has a corresponding waiting time
tl

p,k ∈ TP,k and a battery replacement time tB, where l represents the battery replacement
point on L, and tB is a fixed value. Then, the flight plan of the UAV fk is denoted as
Ψk(Uk, Ck, TC,k, Bk, TP,k).

We adopt Ψ(Ψ1, Ψ2, . . . , Ψm) to denote the flight plans of F, and Φ to denote the travel
plan of the MUV on fixed path L. Therefore, (Ψ, Φ) is a feasible plan for F and the MUV to
collect sensed data from all SNs and transmit this to the BS.

In this paper, UAVs are used as mobile data collectors to collect perception data from
SNs, while an MUV is used to recharge the UAVs. We try to minimize the impact of onboard
energy restrictions on UAV-assisted data collection by giving the charging station mobility
to flexibly compensate for the battery capacity of UAVs. Our objective is to find the optimal
flight plans for F and the travel plan of the MUV (Ψ, Φ) cooperative such that the average
AoI ∆ of all of the collected data is minimized.

We refer to the problem as the multi-UAVs and single-MUV cooperative trajectory
planning (MUSM-CTP) problem. Let r(si) denote the radius of v(si). The binary variable
ai,j,k is defined as below.

ai,j,k =

{
1, if fk visits v(sj) after v(si),
0, otherwise.

(9)

We can obtain the following mathematical formulation of the MUSM-CTP problem

Minimize ∆ =
1
n

m

∑
k=1

N(k)

∑
i=1

∆k
i

(
t = Uk

T

)
(10)

s.t.
m

∑
k=1

n

∑
j=1

a0,j,k = m (11)

m

∑
k=1

n

∑
i=1

ai,0,k = m (12)
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1 6
m

∑
k=1

n

∑
i=1

ai,j,k 6 m 1 6 j 6 n (13)

0 6 r(si) 6 r 1 6 i 6 n (14)

0 < Ek(t) = Emax −
∫ t

0

(
Xi(t) · Ph + Pf

)
dt 6 Emax t ∈ T (15)

v(si) ∩v(sj) = ∅ 1 6 i 6 n, 1 6 j 6 n (16)

1 6 N(k) 6 n−m + 1 (17)

Xi(t) ∈ {0, 1} 1 6 i 6 n, t ∈ T (18)

Constraints (11) and (12) indicate that each UAV takes off from the BS to reach the
data collection area and finally returns to the BS. Constraint (13) indicates that each cluster
should be visited by at least one UAV and at most m UAVs. Constraint (14) indicates
that the data collection area radius cannot exceed the coverage area radius r of the UAV.
Constraint (15) indicates that the energy of all UAVs is always greater than 0 and less
than or equal to Emax. Constraint (16) indicates that any two data collection areas are
disjoint from each other. Constraint (17) indicates that each UAV collects data from at least
one cluster.

Theorem 1. The MUSM-CTP Problem is NP-hard.

Proof. We consider a special case of the MUSM-CTP problem where we set Vi = 0 for each
SN si ∈ S, m = 1, Emax = +∞, and h = 0. Then, the MUSM-CTP problem can be reduced to
the well-known traveling salesman problem (TSP), where the UAVs only need to visit all
SNs located in the detection area. Since the TSP problem is proved to be NP-hard, and it is
a special case of the MUSM-CTP problem, the MUSM-CTP problem is NP-hard.

4. Proposed Solution

By the definition of MUSM-CTP, we propose an algorithm named the multi-UAVs
and single-MUV cooperative trajectory planning algorithm (MUSM-CTPA) to realize coop-
erative trajectory planning with three phases. In the first phase, we propose a clustering
algorithm based on affinity propagation, the minimum coverage algorithm based on affinity
propagation (MCA-AP), to divide the SNs into clusters for finding the hovering point set C
and the corresponding time set TC of all UAVs according to the transmission range of the
UAV and the location of SNs in the WSN.

Based on the hovering points obtained in the first phase, we will plan the flight
trajectories of the UAVs and replace their batteries. In order to efficiently collect data,
the separation of UAVs’ trajectory planning from UAVs’ energy supply is necessary since
that UAVs’ trajectories are primary for data collection, which is essential for addressing the
problem. Furthermore, the MUV travels along the fixed path L and can perform battery
replacements for UAVs at any point on path L. The candidate battery replacement points
are determined based on the energy consumption of UAVs during data collection along
the planned trajectories. Then we realize the trajectory planning and energy supply in the
following two phases, respectively.

In the second phase, according to the hovering points set C obtained in the first phase,
we propose the multi-UAVs trajectory planning algorithm based on the genetic algorithm
(MTPA-GA) to design the flight trajectory of multiple UAVs cooperatively traversing all of
the data collection areas, which is the positions and order of the hovering points Ck visited
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by each UAV fk. Note that each hover point ci
k ∈ Ck of fk is selected from C. The algorithm

obtains the flight trajectory Uk and the corresponding flight time Tk of each UAV fk.
In the third phase, the MUV will replace batteries at certain locations on the predefined

and fixed path L for all UAVs whose energy is not higher than E0 during data collection.
According to the flight trajectory Uk of each UAV fk obtained in the second phase, we
calculate the battery replacement point set Bk of each UAV and design the scheduling
strategy of all UAVs served by MUV. Then, the corresponding waiting time tl

p,k ∈ TP,k of

each UAV fk waiting for an MUV at its battery replacement point bl
k ∈ Bk is obtained. Finally,

the flight trajectories of all UAVs, the travel plan of an MUV, and the time consumption of
each UAV to complete the data collection task are obtained, and then the average AoI ∆ of
all the collected data is obtained. The implementation of the above three phases is detailed
in the following three sections.

4.1. Algorithm for Minimum Coverage Based on Affinity Propagation

In this subsection, we propose the minimum coverage algorithm based on affinity
propagation (MCA-AP) to divide the SNs into clusters to compute the hovering positions
and the corresponding hovering time for all UAVs to collect data from all SNs. The SNs
randomly deployed in the monitoring area need to be visited by at least one UAV with
a limited transmission range for data collection. The MCA-AP aims to divide all SNs in
the monitoring area into clusters according to the transmission range of fk, such that the
number of divided clusters is as small as possible and the distance between SNs within
each cluster is as close as possible. This algorithm identifies a cluster center for the UAV to
hover in each cluster, and the UAV hovers above the cluster center to sequentially collect
the data of the SNs in this cluster. We apply this algorithm to optimize the number of
clusters and obtain the hover point and the corresponding hover time of each cluster.

Before describing the algorithm, we introduce some parameters used in this algorithm.
LetN represent the number of clusters. The binary variable ρi,j(i, j = 1, 2, . . . , n) represents
whether sensor si chooses sensor sj as its clustering center. When ρi,j = 1, sensor si chooses
sensor sj as its clustering center. The variable rt(i, j) represents the ability of sj to act as
the cluster center of si in the t-th iteration. The variable at(i, j) represents the ability of si
to select sj as its cluster center in the t-th iteration. The variable sim(i, j) represents the
similarity information between si and sj.

The MCA-AP consists of the following five steps:

• In the first step, the sample data set S = {s1, s2, . . . , sn} is input. In order to satisfy
constraint (14), the coverage radius r of the UAV is input. The counter num = 0
is initialized, and the maximum iteration number Nmax is set to an arbitrarily large
positive integer to obtain the best experimental results possible, as shown in Line 1 of
Algorithm 1.

• In the second step, based on the sample data set input in the first step, the Euclidean
distance d between each sensor is calculated, e.g., d(i, j). Let −d(i, j) initialize the sim-
ilarity information sim(i, j) between si and sj in the similarity matrix Sim. The larger
the value of sim(i, j), the closer the distance between si and sj, and the stronger the
ability of sj to act as the cluster center of si, as shown in Line 2–Line 7 of Algorithm 1.
Both matrix R and matrix A are initialized as zero matrices isomorphic to matrix Sim,
where matrix R consists of rt+1(i, j), and matrix A consists of at+1(i, j), as shown in
Line 8 of Algorithm 1.

• In the third step, each iteration updates matrix R and matrix A according to (19)
and (21), respectively. In order to avoid oscillations, the attenuation coefficient λ is
introduced in the update. The updated value of this iteration is set to λ times the
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updated value of the last iteration, plus 1− λ times the updated value of the current
iteration, according to (20) and (22), respectively, as shown in Line 11 of Algorithm 1.

rt+1(i, j) =
16i,j,k6n


sim(i, j)−max

j 6=k
{at(i, k) + rt(i, k)},

sim(i, j)−max
j 6=k
{sim(i, k)},

i 6= j,
i = j.

(19)

rt+1(i, j) =
16i,j6n

λ · rt(i, j) + (1− λ)rt+1(i, j). (20)

at+1(i, j) =
16i,j,k6n


min

{
0, rt+1(j, j) + ∑

k 6=i,j
max{rt+1(k, j), 0}

}
,

∑
j 6=k

max{rt+1(k, j), 0},
i 6= j,
i = j.

(21)

at+1(i, j) =
16i,j6n

λ · at(i, j) + (1− λ)at+1(i, j). (22)

• In the fourth step, matrix R and matrix A are used to determine whether there is any
change in the decision information of the t-th iteration. If there is any change, it will
return to the third step to update rt+1(i, j) and at+1(i, j), as shown in Line 10–Line 16
of Algorithm 1. The algorithm ends if the decision information remains unchanged
after several iterations or the algorithm reaches the Nmax. The clustering results and
the number of clusters N are output, and the association relationship ρ between the
cluster center and other SNs within the cluster is established in each cluster. The radius
r′ of each cluster is calculated based on the current clustering results. When r′ > r,
the SNs in the cluster are extracted. Finally, all extracted SNs that do not meet the
requirements are re-clustered, which is to return to the second step, as shown in Line
17–Line 23 of Algorithm 1.

• Finally, the cluster center of N clusters is the data collection hover point set C of UAV
F. According to the data upload rate Ri, the hovering time set TC =

{
t1
c , t2

c , . . . , tNc
}

corresponding to the hovering point set C = {c1, c2, . . . , cN } is obtained, as shown
in Line 24–Line 26 of Algorithm 1. The pseudo-code of the MCA-AP is given in
Algorithm 1.

4.2. Algorithm for Multi-UAVs Trajectory Planning Based on Genetic Algorithm

In this subsection, we propose the multi-UAVs trajectory planning algorithm based on
the genetic algorithm (MTPA-GA) to compute the flight trajectory Uk and the corresponding
flight time Tk of each UAV fk. Based on the hover point set C and the corresponding hover
time set TC obtained in the previous section, all the UAVs start from the BS and return to
the BS after traversing all hover points. During this process, each hover point can only
be visited once. The MTPA-GA is designed to optimize the flight trajectories of multiple
UAVs, such that the total mission time T = max{Tk| fk ∈ F} of the last UAV to complete
the data collection task is as short as possible. The total mission time Tk of fk is defined as
in (23) without considering the battery replacement of fk and waiting for the MUV, where
L(Uk) is the length of the flight trajectory Uk.

Tk =
L(Uk)

v
+ ∑

ti
c,k∈TC,k

ti
c,k. (23)
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Algorithm 1: Minimum Coverage Algorithm based on Affinity Propagation
(MCA-AP)

Input: the set of n sensors: S = {s1, s2, . . . , sn},
the coverage radius of UAVs: r,
the data update rate: Ri

Output: the hovering point set C = {c1, c2, . . . , cN },
the hovering time set TC =

{
t1
c , t2

c , . . . , tNc
}

1 Set num=0 and Nmax as a sufficiently large integer;
2 for i from 0 to n do
3 for k from 0 to n do

4 di,j =
√
(xi − xj)2 − (yi − yj)2;

5 sim(i, j) = −di,j;
6 end for
7 end for
8 Set matrix R and matrix A as zero matrices isomorphic to matrix Sim;
9 Calculate Eold = R + A;

10 while Not convergent and num < Nmax do
11 Calculate messages rt+1(i, j) and at+1(i, j) for each pair of SNs si and sj according to (19), (20), (21)

and (22), respectively;
12 num = num + 1 and calculate Enew = R + A;
13 if Enew 6= Eold then
14 Eold = Enew and return to step 10;
15 end if
16 end while
17 for i from 0 to N do
18 Calculate the radius ri of each cluster and compare with the given radius r;
19 if ri > r then
20 Store the si in the cluster into the array point[];
21 end if
22 end for
23 Return to step 2 and update n to len(point);
24 for i from 0 to N do
25 Calculate hover times set TC corresponding to hover points set C according to ti

c =
Vi ·|v(i)|

Ri
;

26 end for

We solve the cooperative trajectory planning problem of multiple UAVs based on
the genetic algorithm(GA). By coordinating the number of hover points visited by each
UAV, the hover points visited by each UAV and their order are obtained. Designing the
MTPA-GA requires defining the following elements: initial population, fitness function,
selection, crossover and mutation operations, and the termination criterion.

• Initial population: Each cluster obtained in the clustering phase by the MCA-AP is
made up of several SNs. It is known that N is the number of clusters obtained. Each
individual X in the initial population is made up of the cluster heads of the same
N clusters but in a different order within each individual X. Since multiple UAVs
cooperate to perform the data collection task, which is different from the case of a
single UAV, each individual needs to maintain two gene segments: the trajectory
segment and the break point segment. Therefore, according to the number m of UAVs,
we set m − 1 breakpoints in each individual to obtain the trajectory of each UAV,
as shown in Line 1 of Algorithm 2.

• Fitness function: In particular, a large fitness value implies that an individual has a
high probability of being chosen to form part of the next generation. We consider that
an individual X following the shorter path has better fitness and that it has a greater
chance of being selected in the next generation, as shown in Line 4 of Algorithm 2.
The fitness function F(X) is defined as in (24):

F(X) =
1
Z

, (24)
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where X represents individual, and Z is the weighted sum of the total flight distance
and flight distances balance of all UAVs when individual X is considered. Z is defined
as in (25):

Z = Dw ·
m

∑
k=1

Dk + Bw · B, (25)

where Dw and Bw are positive constants. Dk represents the flight distance of UAV fk.
B represents the balance of distances for all UAVs. The Dk and B are defined as in (26)
and (27), respectively:

Dk = ∑
ci ,cj∈C

dist(πk(ci), πk(cj)), (26)

B =
Dmax − Dmin

Dmax
, (27)

where dist(a, b) represents the distance between a and b. πk(ci) is a mapping function
and means that ci is the hover point cj

k visited by fk. Dmax = max{Dk| fk ∈ F} is the
longest flight distance of all UAVs in the individual X, and Dmin = min{Dk| fk ∈ F} is
the shortest flight distance of all UAVs in the individual X.

• Selection strategy: We use tournament selection as the selection strategy as it can be
implemented efficiently. It also allows for modification of the number of individuals
taking part in the selection. We will choose an appropriate size of tournament be-
cause, if it is larger, weak individuals will have fewer chances to be selected as they
have to compete with stronger candidates, as shown in Line 5 of Algorithm 2.

• Crossover operation: For the crossover operation, we use the order crossover method.
It is easy to implement and requires no overhead operations. The individuals winning
the tournament selection are used for order crossover. Note that crossover is performed
independently in each individual, as shown in Line 6 of Algorithm 2.

• Mutation operation: For the mutation operation, we use the swapping mutation
method. Indeed, according to the mutation probability, an individual undergoes a
mutation by swapping two randomly chosen SNs, as shown in Line 7 of Algorithm 2.

Finally, when the maximum number of iterations Nmax is reached, the proposed MTPA-
GA terminates, as shown in Line 3–Line 9 of Algorithm 2. We select the individual with
the largest fitness function value from the current population, which contains the flight
trajectories U of m UAVs that we have obtained. The flight trajectory Uk of each UAV fk is
obtained by sequentially assigning m trajectories to the corresponding UAV according to
the m− 1 breakpoints in the chosen individual. Then, the flight trajectories U of m UAVs is
obtained by the MTPA-GA, and the total mission time T = max{Tk| fk ∈ F} of the last UAV
to complete the data collection task is obtained, as shown in Line 10–Line 13 of Algorithm 2.
The pseudo-code of the MTPA-GA is given in Algorithm 2.

4.3. Algorithm for Multi-UAVs and Single-MUV Cooperative Trajectory Planning

In this subsection, we propose the multi-UAVs and single-MUV cooperative trajectory
planning algorithm (MUSM-CTPA). Based on the hovering points and the corresponding
hovering times obtained in the first phase and the flight trajectory of each UAV obtained in
the second phase, the battery replacement point set Bk of each UAV fk is calculated, and
the scheduling strategy for the MUV to replace the battery of all UAVs in the process of all
UAVs performing the data collection task is designed. Then, the waiting time set TP,k of
each UAV fk waiting for the MUV is calculated. The MUSM-CTPA aims to optimize the
travel plan of the MUV and minimize the ∆ of all collected data on the premise that the
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total mission time Tk of the last UAV returning to the BS is as short as possible. In this case,
the total mission time Tk of the fk is defined as in (28).

Tk =
L(Uk)

v
+ ∑

ti
c,k∈TC,k

ti
c,k + ∑

bl
k∈Bk

tB + ∑
tl

p,k∈TP,k

tl
p,k. (28)

Algorithm 2: Multi-UAVs Trajectory Planning Algorithm based on Genetic Al-
gorithm (MTPA-GA)

Input: the set of hovering points: C,
the speed of the UAVs: v,
the number of UAVs: m

Output: the flight trajectories of m UAVs: U = {U1, U2, . . . , Um},
the longest mission time: T

1 Set counter num=0, iteration number Nmax as a sufficiently large integer and the
longest mission time T = 0;

2 Create the initial population and set m− 1 breakpoints;
3 while num < Nmax do
4 Evaluate the fitness function using (24);
5 Select parents through the tournament strategy and set the size to an

appropriate value;
6 The individuals who win the tournament selection independently perform

order crossover;
7 According to mutation probability, an individual mutates by exchanging two

randomly selected genes;
8 Generate a new population by replacing old individuals with new ones,

and set num = num + 1;
9 end while

10 Obtain the final population and the fitness function value of each individual with
N cluster heads;

11 Choose the individual with the maximum fitness function value as the optimal
flight trajectories U of m UAVs;

12 Obtain the flight trajectory Uk consisting of the hovering point Ck of each UAV fk
by sequentially assigning m trajectories to the corresponding UAV according to
the m− 1 breakpoints in chosen individual;

13 Obtain T = max{Tk| fk ∈ F}, where Tk is obtained according to (23);
14 Find the flight trajectories U of F and T;

The MUSM-CTPA consists of the following five steps:

• In the first step, the WSN is divided intoN clusters according to Algorithm 1, and C =
{c1, c2, . . . , cN } represents the hover points with the corresponding hover times TC ={

t1
c , t2

c , . . . , tNc
}

for the N cluster, as shown in Line 1 of Algorithm 3.
• In the second step, the flight trajectory Uk of each UAV fk is calculated according to

Algorithm 2 based on the hovering point set C obtained in the first step, as shown in
Line 2 of Algorithm 3.

• In the third step, based on the UAVs’ flight trajectories obtained in the second step,
we firstly calculate the current residual energy Ek of UAV fk from hovering points
ci

k to cj
k by (29). If Ek is greater than the energy threshold E0, the fk has the ability to

provide services for the next cluster according to the trajectory Uk, as shown in Line
6–Line 8 of Algorithm 3. Otherwise, the UAV arrives at the nearest point (xl , yl) on
L according to its current position and takes it as the battery replacement point bl

k to
wait for the arrival of the MUV, and its corresponding waiting time is tl

p,k, as shown in



Drones 2023, 7, 408 14 of 26

Line 9–Line 13 of Algorithm 3. Eventually, the battery replacement point set Bk in the
flight trajectory of the UAV fk is obtained.

Ek = Ek −
di,j

v
· Pf − ti

c,k · Ph. (29)

• In the fourth step, for each battery replacement point bl
k ∈ Bk, the average AoI ∆l

k of
the data collected by fk at the current location is calculated, as shown in Line 11 of
Algorithm 3. The value of ∆l

k is an important criterion to decide the MUV service
scheduling strategy.

• In the fifth step, we design the MUV service scheduling strategy based on the greedy
idea. During the process of the MUV traveling on the fixed path L, it may need
to replace the batteries of multiple UAVs at a certain time. In this case, the MUV
preferentially reaches the battery replacement point with the largest ∆l

k and replaces
the battery for the UAV at that point, as shown in Line 15 of Algorithm 3. This
idea enables the UAV with the largest average AoI of the current collected data to
remove the waiting time for the MUV to replace the battery as soon as possible, thus
minimizing the ∆ of the WSN.

Therefore, we can find the flight plans of F and the travel plan of the MUV (Ψ, Φ).
The pseudo-code of the MUSM-CTPA is given in Algorithm 3.

Figure 2 shows the flowchart for the implementation of the MUSM-CTPA algorithm.

Start

Initial parameters

Initialize the similarity matrix
Sim, matrix R and matrix A

Calculate the radius ri of each cluster
and compare with the given radius r

Update the matrix R and matrix A

Not convergent 
and num < Nmax

The MUV designs service scheduling
strategy based on greedy ideas.

Obtain the hovering point set C, and
calculate the hovering time set TC
corresponding to C using the data
upload rate Ri

Re-cluster the SNs that do not meet
the requirements

Obtain the initial clustering results
and the number of clusters N

Set breakpoints in each individual to obtain the
trajectory of each UAV

Calculate the fitness of individuals using the Eq. (24)
and compare, determining the next generation

Ek < E0

Generate the initial population randomly, each
individual X is made up of the cluster heads of
the same N clusters, but in a different order

num < Nmax

Obtain the final clustering results and
the number of clusters N

Obtain the final population and choose the individual
with the maximum fitness function

Obtain the flight trajectories U of F and T = max{Tk|fk
∈ F}, where Tk is obtained using the Eq. (23)

Generate a new population by replacing old individuals
with new ones

Perform the crossover operation using order crossover
method

Perform the selection strategy using tournament
selection

Perform the mutation operation using swapping
mutation method

Obtain the waiting time 𝑡!,#$

corresponding to the battery
replacement point 𝑏#$

Calculate the nearest point (xl , yl ) on
L according to its current position and
takes it as the battery replacement
point 𝑏#$

Based on Uk, calculate the residual
energy Ek of UAV fk from hover
point 𝑐#% to 𝑐#

& using the Eq. (29)

Obtain the flight plans of F and travel
plan of the MUV (Ψ, Φ), T =
max{Tk|fk ∈ F} and %∆

End

Obtain the total mission time Tk of
the fk using the Eq. (28)

yes
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no
no
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The fk provides service for
the next cluster according
to the trajectory Uk

Figure 2. The flowchart of the MUSM-CTPA algorithm.
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Algorithm 3: Multi-UAVs and Single-MUV Cooperative Trajectory Planning
Algorithm (MUSM-CTPA)

Input: the set of hovering points: C,
the flight trajectories of m UAVs: U,
the hovering time set: TC,
the speed of the UAVs: v,
the propulsion power of the UAV: Pf ,
the hovering power of the UAV: Ph

Output: the flight plans of F and the travel plan of the MUV: (Ψ, Φ),
the longest mission time: T,
the average AoI of the WSN: ∆

1 C = {c1, c2, . . . , cN } and the corresponding time TC =
{

t1
c , t2

c , . . . , tNc
}

are
obtained by executing Algorithm 1;

2 The flight trajectory Uk of each UAV fk is obtained by executing Algorithm 2;
3 for k from 0 to m do
4 for ci

k ∈ Ck do
5 The residual energy Ek of UAV fk from hover points ci

k to cj
k is calculated by

(29);
6 if Ek > E0 then
7 The UAV fk serves the next cluster according to the trajectory Uk;
8 end if
9 else

10 The battery replacement point bl
k(xl , yl) on L is calculated;

11 The average AoI ∆l
k of the collected data flown by the UAV fk to the

current position is calculated;
12 Wait for the arrival of the MUV and set the corresponding waiting time

as tl
p,k;

13 end if
14 end for
15 The MUV is based on the greedy idea of preferentially reaching the current

battery replacement point with the highest average AoI;
16 end for
17 Obtain T = max{Tk| fk ∈ F}, where Tk is obtained according to (28);
18 Obtain the travel plan Φ of MUV;
19 Obtain the average AoI ∆ of the WSN;
20 Find the flight plans of F and travel plan of the MUV (Ψ, Φ), T and ∆;

4.4. Computational Complexity

The computational complexity of the proposed MUSM-CTPA algorithm mainly de-
pends on the complexity of Algorithms 1 and 2. Algorithm 1 is based on the AP clustering
method to determine the hover points. The computational complexity mainly involves
similarity computation and message passing. In the similarity computation stage, the simi-
larity matrix between samples needs to be calculated, which requires a computational cost
of O(N2

1 ), where N1 is the number of SNs. In the message passing stage, T1 iterations are
performed. Therefore, the computational complexity is O(N2

1 ∗ T1). Algorithm 2 is based
on the GA method to design cooperative flight trajectories for multiple UAVs. The compu-
tational complexity depends mainly on the population size, the chromosome length, and
the number of iterations. During the initialization stage, generating the initial population
typically has a computational complexity of O(N2 ∗ L2), where N2 is the population size,
and L2 is the chromosome length. Updating the population involves replacing individuals
in the old population, with a computational complexity of O(T2), where T2 is the number
of iterations. Therefore, the computational complexity is O(T2 ∗ N2 ∗ L2). In Algorithm 3,
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the scheduling strategy for the MUV is designed based on the greedy idea. The MUV needs
to select battery replacement points one by one, starting with the one that has the highest
average AoI at the current time, until all of the battery replacement points have been
served. This process requires O(N2

3 ) computational complexity, where N3 is the number of
battery replacement points. To this end, the total computational complexity of the proposed
MUSM-CTPA algorithm is approximately O(N2

1 ∗ T1 + T2 ∗ N2 ∗ L2 + N2
3 ).

5. Simulation Experiments
5.1. Simulation Settings

In this section, we present simulation results to evaluate the performance of the
proposed MUSM-CTPA algorithm. The simulation experiments are conducted in Python.
In the experiments, we consider the system model shown in Figure 1. We assume that the
SNs are deployed in a 1000 m × 1000 m detection area, the BS is located at the origin (0, 0),
and UAVs and the MUV depart from BS at time instant t = 0. Unless otherwise specified,
the major simulation parameters are presented in Table 2.

Table 2. Simulation Parameters.

Notation Physical Meaning Values

h The UAVs’ flight height 50 m
v The UAVs’ flight velocity 20 m/s

vmax The MUV’s velocity 10 m/s
r The UAVs’ coverage radius 20 m
B The system bandwidth 5 MHz
β The channel gain at d0 = 1 m −60 dB
Pi The SNs’ transmission power 0.1 watt
σ2 The SNs’ noise power −110 dBm

Emax The UAVs’ maximum battery capacity 10,000 J
E0 The UAVs’ minimum energy threshold 1000 J
Vi The amount of data carried by each sensor si ∈ S [100 KB, 200 KB]
Li The data packet length 1 Mbits
tB The fixed battery replacement time 5 s
P0 Blade power 14.7517 J
P1 Induced power 41.5409 J

Utip Tip speed of the rotor blade 80 m/s
v0 The average rotor-induced velocity 5.0463 m/s
d0 The fuselage drag ratio 0.5009
ρ Air density 1.225 kg/m3

s Rotor solidity 0.1248
A Rotor disc area 0.1256 m2

We consider the following nine groups of parameter settings, and we create 100
instances to perform the simulation and obtain the average results for each parameter
setting: (1) under different algorithms with fixed n = 300, 600 and m = 3, in terms of the
flight trajectories of the UAVs; (2) n varies from 100 to 600 by the step of 100 with fixed
m = 3 under different algorithms, in terms of the average AoI and the largest mission
time; (3) with a fixed m = 1, 3, 5, 10 and n = 300, in terms of the flight trajectories of the
UAVs; (4) n varies from 100 to 600 by a step of 100 with a fixed m = 1, 3, 5, 10, respectively,
in terms of the average AoI and the largest mission time; (5) n varies from 100 to 600 by a
step of 100 with a fixed m = 1, 3, 5, 10, respectively, in terms of the travel time of the MUV;
(6) n varies from 100 to 600 by a step of 100 with a fixed m = 3, with or without an MUV,
in terms of the average AoI and the largest mission time; (7) v varies from 10 to 50 by a step
of 10 with a fixed Vmax = 5, 10, 15, m = 3 and n = 300, in terms of the average AoI and the
largest mission time; (8) E0 varies from 500 to 2500 by a step of 500 with a fixed Emax = 5000,
10,000, 15,000, m = 3 and n = 300, in terms of the largest mission time; (9) Vi varies from
100 to 500 by a step of 100 with a fixed m = 1, 3, 5, 10 and n = 300, in terms of the largest
mission time.
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For evaluation, we use the greedy-based algorithm as a benchmark and compare it
with our algorithm in the same system scenario. Both of the algorithms assume that the
given location of BS and SNs, the determined hover points at which the UAVs collect data
and the replacement points on L at which the MUV performs battery replacement for the
underpowered UAVs, can enable the UAVs to complete their missions and return to the BS.
The objective of both algorithms is to find the optimal flight plans of F and travel plan of
the MUV (Ψ, Φ) cooperative such that the average AoI ∆ of all collected data is minimized.

5.2. Simulation Results and Analysis
5.2.1. The Impact of the Parameters of the SNs

Firstly, we investigate the impact of variations in the number of SNs under different
algorithms on the flight trajectories of UAVs, we dispatch three UAVs to perform data
collection tasks and set the number of SNs to 300 and 600, respectively. Figure 3 shows
the flight trajectories of UAVs utilizing two algorithms with varying numbers of SNs
when we set m = 3. It can be seen that the MUSM-CTPA algorithm results in a shorter
total flight distance than the greedy-based algorithm when the number of SNs is 300
and 600, respectively. This is attributed to the GA-based visit sequence optimization
algorithm employed by MUSM-CTPA, which enables it to find suboptimal visit sequences
capable of escaping local optima and converging to the global optimal solution in a timely
manner. In contrast, the greedy-based visit sequence algorithm tends to become trapped in
local optima.

(a) Trajectory of the UAVs based on the Greedy Algorithm when n=300 (b) Trajectory of the UAVs based on the MUSM-CTPA Algorithm when n=300

(c) Trajectory of the UAVs based on the Greedy Algorithm when n=600 (d) Trajectory of the UAVs based on the MUSM-CTPA Algorithm when n=600

Figure 3. Illustrate the flight trajectories of three UAVs under different algorithms when n = 300 and
n = 600, respectively.

Figure 4a,b show the impact of varying numbers of SNs on the average AoI and
the largest mission time under different algorithms when we set m = 3, respectively. It
can be seen that both the average AoI and the largest mission time gradually increase
in both algorithms as the number of SNs increases. This is because, with an increase in
the number of SNs, the number of data collection hover points visited by UAV increases,
the number of SNs requiring service at each data collection hover point also increases,
and the corresponding hovering time further increases. As a result, the average AoI of all
collected data after the UAVs return to the BS increases, while the total mission time of the
last UAV returning to the BS becomes longer.
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It can also be further seen from Figure 4a,b that regardless of the number of SNs, both
the average AoI and the largest mission time based on the MUSM-CTPA algorithm are
smaller than those based on the greedy algorithm. This is because the UAV flight trajectory
obtained by MUSM-CTPA is more reasonable and closer to the global optimal solution.
Therefore, the number of battery replacement times for the UAVs by the MUV will be
correspondingly reduced, and the service scheduling of the MUV will be more reasonable,
which decreases the average AoI of all the collected data after all UAVs return to the BS
and the total mission time after the last UAV returns to the BS.

Figure 5 shows the largest mission time when the amount of data increases from
100 KB to 500 KB by 100 KB under different numbers of UAVs. It can be seen that the
largest mission time gradually increases as the amount of data increases under any number
of UAVs. However, with any fixed amount of data, the largest mission time gradually
decreases with the addition of more UAVs. This is because the corresponding hovering
time for each hovering point increases as the amount of data increases, which makes the
total mission time of the last UAV returning to the BS become longer. Nevertheless, with the
addition of more UAVs, the number of hovering points visited by each UAV decreases,
which reduces the total mission time of UAVs.

(a) The average AoI of all data collected by three UAVs after completing 
tasks under different algorithms as the number of SNs changes.

(b) The total mission time for the last UAV to complete the task under 
different algorithms as the number of SNs changes.

Figure 4. The average AoI and the largest mission time under different algorithms versus the number
of SNs.

Figure 5. The largest mission time under different numbers of UAVs versus the value of Vi.
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Figure 6 shows the ratio of MUSM-CTPA to the lower bound. It can be seen that the
ratio gradually decreases as the number of SNs increases, and the ratio is always greater
than or equal to one and less than or equal to two. This is because the MUSM-CTPA
algorithm not only plans the flight trajectories of multiple UAVs but also designs a strategy
for the MUV to replace the UAVs’ batteries to optimize the data collection process. This
result validates the effectiveness of MUSM-CTPA in achieving efficient data collection.

Figure 6. The ratio between MUSM-CTPA and the lower bound versus the number of SNs.

5.2.2. The Impact of the Parameters of the UAVs

Figure 7 shows the trajectories of the UAVs under the condition of n = 300 when
we set m = 1, m = 3, m = 5 and m = 10, respectively. It can be seen from Figure 7a,
when m = 1, one single UAV is dispatched to visit all data collection hover points for
data collection. It can also be seen from Figure 7b–d that multiple UAVs are dispatched to
perform data collection, among which m = 3 is set in Figure 7b, m = 5 in Figure 7c, and
m = 10 in Figure 7d. The trajectory of each UAV is marked with a different color. In order
to visit all the data collection hover points, the multiple UAVs are supposed to perform
data collection collaboratively. Each UAV is responsible for a part of all the data collection
hovering points; the balance of the flight distances of all the UAVs should be considered to
avoid a much larger gap at the same time. Therefore, the flight distance and mission time
of each UAV decrease as the number of UAVs increases.

Figure 8 shows the interaction between the UAVs and one MUV under the condition
of n = 300 when we set m = 1 and m = 3, respectively. We use a blue star to indicate the
battery replacement point. It can be seen that the MUV needs to replace the battery for the
UAV in both Figure 8a,b. In Figure 8a, since there is only one UAV, the MUV only needs to
follow the flight of the UAV to provide service in time. In Figure 8b, since there are three
UAVs performing tasks at the same time, the MUV needs to adopt a scheduling strategy
to decide the service order when replacing the batteries for the UAVs. It can also be seen
that there is not much difference in the total number of battery replacements in Figure 8a,b.
This is because, compared with one UAV, multiple UAVs performing tasks at the same time
may have a longer total flight distance, but the task execution time is much shorter.
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(a) The trajectory of the UAV when m=1 (b) The trajectories of the UAVs when m=3

(c) The trajectories of the UAVs when m=5 (d) The trajectories of the UAVs when m=10

Figure 7. Illustration of the trajectories of UAVs when m = 1, m = 3, m = 5, and m = 10 under the
condition of n = 300.

(a) The interaction between UAV and MUV when m=1 (b) The interaction between UAV and MUV when m=3

Figure 8. Illustration of the interaction between UAV and MUV when m = 1 and m = 3 under the
condition of n = 300.

Figure 9a,b show the average AoI and the largest mission time when the number of
SNs increases from 100 to 600 by 100 under different numbers of UAVs, respectively. It
can be seen that both the average AoI and the largest mission time gradually increase as
the number of SNs increases under any number of UAVs. This is because, as the number
of SNs increases, the number of data collection hover points visited by UAV increases.
The number of SNs required to be served at each data collection hover point also increases,
and the corresponding hovering time further increases, which will increase the average
AoI of all collected data after the UAVs return to the BS, and the total mission time of the
last UAV returning to the BS becomes longer.

It can also be further seen from Figure 9a,b that regardless of the number of SNs, both
the average AoI and the largest mission time when m = 1 are much higher than the other
three multi-UAVs cases. This is because multiple UAVs can perform data collection tasks at
the same time, which can complete data collection faster than a single UAV. At the same
time, multiple UAVs can work together to assign tasks according to the requirements of
data collection tasks, thus covering a wider area and improving the coverage and efficiency
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of data collection. Therefore, as the number of UAVs increase, both the average AoI of
all the collected data and the total mission time for the last UAV to complete the task
decrease correspondingly.

Figure 10 shows the largest mission time under Emax and E0 change when we set
n = 300 and m = 3, respectively. It can be seen that the largest mission time gradually
increases with the increase in E0 under Emax = 5000 and Emax = 5000. However, the largest
mission time remains unchanged when Emax = 15,000. This is because, with the increase
in E0, the UAVs need to replace the battery more times, which makes the largest mission
time increase. However, once the Emax reaches a certain value, the UAVs are fully capable
of collecting data without having to replace the battery.

(a) The average AoI of SNs versus the number of SNs when the 
number of UAVs is different.

(b) The largest mission time versus the number of SNs when the number 
of UAVs is different.

Figure 9. The average AoI and the largest mission time under different numbers of UAVs versus the
number of SNs.

Figure 10. The largest mission time versus different Emax and E0.

5.2.3. The Impact of the Parameters of the MUV

Figure 11 shows the travel time of the MUV returning to the BS after departing from
the BS to serve all the UAVs requiring battery replacement when the number of SNs
increases from 100 to 600 by 100 under different numbers of UAVs. It can be seen that with
any number of UAVs, the travel time of the MUV gradually increases with the increase
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in the number of SNs. However, with any number of SNs, the travel time of the MUV
gradually decreases with the increase in the number of UAVs. This is because in the case of
a given number of UAVs, as the number of SNs increases, the number of data collection
hover points visited by UAVs increases, resulting in a greater energy consumption of the
UAVs. Consequently, the frequency of battery replacement for the UAVs increases, and the
scheduling of the MUV on the fixed path L becomes more frequent. As a result, the travel
time of the MUV also increases. However, in the case of a certain number of SNs, multiple
UAVs cooperate to visit all data collection hovering points, and the energy consumption
of UAVs is reduced. Consequently, the frequency of battery replacement for the UAVs
decreases. As a result, the travel time of the MUV also decreases.

Figure 11. The travel time of the MUV under different numbers of UAVs versus the number of SNs.

Figure 12a,b show the average AoI and the largest mission time with or without an
MUV to replace the battery for the UAVs when we set m = 3, respectively. It can be seen
that both the average AoI and the largest mission time with MUV are smaller than those
without the MUV. This is because, with the assistance from the MUV, the UAVs can arrive
at the nearest point on L to the current position and wait for the MUV to arrive to replace its
battery. When there is no MUV, the UAVs need to return to the BS for battery replacement,
which greatly increases the distance and flight time of the UAVs.

Figure 13a,b show the average AoI and the largest mission time under vmax and v
change when we set n = 300 and m = 3, respectively. It can be seen that both the average
AoI and the largest mission time significantly decrease with the increase in v under any
vmax, but eventually flattens out. This is because, on the one hand, with the increase in the
UAVs’ speed v, the flight times of UAVs are shortened, which makes UAVs return to the BS
faster. On the other hand, the increase in the MUV’s speed vmax makes the MUV provide
battery replacement service for the UAV faster, which reduces the time for UAVs to wait
for the MUV.
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(a) The effect of the number of sensors on the average AoI (b) The effect of the number of sensors on the largest mission time

Figure 12. The average AoI and the largest mission time versus with or without a MUV.

(a) The effect of varying UAV speed on the average AoI (b) The effect of varying UAV speed on the largest mission time

Figure 13. The average AoI and the largest mission time versus different vmax and v.

To conclude, the above simulation results show that the proposed MUSM-CTPA algo-
rithm can find the more optimal flight plans of F and travel plan of the MUV cooperative
than the benchmark algorithm such that the average AoI of all collected data is minimized.
In addition, in the parameter setting of the MUSM-CTPA algorithm, n, m, v, vmax, Vi, Emax,
E0, and the presence of an MUV have different impacts on the average AoI. Among these
parameters, m and the presence of MUV have a greater impact, since multiple UAVs can
perform tasks synchronously compared to a single UAV, while MUV can minimize the
limitation of UAV energy. Therefore, it is necessary to consider the cooperation of multiple
UAVs and a single MUV to assist data collection in WSN.

6. Conclusions

This paper investigates the multi-UAVs and single-MUV cooperative trajectory plan-
ning (MUSM-CTP) problem, which focuses on finding the flight trajectories of m UAVs and
the travel plan of the MUV cooperative. The objective of this problem is to minimize the
largest mission time of m UAVs such that the average AoI of all collected data is minimized.
Then, we prove that the MUSM-CTP problem is NP-hard. Based on the definition of
MUSM-CTP, we propose an algorithm named the multi-UAVs and single-MUV cooperative
trajectory planning algorithm (MUSM-CTPA) to achieve cooperative trajectory planning.
First, the minimum coverage algorithm based on affinity propagation (MCA-AP) is devel-
oped to find the hovering points set C and the corresponding times set TC in a given WSN.
Based on this result, the multi-UAVs trajectory planning algorithm based on the genetic
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algorithm (MTPA-GA) is designed to find the flight trajectories of m UAVs cooperatively
visiting all the hover points, which are the positions and order of the hovering points Ck
visited by each UAV fk. Finally, the scheduling strategy of the MUV is designed to find the
optimal travel plan of the MUV. According to the massive simulations, we can verify that
the proposed algorithm has great performance. In future work, we plan to consider the
WSNs that utilize multiple UAVs and multiple MUVs for data collection and investigate
the cooperative strategies for data collection and energy charging. Our goal is to further
improve the efficiency and reliability of data collection to meet the demands of a wider
range of practical applications.
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MUV Mobile Unmanned Vehicle
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