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Abstract: In a three-dimensional (3D) disaster rescue mission environment, multi-drone mission
assignments and path planning are challenging. Aiming at this problem, a mission assignment
method based on adaptive genetic algorithms (AGA) and a path planning method using sine–cosine
particle swarm optimization (SCPSO) are proposed. First, an original 3D digital terrain model is
constructed. Second, common threat sources in disaster rescue environments are modeled, including
mountains, transmission towers, and severe weather. Third, a cost–revenue function that considers
factors such as drone performance, demand for mission points, elevation cost, and threat sources,
is formulated to assign missions to multiple drones. Fourth, an AGA is employed to realize the
multi-drone mission assignment. To enhance convergence speed and optimize performance in
finding the optimal solution, an AGA using both the roulette method and the elite retention method
is proposed. Additionally, the parameters of the AGA are adjusted according to the changes in
the fitness function. Furthermore, the improved circle algorithm is also used to preprocess the
mission sequence for AGA. Finally, based on the sine–cosine function model, a SCPSO is proposed for
planning the optimal flight path between adjacent task points. In addition, the inertia and acceleration
coefficients of linear weights are designed for SCPSO so as to enhance its performance to escape
the local minimum, explore the search space more thoroughly, and achieve the purpose of global
optimization. A multitude of simulation experiments have demonstrated the validity of our method.

Keywords: 3D disaster rescue; multi-drone; mission assignment; path planning; adaptive genetic
algorithm; sine–cosine particle swarm optimization

1. Introduction

Disaster events such as fires, floods, and landslides are characterized by randomness,
dynamics, and urgency. In most cases, these disaster events are inevitable. If urgent
measures are not taken, it will cause significant economic losses and threaten human life.
Therefore, how to reduce the losses caused by disaster events is the key issue in emer-
gency rescue [1]. With the advancement of science and technology, drones can complete
complex tasks such as three-dimensional (3D) map reconstruction [2], emergency map-
ping [3], and environmental assessment [4]. Compared with traditional disaster rescue
applications [5], multi-drone-based disaster rescue schemes can use drones to achieve
damage assessment [6], material delivery [7], etc. In the context of disaster rescue, it is
challenging for rescuers to promptly reach the affected area due to the complex terrain,
obstructions from mountains and rivers, road collapse, and other factors. At this time,
due to the characteristics of drones, their mission planning is particularly important [8,9].
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Therefore, drones have emerged as pioneers in disaster rescue missions, swiftly reaching
disaster areas, and reducing the harm caused by disasters to the public [10]. There are
many factors affecting drone disaster rescue, including the complexity of the mission itself,
environmental factors [11] (such as terrain obstacles, weather conditions, or electromag-
netic interference), and drone performance factors [12] (such as maximum load, energy
consumption, or maximum flight distance). How to allocate disaster rescue missions to
multiple drones reasonably and how to plan the flight path of drones to make them perform
disaster rescue missions optimally and safely are the focus of current research.

Over the past few decades, various methods have been developed to solve mission
assignments and path planning [13–15]. Existing mission assignment methods are divided
into two categories: traditional mathematical programming and heuristic algorithms. Tradi-
tional mathematical programming methods consider constraints and resource availability
to address optimal mission assignments, including enumeration algorithms [16] and dy-
namic programming [17]. Although these methods have the advantages of computational
efficiency and are simple to implement, they oversimplify the drone model and can only
be applied to simple mission scenarios. Heuristic algorithms iteratively optimize mission
assignment schemes through strategies based on experience or rules, including genetic
algorithm (GA) [18], evolutionary algorithm (EA) [19], tabu search (TS) algorithm [20],
simulated annealing (SA) algorithm [21], etc. Path planning methods are divided into five
categories: graph-based methods accomplish path planning by constructing a robust path
graph, such as the Voronoi diagram method [22]. Random sampling search algorithms gen-
erate a path by iteratively sampling points between the start and end points and connecting
them based on various constraints, such as the rapidly-exploring random tree (RRT) [23,24]
and probabilistic roadmap (PRM) [25]. Node-based optimal search algorithms construct a
node topology to represent the path and employ heuristic functions to facilitate efficient
path searching, such as the Dijkstra algorithm [26], the A-star (A*) algorithm [27], and the
harmony search (HS) algorithm [28]. The artificial potential field method [29,30] realizes
path planning by constructing gravitational fields and repulsive fields to simulate the inter-
action forces between objects. Additionally, the bionic evolutionary algorithms optimize
path planning solutions through the simulation of biological evolution processes, such as
the particle swarm optimization (PSO) algorithm [31,32] and the ant colony optimization
(ACO) algorithm [33,34].

Since mission planning is a NP-hard problem, it can be effectively solved using heuris-
tic algorithms. However, these algorithms have the disadvantages of slow convergence
speed and the tendency to fall into local optimums. So far, there is no complete solution
to the problem of drone mission planning. Thus, the exploration of alternative and more
efficacious remedies becomes indispensable. In [35], the GA was employed to achieve
a multi-drone cooperative reconnaissance mission. In [36], the mission planning model
was established according to the mission clustering of drones, and a mission assignment
approach using the K-means clustering method of an improved simulated annealing algo-
rithm was proposed. In [37], a hierarchical mission assignment method was developed that
decomposed the primitive problem into multiple subproblems, then used mixed integer
programming and ACO to solve these sub-problems. In [38], a hybrid algorithm based on
PSO and the metropolis criterion was designed to reduce the local optimum of PSO. In [39],
a differential evolution algorithm combined with a quantum particle swarm optimization
algorithm was introduced for path planning in a drone marine environment. In [40], a
pigeon swarm optimization considering path length, path curvature, and path risk was
also created.

Clearly, extensive simulation results have demonstrated that when dealing with
the problem of mission planning, the heuristic algorithm still suffers from the issue of
premature convergence during the evolutionary process. Although the existing research
has improved these algorithms and proposed many approaches with better performance,
there are still some shortcomings among them: first, with the combination of algorithms,
the calculation becomes more complicated. Second, global and local optimization abilities
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are two important factors to be considered in evaluating an algorithm [41], and it is difficult
to maintain an effective balance between them. Third, most studies only consider two-
dimensional environments, and the flight environment is too simple, which makes it
difficult to apply the research results to actual flight. Therefore, this paper improves the GA
and PSO and applies the improved algorithm to the mission planning of multiple drones
in complex three-dimensional disaster rescue environments.

This paper presents a mission assignment and path planning system for multiple
drones for disaster rescue applications. Additionally, it is mainly to coordinate and control
multiple drones for efficient material distribution within a 3D disaster area. First, an original
digital terrain and three common threat sources [42] for disaster rescue environments are
designed, including the mountain, transmission tower, and severe weather. Then, a cost–
revenue function considering drone performance, mission point requirements, elevation
cost, and threat source factors is proposed. When using the AGA for mission assignment,
the improved circle algorithm, adaptive crossover rate and mutation rate, and a strategy
that uses both roulette and elite retention methods are used to increase the properties
of the AGA. Finally, based on the sine–cosine function model, a SCPSO is proposed for
searching the optimal flight path between adjacent task points. The inertia and acceleration
coefficients of linear weights are designed to further maintain an effective balance of SCPSO
between global exploration and local development.

The main contributions of this paper include: (1) A modeling method for multi-
drone 3D disaster rescue is presented. The original digital terrain is defined. Three threat
sources are proposed. A new cost–revenue function is established and formulated as a
constrained, multi-objective optimization problem. (2) The AGA and SCPSO algorithms
are proposed. A strategy of using both roulette and the elite retention method is proposed,
and the capacity of AGA is improved by combining the improved circle algorithm. The
inertia and acceleration coefficients of linear weights are designed for SCPSO to increase
optimization efficiency. By integrating the mission assignment method with the path
planning algorithm, multi-drone mission allocation and path planning in a complex 3D
environment can be implemented.

In the following sections, first, the description of the multi-drone disaster rescue
problem will be presented in Section 2. Second, the digital terrain, threat sources, cost–
revenue function, AGA, and SCPSO modeling methods are introduced in Section 3. Third,
a series of experiments and simulations under complex 3D terrain are carried out and
discussed in Section 4. Finally, the conclusion is given in Section 5.

2. Problem Descriptions

The method proposed in this paper is utilized to deploy multiple drones that originate
from a base and perform disaster rescue missions at different target locations within the
disaster area. The primary aim of these missions is to efficiently distribute vital supplies to
the disaster-stricken region. Figure 1 shows a sketch of multi-drone disaster relief. Multiple
mission points are situated in different locations within the disaster area, each requiring
a specific quantity of rescue materials. Commencing from a designated starting point,
multiple drones initiate the mission, transporting the materials to each mission point in the
assigned order, and subsequently returning. The flight of the drone is affected by many
factors, such as the mountains, transmitting towers, and severe weather. The mountain
may affect the flight safety of drones. The transmitting tower may affect the communication
system of the drone. Moreover, the severe weather may change the original flight path
of the drone. In addition, flight distance and load will also affect the assignment of the
entire mission.
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Figure 1. Sketch of multi-drone disaster relief.

In the aforementioned application scenario, multiple drones traverse N mission nodes
in a specific sequence, starting from the base. Once the mission is accomplished, all drones
return to the base. Assuming that N mission points are {x1, x2, . . . , xN}, the number of
drones is M. Since the drone needs to return to the base after the mission is completed, we
need to copy the base node as an M virtual base node. This enables the decomposition
of the multi-path generation problem into one-way travel for a group of drones. This
approach ensures that the flight path from the first drone to the last drone is connected
from beginning to end, forming a single loop, as shown in Figure 2. Among them, O is the
base node, and O1, O2, and O3 are the virtual base nodes.
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Figure 2. Sketch map of the multi-path problem into a single-path problem.

If the mission of drone u includes the flight track from the mission point xi to the
mission point xj, the decision variable is defined as xu

ij = 1, otherwise xu
ij = 0. The total

flight distance of multiple drones is expressed as Equation (1). Equations (2) and (3) ensure
that each mission point is visited only once during a mission cycle. Equations (4) and (5)
specify that each drone can only take off and land at the base. Formula (6) ensures that the
total flight displacement of each drone does not exceed its maximum flight displacement
constraint. Equation (7) means that the load of each drone does not exceed its maximum
load constraint.
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distance =
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∑
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∑
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∑
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i0 = 1, ∀u (5)
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∑
i=0
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∑
j=0,j 6=i

xu
ij·sij ≤ smax, ∀u (6)

N

∑
i=0

N

∑
j=0,j 6=i

xu
ij·qi ≤ qmax, ∀u (7)

xij =

{
1, i f drone u travel f rom i to j;
0, otherwise.

i 6= j, i, j ∈ {0, 1, 2, . . . , N}, u ∈ {1, 2, . . . , M} (8)

sij =
√(

Xi − Xj
)2

+
(
Yi −Yj

)2
+
(
Zi − Zj

)2 (9)

where sij is the displacement between any pairs of target points (xi, xj); (Xi, Yi, Zi) and
(Xj, Yj, Zj) are the 3D coordinates of mission points xi and xj, respectively; smax means the
maximum displacement of drone driving; qi represents the material demand of mission
point xi; and qmax means the maximum load of the drone.

3. Environment Modeling and Optimization Method
3.1. Proposed Flowchart

For multi-drone disaster rescue, it is crucial to design the mission sequence required
by multiple drones for the whole rescue mission—that is, to plan the optimal mission
assignment. In addition, to ensure a safe and effective drone flight, it is necessary to
consider various threat sources when planning the drone’s flight path. Figure 3 shows the
main process of multi-drone disaster rescue. First, before the mission planning of drones, it
is essential to model the drone disaster relief environment. Then, a cost–revenue function
is proposed based on drone performance and rescue scenarios. Finally, the AGA is used to
realize the optimal mission assignment of multi-drones, and the SCPSO is employed for
planning the optimal flight path between adjacent target points.
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3.2. Construction of Original Digital Terrain

In the mission area, the safety constraints of the terrain should be considered while
carrying out the material allocation. The original digital terrain refers to the basic surface
appearance and terrain height in the 3D environment. Therefore, before carrying out multi-
drone mission planning in a complex 3D disaster rescue environment, the original digital
terrain must be constructed first. Without loss of generality, one of the reference models
of the original digital terrain can be computed by the method in Formula (10). Other 3D
terrains can also be obtained by satellite surveying and mapping.

z1(x, y) = sin(y + a)+b sin(x) + c cos(d
√

y2 + x2) + e sin(e
√

y2 + x2) + f cos(y) (10)

where (x, y) is the two-dimensional coordinate of the horizontal projection plane;
z1(x, y) represents the height information corresponding to the horizontal projection plane
coordinates; a, b, c, d, e, and f mean the undetermined terrain coefficients. These coefficients
control the amplitude of the ups and downs of the map and can simulate the actual ter-
rain of various complex landforms. Currently, our hypothetical disaster rescue mission
is conducted in the mountainous region of southwestern China, which is characterized
by a complex climate and an extensive seismic belt, making it prone to natural disasters
such as landslides and earthquakes. To describe the terrain of southwest China, we employ
the subjective evaluation method for continuous parameter adjustments. Ultimately, the
original terrain coefficients are set as a = 1.5 π, b = 5, c = 3, d = 5, e = 3, and f = 10, aiming to
simulate the authentic topography of the region. Figure 4 is the corresponding simulated
digital terrain.
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3.3. The Modeling Method of Threat Source

It is assumed that there are three external threat sources for drone flight in our system:
the mountains, transmission towers, and severe weather.

3.3.1. The Mountain Threat Source

The flight safety of the drone will be affected by the mountains. If the flight trajectory
of the drone is not properly controlled, it may collide with the mountains and cause a
crash. Therefore, it is important to plan the optimal scheme and path so that the drone
can safely pass through the mountain area. The expression of the mountain mathematical
model in this paper is shown in Equation (11). Additionally, a bi-Gaussian mixture model
(bi-GMM) [43] (see Equations (12) and (13)) is used as the cost function of the mountain
threat sources. This is due to its capacity to offer a smooth and continuous approximation
of their shapes, rendering it better suited for real-world terrain in contrast to the traditional
cone model that simulates mountain distribution.



Drones 2023, 7, 394 7 of 27

z2(x, y) =
n1

∑
N_m=1

hN_mexp

[
−
(

x− xO,N_m

xsl,N_m

)2
−
(

y− yO,N_m

ysl,N_m

)2
]

(11)

fm(Xi, Yi) =
1

π·xsl,N_m·ysl,N_m
·exp

[
−
(

Xi − xO,N_m

xsl,N_m

)2
−
(

Yi − yO,N_m

ysl,N_m

)2
]

(12)

Cm =
N

∑
i=1

n1

∑
N_m=1

k1· fm(Xi, Yi) (13)

where z1(x, y) means the peak elevation corresponding to point (x, y); n1 is the number
of mountain threat sources; i is the ith mission point; N_m means the N_mth mountain
threat source; hN_m is the height of the N_mth mountain threat source; (xO,N_m, yO,N_m)
represents the central coordinate of the N_mth mountain threat source; xsl,N_m and ysl,N_m
mean the slope parameters of the N_mth mountain threat source along the X-axis and
Y-axis, respectively. Greater values of xsl,N_m and ysl,N_m indicate a flatter profile for the
corresponding mountain threat source, while smaller values indicate a steeper profile. By
manipulating the parameters hN_m, xsl,N_m, and ysl,N_m, it is possible to simulate mountain
threat sources with varying heights and contours. The symbol fm(Xi, Yi) represents the
probability density function of the bi-GMM model; (Xi, Yi) is the horizontal projection
coordinate of the ith mission point; Cm is the cost function of the mountain threat source; N
is the number of mission points; and k1 is the corresponding weight coefficient.

Finally, Equation (14) merges the mountain threat source with the original digital
terrain to form a 3D environment-equivalent digital terrain, as shown in Figure 5.

z(x, y) = max[z1(x, y), z2(x, y)] (14)

where z(x, y) is the terrain height corresponding to the point (x, y); max means the function
of the maximum value.
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3.3.2. The Transmission Tower Threat Source

The electromagnetic interference emitted by the transmission tower can disrupt the
communication and navigation systems of drones [44], potentially leading to the failure of
accurate mission execution. Therefore, the position and influence range of the transmission
tower needs to be considered when the drone is flying so as to reduce the risk of flight. The
electromagnetic interference emitted by the tower can be regarded as the diffusion of a
spherical model into space. In addition, the emitted electromagnetic interference should
not have a specific limit, beyond which the risk of damage is zero. Therefore, a probability
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density model of the transmission tower threat source is proposed in this paper, as shown
in Equations (15)–(17).

ft(dt
i,N_t, Rt

N_t) =

exp
(
− dt

i,N_t
σi,N_t

)
, dt

i,N_t > Rt
N_t

∞, dt
i,N_t ≤ Rt

N_t

(15)

σi,N_t =
Rt

N_t

lg
(

Li
2

) (16)

Ct =
N

∑
i=1

n2

∑
N_t=1

k2· ftower
(
dt

i,N_t, Rt
N_t
)

(17)

where ft(dt
i,N_t, Rt

i,N_t) represents the probability density model of the signal transmission
tower threat source; N_t means the N_tth transmission tower threat source; i is the ith
mission point; dt

i,N_t is the distance from the ith mission point to the threat source center of
the N_tth transmitting tower; Rt

i,N_t is the minimum safe distance of the N_tth transmission
tower; σi,N_t means the control parameter of the probability density model of the trans-
mitting tower; Li represents the distance from the current mission point to the ith mission
point; Ct is the transmission tower threat source cost function; N is the number of mission
points; n2 is the number of transmission tower threat sources; and k2 is the corresponding
weight coefficient.

3.3.3. The Severe Weather Threat Source

Usually, when the drone is performing its mission, it may encounter local severe
weather (such as storms, heavy rain, lightning, etc.). If the drone is compelled to operate in
that environment, it may damage the motor or sensor of the drone or even crash. Therefore,
drones need to change lanes to avoid severe weather. In this paper, severe weather events
such as storms, rainstorms, and lightning are abstracted and simplified into cylindrical
threat areas. A probability density model of the source of the threat of severe weather is
shown in Equations (18) and (19).

fw(kw
N_w, dw

i,N_w, rw
N_w, Rw

N_w) =



∞, dw
i,N_w ≤ rw

N_w

kw
N_w

(Rw
N_w−rw

N_w)
2 (dw

i,N_w − Rw
N_w)

2, rw
N_w < dw

i,N_w ≤ Rw
N_w

0, dw
i,N_w > Rw

N_w

(18)

Cw =
N

∑
i=1

n3

∑
N_w=1

k3· fw
(
kw

N_w, dw
i,N_w, rw

N_w, Rw
N_w

)
(19)

where fw(kw
N_w, dw

i,N_w, rw
N_w, Rw

N_w) means the probability density model of the threat source
of severe weather; N_w is the N_wth severe weather threat source; i is the ith mission point;
symbol kw

N_w means the risk coefficient of the N_wth severe weather; dw
i,N_w represents the

distance from the ith mission point to the center of the N_wth severe weather threat source;
rw

N_w is the minimum safe distance of the N_wth severe weather threat source; Rw
N_w is the

maximum impact range of the N_wth severe weather threat source; Cw means the cost
function of the severe weather threat source; N is the number of mission points; n3 is the
number of severe weather threat sources; and k3 is the corresponding weight coefficient.

3.4. The Cost–Revenue Function

In this paper, a cost–benefit function for multi-drone mission assignments is designed.
When constructing the cost function, the influence of threat sources is considered, and the
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calculation methods are given in Equations (13), (17) and (19). The drone’s flight distance
and flight elevation are also considered. Equations (20) and (21) give their calculation
methods. Equation (22) represents the total cost function. The revenue function is expressed
as the revenue from completing a mission. The greater the demand for materials at the
mission point, the higher the revenue. Therefore, the revenue function can be expressed by
Equation (23). Finally, the total cost–revenue function is expressed as Equation (24).

Cdistance = k4·distance (20)

Chigh = k5·
M

∑
u=1

N

∑
i=0

N

∑
j=0,j 6=i

xu
ij·mu

ij·
∣∣hij
∣∣ (21)

Ctotal = Cm + Ct + Cw + Cdistance + Chigh (22)

Rtotal = kr·qi (23)

T = ω1Ctotal −ω2Rtotal (24)

where Cdistance is the distance cost; k4 is the weight; Chigh is the elevation cost; k5 is the
weight; the symbol mu

ij means the quality of the drone u flying from the ith mission point to
the jth mission point; hij represents the height difference between the ith mission point and
the jth mission point; Ctotal means the total cost; Rtotal is the total revenue; kr is a weight,
which is set to kr = 2 in this paper; qi means the material demand of the ith mission point; T
represents a cost–revenue function; and ω1 and ω2 are weights, which are set to ω1 = 1 and
ω2 = 1 in this paper.

3.5. Mission Planning Algorithms: AGA and SCPSO

An AGA method is designed for a multi-drone mission assignment, and a SCPSO
algorithm is designed for 3D path planning.

3.5.1. The Mission Assignment of Multi-Drone Based on AGA

GA is a computational model that simulates the biological evolution processes of
natural selection and genetics. In GA, each problem solution is represented as a set of
chromosomes. Through selection, crossover, and mutation operations in each generation,
GA gradually improves the quality of its solutions. The following are the calculation steps
of the AGA algorithm.

1. The population initialization

The initial solution to the mission assignment is generated by random numbers. Let
us define the population size NAGA, the maximum iteration time TAGA, the maximum
crossover rate PC,max, the minimum crossover rate PC,min, the maximum mutation rate
PM,max, and the minimum mutation rate PM,min.

The initial chromosome is a Hamilton cycle [45]. In order to accelerate the convergence
speed of the algorithm and obtain a better initial solution for each generation, the improved
circle algorithm is used in AGA. That is, to judge whether two groups of adjacent gene
points vp−1vp(p = 2, . . . , N − 2) and vrvr+1(r = p + 1, . . . , N − 1) in the chromosome meet the
Equation (25). If it is satisfied, then vp and vr are arranged in the reverse order; otherwise,
the next judgment is made until all gene points are traversed.

dch
(
vp−1vr)+dch

(
vpvr+1

)
< dch

(
vp−1vp)+dch(vrvr+1) (25)

where dch means the distance between two gene points (mission points); vp is the pth gene
point; and vr is the rth gene point.
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2. The calculation of chromosome fitness

The chromosome fitness is the mission assignment fitness function in this paper, and
its calculation is shown in Equation (26).

f AGA
tAGA,chr = T (26)

where f AGA
tAGA,chr represents the fitness function of the chrth chromosome in the tAGAth

generation; T is defined in Equation (24).

3. The evolution of AGA

This step implements three operations: selection, crossover, and mutation. First, in
the selection stage, the better the fitness, the greater the probability of producing excellent
individuals. The method of roulette to choose (see Equation (27)) is used in this paper.
Second, the two-point crossover is used in the cross-point phase; that is, two crossover
points are randomly set for the chromosome, and then the chromosome gene sequence is
cross-changed. Finally, the mutation phase is realized by randomly exchanging two genes
in an individual.

PS,tAGA,chr =
f AGA
tAGA,chr

NAGA
∑

chr=1
f AGA
tAGA,chr

(27)

where PS,tAGA,chr means the selection rate for the chrth chromosome of the tAGAth generation.
Without losing generality, we take seven gene points as an example. Figure 6 displays

an example of AGA evolution. In Figure 6, two parent chromosomes are {7, 5, 3, 6, 2, 1, 4}
and {4, 3, 1, 5, 2, 7, 6}, respectively, where the number represents the mission point. These
chromosomes produce new fetus {7, 3, 1, 5, 6, 2, 4} through the two-point crossover. Finally,
two gene points are randomly switched to obtain child {7, 6, 1, 5, 3, 2, 4}.
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Figure 6. The example of AGA evolution.

In order to improve the convergence speed and optimization effect of the algorithm,
some computational strategies are designed in this paper. The crossover rate and mutation
rate of AGA do not use setting values but are adaptively selected according to fitness
changes, as shown in Equations (28) and (29).

PC,tAGA,chr =

kAGA1·PC,max −
(PC,max−PC,min)( f AGA

tAGA,max− f AGA
tAGA,bigger)

( f AGA
tAGA,max− f AGA

tAGA,mean)
, f AGA

tAGA,bigger ≥ f AGA
tAGA,mean

kAGA2·PC ,max, f AGA
tAGA,bigger < f AGA

tAGA,mean

(28)
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PM,tAGA,chr =

kAGA3·PM ,max −
(PM,max−PM,min)( f AGA

tAGA,max− f AGA
tAGA,thr)

( f AGA
tAGA,max− f AGA

tAGA,mean)
, f AGA

tAGA,thr ≥ f AGA
tAGA,mean

kAGA4·PM ,max, f AGA
tAGA,thr < f AGA

tAGA,mean

(29)

where PC,tAGA,chr means the crossover rate of the chrth chromosome in the tAGAth gen-
eration; PM,tAGA,chr represents the mutation rate of the chrth chromosome in the tAGAth
generation; kAGA1, kAGA2, kAGA3; and kAGA4 are the control coefficients, which are set to
kAGA1 = 1, kAGA2 = 1.05, kAGA3 = 1, and kAGA4 = 1.25 in this paper. PC,max and PM,max repre-
sent the maximum values of crossover rate and mutation rate; PC,min and PM,min represent
the minimum values of crossover rate and mutation rate; f AGA

tAGA,max means the individual
with the largest fitness in the tAGAth generation; f AGA

tAGA,bigger represents the bigger fitness in

the two chromosomes to be crossed in the tAGAth generation and f AGA
tAGA,mean is the average

fitness of all chromosomes in the tAGAth generation.
In order to prevent the degradation of the genetic algorithm, the elite retention method

for each iteration is adopted in this paper. That is, we retain the optimal individual of
the generation for the next generation, do not participate in the evolution process, and
compare it with the optimal individual of the next generation. If it is better than the next
generation of optimal individuals, the algorithm continues to retain them; otherwise, the
next-generation optimal individual is retained as an elite.

3.5.2. The Path Planning between Mission Points Based on SCPSO

PSO is derived from the study of bird predation behavior. The basic idea of the
algorithm is to initialize a set of particles within the solution space that are explored in the
search space. The characteristics of particles are expressed by velocity, position, and fitness.
The velocity of each particle represents the moving direction of the particle; the position
indicates the candidate solution of the optimization problem; and the fitness represents
the quality of a solution. Each particle continuously adjusts its position through individual
experience and group collaboration to find the optimal solution. In the path planning
problem of this paper, each particle represents the coordinate of the path-control point. The
following are the calculation steps of the SCPSO algorithm.

1. The population initialization

In this step, the number of particles NSC, the number of path-control points NC, and
the maximum number of iterations TSC are defined. The initial particle position (initial
solution) is randomly generated in space.

2. The fitness function calculation

SCPSO calculates the fitness function of each particle at each iteration. The fitness
function of path planning in this paper is expressed as the total distance of drone flight, as
shown in Equations (30) and (31).

f SCPSO
tSC,par =

M

∑
u=1

N

∑
i=0

N

∑
j=0,j 6=i

xu
ij·lij,tSC,par (30)

lij,tSC,par = PT·
np−1

∑
s=1

∥∥∥Bij
tSC,par,s+1 − Bij

tSC,par,s

∥∥∥
PT =

{
1000, i f the path point is inside the threat source
1, otherwise

(31)

where f SCPSO
tSC,par represents the fitness function of the parth particle in the tSCth generation;

PT is a penalty factor; lij,tSC,par means the length of the three-dimensional path planned
by the parth particle of the tSCth generation of SCPSO between the ith mission point and
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the jth mission point; np is the number of path points of the three-dimensional path curve
generated by the path-control point NC; Bij

tSC,par,s means the sth path point of the three-
dimensional path planned by the parth particle of the tSCth generation of SCPSO between
the ith mission point and the jth mission point.

3. The iteration of SCPSO

Particle velocity is affected by inertia, individual optimal values, and global optimal
values. Each particle adjusts the speed according to the current position, individual optimal
value, and global optimal value, and then updates its position. The SCPSO algorithm
proposed in this paper uses the properties of sine and cosine functions to improve the
optimization ability of the algorithm by adaptively changing the amplitude of sine and
cosine functions. In addition, in order to further balance the global exploration and local
development capabilities of the algorithm, the inertia coefficient and acceleration coefficient
of linear weights are also designed. Equations (32)–(37) show the speed and position update
methods of the SCPSO algorithm.

vtSC+1
par,dim = w·vtSC

par,dim + c1·rand()·(pbest,par,dim − xtSC
par,dim) + xsc (32)

xsc =

{
R1·sin(R2)·(gbest,dim − xtSC

par,dim), R3 ≤ 0.5
R1·cos(R2)·(gbest,dim − xtSC

par,dim), R3 > 0.5
(33)

xtSC+1
par,dim = xtSC

par,dim + vtSC
par,dim (34)

w = wmax − (wmax − wmin)·
tSC
TSC

(35)

c1 = c1max − (c1max − c1min)·
tSC
TSC

(36)

R1 = R1min + (R1max − R1min)·
tSC
TSC

(37)

where vtSC
par,dim is the velocity of the parth particle of the tSCth generation on the dimth

dimension; w represents the inertia weight coefficient; c1 means the individual acceleration
coefficient, which is adaptively adjusted by Equations (35) and (36), respectively; rand() is
the random number of [0, 1]; pbest,par,dim means the optimal position of the parth particle
on the dimth dimension; xtSC

par,dim represents the position of the parth particle of the tSCth
generation on the dimth dimension; xsc means the sine and cosine components; R1 is the
control parameter, which mainly controls the amplitude of the sine and cosine functions
and adjusts adaptively through Equation (37); R2 and R3 are random numbers obeying a
uniform distribution, which are set to R2 ∈ [0, 0.5π] and R3 ∈ [0, 1] in this paper; gbest,dim is
the global optimal position on the dimth dimension; wmax and wmin are the maximum and
minimum values of inertia weight; c1max and c1min are the maximum and minimum values
of individual acceleration coefficient; and R1max and R1min are the maximum and minimum
values of sine and cosine amplitude.

Finally, the individual optimal value and the global optimal value are updated accord-
ing to the calculation results of SCPSO, and then the algorithm enters the next iteration.

4. Results and Discussions

Based on the above model research and algorithm designs, Python programming is
used for simulation experiments on our PC (Intel(R) Core(TM) i7-10700K CPU @ 3.80 GHz,
32 GB RAM, NVIDIA GeForce RTX 3090). For the purpose of proving the effectiveness
of the presented system and method, first the GA and the AGA are used to evaluate the
mission assignment. Then, the evaluation experiments of three-dimensional path planning
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are carried out, in which PSO and SCPSO are compared. Third, the simulation experiment
of a multi-drone disaster rescue system is carried out by combining mission assignment
and path planning.

4.1. Comparison of GA and AGA

In this section, GA and AGA algorithms are compared. Mission points are used for
gene coding on chromosomes. The initial population size NAGA of the algorithm is 200, the
maximum crossover rate PC,max, and minimum mutation rate PC,min are 0.8 and 0.4, and
the maximum crossover rate PM,max, and minimum mutation rate PM,min are 0.01 and 0.001.
The experiment of multi-drone mission assignment is carried out in a 100 × 100 × 100 area.
The drone base station coordinate is (2, 35, 1). Table 1 shows the parameters of each threat
source. The experiment of three drones performing 10 mission points is evaluated and
tested. The minimum fitness function and the mean fitness function of each generation with
the maximum iteration time TAGA of 100, 200, and 300 are studied by performing 50 mission
assignment experiments. Mission execution order, fitness function, and program running
time are the main indexes of the mission assignment evaluation experiment. The fitness
function is defined in Equation (24), where it is evident that a lower fitness function value
indicates a better calculation outcome for the algorithm.

Table 1. Parameters of each threat source.

No.
Center Coordinate, Slope,

k1, and Height of
Mountain Threat Source

Center Coordinate, k2,
and Radius of

Transmission Tower
Threat Source

Center Coordinate, k3,
kw

N_w, rN_w, and Rw
N_w of

Severe Weather Threat
Source

1 (85, 85), (8, 8), 10, 40 (40, 40), 20, 18 (70, 50), 10, 0.6, 15, 25
2 (20, 80), (10, 12), 10, 60 (70, 20), 20, 12 (15, 45), 10, 0.4, 10, 20
3 (30, 20), (7, 7), 10, 50 (55, 80), 20, 15 (90, 20), 10, 0.2, 8, 18

The maximum displacement of the drone is 300, the body weight is 1, and the maxi-
mum load is 4. Mission point coordinates and material requirements are shown in Table 2.
Table 3 presents the comparison results of performance evaluation indexes between GA
and AGA. The results indicate that the optimal value (OV), the worst value (WV), and
the mean value (MV) of AGA are lower than those of GA except for the running time.
Additionally, the lower standard deviation value (SDV) proves that AGA can obtain the
optimal assignment stably. Figure 7 shows the statistical results of the minimum fitness
per generation and the mean fitness per generation of GA and AGA with 100, 200, and
300 iterations, respectively. It can be seen from Figure 7 that the convergence speed and
optimal value of AGA are much better than those of GA. Table 4 gives out the optimal
mission execution order comparison result: when the iteration time is small, there are
significant differences in the optimal allocation results between GA and AGA. However,
when the iteration time is large, the optimal allocation results of GA and AGA become
similar. AGA can achieve better results with fewer iterations.

Table 2. Coordinates and requirements of 10 mission points.

No. Coordinate
Mission Point

Requirement of
Mission Point No. Coordinate

Mission Point
Requirement of
Mission Point

1 (5, 74, 10) 0.9 6 (94, 9, 7) 0.7
2 (21, 69, 35) 0.7 7 (58, 30, 1) 0.9
3 (39, 83, 4) 1.3 8 (29, 14, 37) 0.5
4 (90, 53, 1) 0.8 9 (95, 80, 10) 1.1
5 (4, 91, 3) 0.4 10 (80, 82, 34) 0.6
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Table 3. Comparison of performance evaluation indexes between GA and AGA (10 mission points).

Fitness Function (TAGA = 100)

Method OV WV MV SDV

GA 711.7506 763.4414 734.2795 13.9377
AGA 677.0911 703.6567 692.9914 7.1411

Program running time (s) (TAGA = 100)

Method OV WV MV SDV

GA 10.8673 10.9425 10.8894 0.0155
AGA 10.9270 10.9460 10.9330 0.0038

Fitness function (TAGA = 200)

Method OV WV MV SDV

GA 699.2446 752.1145 725.0800 11.8666
AGA 677.0911 703.0757 691.9700 7.1607

Program running time (s) (TAGA = 200)

Method OV WV MV SDV

GA 21.6633 21.7874 21.7073 0.0225
AGA 21.7839 21.8891 21.8036 0.0147

Fitness function (TAGA = 300)

Method OV WV MV SDV

GA 694.5612 745.4266 719.5153 13.8968
AGA 677.0911 698.4715 689.9750 6.1316

Program running time (s) (TAGA = 300)

Method OV WV MV SDV

GA 32.4697 32.6227 32.5286 0.0322
AGA 32.6415 32.6807 32.6671 0.0090
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Table 4. Multi-drone optimal mission assignment of GA and AGA (10 mission points). 

Method No. of Drone TAGA = 100 TAGA = 200 TAGA = 300 

GA 
1 5, 1 5, 1 3, 5, 1 
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3 7, 6, 8, 2 4, 9, 10, 2 2, 10, 9, 4 

AGA 
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tudes R1max and minimum sine and cosine amplitudes R1min are 2.25 and 1. The experiment 
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Figure 7. The fitness function evaluation results when the iteration times are 100, 200, and 300
(10 mission points). (a) The fitness function evaluation results (TAGA = 100). (b) The fitness function
evaluation results (TAGA = 200). (c) The fitness function evaluation results (TAGA = 300).

Table 4. Multi-drone optimal mission assignment of GA and AGA (10 mission points).

Method No. of Drone TAGA = 100 TAGA = 200 TAGA = 300

GA
1 5, 1 5, 1 3, 5, 1
2 3, 4, 9, 10 3, 7, 6, 8 7, 6, 8
3 7, 6, 8, 2 4, 9, 10, 2 2, 10, 9, 4

AGA
1 3, 5, 1 3, 5, 1 3, 5, 1
2 7, 6, 8 7, 6, 8 7, 6, 8
3 4, 9, 10, 2 4, 9, 10, 2 4, 9, 10, 2

4.2. The Evaluation Experiment of SCPSO

In this section, the evaluation experiment of the 3D path planning algorithm is carried
out, and the PSO and SCPSO algorithms are compared. The initial population size (NSC)
of the algorithm is 50. The number of path-control points (NC) is 5. The maximum
inertia weights wmax and minimum inertia weights wmin are 0.9 and 0.4, respectively. The
maximum individual acceleration coefficients c1max and minimum individual acceleration
coefficients c1min are 2.5 and 1, respectively. Additionally, the maximum sine and cosine
amplitudes R1max and minimum sine and cosine amplitudes R1min are 2.25 and 1. The
experiment of multi-drone path planning is carried out in a 100 × 100 × 100 area, and the
simulation time is 50. The starting point coordinate of the drone is (2, 35, 1), and the end
point coordinate is (95, 80, 10). There are three threat sources: mountains, transmission
towers, and severe weather. The parameters of each threat source are shown in Table 1.
Table 5 presents the comparison results of performance evaluation indexes between PSO
and SCPSO. Figures 8–10 show the 3D path planning examples and statistical results of
the minimum fitness and the mean fitness of each generation of PSO and SCPSO when
the maximum iteration times TSC are 100, 200, and 300. The fitness function and program
running time are the main results of this experiment. In 3D path planning, the fitness
function refers to the distance of drone flight. Therefore, the smaller the fitness function
value, the better the calculation effect of the algorithm. All the aforementioned evaluation
experiment results demonstrate that SCPSO is capable of achieving a shorter flight path.

Table 5. Comparison of performance evaluation indexes between PSO and SCPSO.

Fitness Function (TSC = 100)

Method OV WV MV SDV

PSO 117.6105 146.7281 129.5862 5.0713
SCPSO 108.7102 132.6111 115.7923 6.7508
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Table 5. Cont.

Program running time (s) (TSC = 100)

Method OV WV MV SDV

PSO 51.1639 64.1155 57.9294 3.2033
SCPSO 61.5123 66.3144 64.5302 1.2511

Fitness function (TSC = 200)

Method OV WV MV SDV

PSO 116.1025 137.6843 125.6526 4.5177
SCPSO 108.6614 124.6490 114.0725 5.0003

Program running time (s) (TSC = 200)

Method OV WV MV SDV

PSO 106.0202 124.9831 116.0116 5.0245
SCPSO 122.7706 134.3059 129.5099 2.1687

Fitness function (TSC = 300)

Method OV WV MV SDV

PSO 114.6301 132.5005 122.0011 4.6042
SCPSO 108.6507 121.9915 113.1423 4.8832

Program running time (s) (TSC = 300)

Method OV WV MV SDV

PSO 147.9369 186.1021 170.9336 8.1782
SCPSO 192.3480 204.1927 198.4601 2.7036
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Figure 8. The 3D path planning examples and fitness function evaluation results of PSO and SCPSO
(TSC = 100). (a) The 3D path planning diagram of PSO and SCPSO (TSC = 100). (b) The 3D path
planning top view of PSO and SCPSO (TSC = 100). (c) The fitness function evaluation results of PSO
and SCPSO (TSC = 100).
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planning top view of PSO and SCPSO (TSC = 200). (c) The fitness function evaluation results of PSO
and SCPSO (TSC = 200).
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Figure 10. The 3D path planning examples and fitness function evaluation results of PSO and SCPSO
(TSC = 300). (a) The 3D path planning diagram of PSO and SCPSO (TSC = 300). (b) The 3D path
planning top view of PSO and SCPSO (TSC = 300). (c) The fitness function evaluation results of PSO
and SCPSO (TSC = 300).

4.3. The Disaster Relief Simulation Experiment

This section conducts a multi-drone disaster rescue simulation evaluation experiment.
Four algorithms, GA + PSO, GA + SCPSO, AGA + PSO, and AGA + SCPSO, are used
for testing. The comprehensive evaluation of the multi-drone disaster rescue simulation
evaluation experiment is carried out in a 100 × 100 × 100 area. The experiment of three
drones performing 10 missions is evaluated and tested. The drone base station coordinate
is (2, 35, 1), the number of path-control points NC is 2, the iteration times of GA and AGA
are 300, the iteration times of PSO and SCPSO are 100, and the time of simulations is 20.
The mission point, threat source, and other parameters of the algorithm are the same as
those in Sections 4.1 and 4.2. Table 6 shows the multi-drone optimal mission results of GA
and AGA when the maximum iteration time is 300. Table 7 shows the evaluation results of
four methods. It can be seen from Table 7 that the performance of AGA + SCPSO is the
best, i.e., its fitness function is optimal and the path is the shortest. Figure 11 shows the
visualization results of the drone disaster rescue experiment. It can be seen that the path
planned by SCPSO is better, that is, its path is shorter and the route is smoother.

Table 6. Multi-drone optimal mission results (the number of mission points is 10 and TAGA = 300).

Method No. of Drone Optimal Mission Assignment Result

GA
1 3, 5, 1
2 7, 6, 8
3 2, 10, 9, 4

AGA
1 3, 5, 1
2 7, 6, 8
3 4, 9, 10, 2

Table 7. The fitness function and path length statistics of four methods.

Method Optimal Fitness
Function Value

Path Length

OV WV MV SDV

GA + PSO 694.5612 694.7434 739.5507 716.5673 11.2946
GA + SCPSO 694.5612 681.5401 737.6858 711.0448 14.5077
AGA + PSO 677.0911 691.8288 739.5353 716.0973 12.7313

AGA + SCPSO 677.0911 680.2483 737.5755 710.2630 14.7289
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Figure 11. Visualization results of a multi-drone disaster rescue simulation experiment under four
methods (10 mission points). (a,b) visualization results of method GA + PSO; (c,d) visualization
results of method GA + SCPSO; (e,f) visualization results of method AGA + PSO; (g,h) visualization
results of method AGA + SCPSO.
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4.4. Discussions

After the disaster, due to the barrier of mountains and rivers, it is a challenging task for
relief forces to reach the disaster area for the first time. Due to the urgency of disaster rescue,
prompt execution of search and rescue operations within a short timeframe is often critical.
The drone has the advantages of search and rescue [46], efficient monitoring [47], material
distribution, and recovery of communication [48], which can be used for a fast disaster
response [49]. Compared with a single drone, a multi-drone can undertake different rescue
missions simultaneously and reduce rescue time. Therefore, it is necessary to study how to
reasonably allocate different mission points for drones and plan their flight paths before
implementing rescue. To this end, a multi-drone mission planning system and method that
comprehensively consider factors such as flight distance, drone performance, threat source
factors, and disaster site requirements are proposed in this paper. The research results can
provide theoretical support for future disaster relief.

In this paper, three common threat sources in disaster rescue environments are mod-
eled: mountains, transmission towers, and severe weather. Due to the characteristics of
mountains, the mountain threat source is simplified by the bi-GMM. In future research,
neural networks based on the truncated sign distance function (TSDF) can be used to model
real mountain areas [50], making the model closer to real 3D mountain scenes. Although
many anti-interference technologies have been developed to reduce the electromagnetic
interference of drones [51], the signal is susceptible to weather, terrain, and other factors; so
it is best to avoid entering the corresponding influence ranges. In the future, the interference
of transmission towers and mining areas can also be studied. Modeling severe weather is
a complex task due to its complexity and uncertainty and the vulnerability of drones to
changes in airflow and pressure. In this paper, to enable fast computation, the range of
influence of the severe weather threat source is abstracted using a cylinder. In the future,
the difference in the response of drones’ own characteristics to weather phenomena and
the temperature model [52] can be considered.

A cost–revenue function is formulated to facilitate multi-drone disaster relief mission
allocation. The cost function represents the cost and risk of the multi-drone rescue process.
In addition, due to the influence of weight on overcoming the work conducted by gravity,
the order of mission execution is different, and the energy consumption of the drone is
also varied. Therefore, the elevation cost is taken into account in the cost function. The
revenue function represents the relief value of the task completed by the drone. The
cost–revenue function represents the difference between the cost and revenue functions.
Therefore, a smaller cost–revenue function indicates a better calculation effect for our model.
In this study, the flight distance, flight height, threat source factors, drone performance
constraints, and mission point revenue are all considered in the cost–revenue function. In
the future, additional aspects can be taken into consideration when designing the cost–
revenue function, such as the time required for a drone to perform different missions or the
smoothness of the drone’s flight trajectory.

In this paper, AGA and SCPSO are used to assign missions and plan paths for drones,
respectively. In order to further verify the effectiveness of AGA, we further supplement the
comparative experiments of GA and AGA. In the 100 × 100 × 100 area, the experiment of
5 drones performing 20 missions is evaluated. The maximum displacement of the drone
is 400, the body weight is 1, and the maximum load is 5. Mission point coordinates and
material requirements are shown in Table 8. The remaining parameters are the same as
those in Section 4.1. A total of 50 mission assignment experiments are performed. Table 9
presents a comparison of the performance evaluation indexes between GA and AGA for
the corresponding disaster relief mission. It can be seen that in the case of increased task
complexity, except for the program running time, the performance of AGA is significantly
better than that of GA. Figure 12 shows the statistical results of the minimum fitness of
each generation and the mean fitness of each generation for the corresponding GA and
AGA when iteration times are 100, 200, and 300. It can be seen that the convergence speed,
optimal value, and average value of AGA are much better than those of GA. Compared with
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the previous results (see Section 4.1), it can be seen that the higher the mission complexity,
the better the performance of AGA. This means that the performance gap between AGA
and GA is larger, and AGA is more suitable for mission assignments with high mission
complexity. Table 10 presents the corresponding optimal mission execution orders for GA
and AGA: as task complexity increases, the results show significant differences.

Table 8. The coordinates and requirements of 20 mission points.

No.
Coordinate

Mission
Point

Requirement
of Mission

Point
No.

Coordinate
Mission

Point

Requirement
of Mission

Point

1 (5, 74, 10) 0.9 11 (10, 11, 11) 0.6
2 (21, 69, 35) 0.7 12 (40, 65, 2) 1.0
3 (39, 83, 4) 1.3 13 (56, 7, 6) 0.7
4 (90, 53, 1) 0.8 14 (64, 99, 8) 0.3
5 (4, 91, 3) 0.4 15 (28, 10, 11) 0.2
6 (94, 9, 7) 0.7 16 (18, 32, 4) 0.5
7 (58, 30, 1) 0.9 17 (5, 59, 1) 0.4
8 (29, 14, 37) 0.5 18 (19, 80, 60) 0.2
9 (95, 80, 10) 1.1 19 (84, 31, 1) 1.1
10 (80, 82, 34) 0.6 20 (41, 5, 18) 1.2

Table 9. Comparison of performance evaluation indexes between GA and AGA (20 mission points).

Fitness Function (TAGA = 100)

Method OV WV MV SDV

GA 1300.4399 1436.9930 1367.9740 31.1004
AGA 1005.1311 1063.0131 1038.3372 13.4497

Program running time (s) (TAGA = 100)

Method OV WV MV SDV

GA 11.4349 11.4740 11.4482 0.0084
AGA 11.4968 11.5775 11.5298 0.0116

Fitness function (TAGA = 200)

Method OV WV MV SDV

GA 1293.7675 1414.6581 1347.7407 29.4725
AGA 1001.0166 1056.1460 1035.4154 13.5783

Program running time (s) (TAGA = 200)

Method OV WV MV SDV

GA 22.8013 22.8360 22.8165 0.0084
AGA 22.9302 23.0175 22.9803 0.0210

Fitness function (TAGA = 300)

Method OV WV MV SDV

GA 1227.6617 1383.7537 1335.1681 29.8367
AGA 987.6911 1049.3092 1027.6919 14.2750

Program running time (s) (TAGA = 300)

Method OV WV MV SDV

GA 34.1791 34.2579 34.1992 0.0152
AGA 34.3697 34.4926 34.4398 0.0322
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Table 10. Multi-drone optimal mission assignment of GA and AGA (20 mission points). 
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Figure 12. The fitness function evaluation results when the iteration times are 100, 200, and 300
(20 mission points). (a) The fitness function evaluation results (TAGA = 100). (b) The fitness function
evaluation results (TAGA = 200). (c) The fitness function evaluation results (TAGA = 300).

Table 10. Multi-drone optimal mission assignment of GA and AGA (20 mission points).

Method No. of Drone TAGA = 100 TAGA = 200 TAGA = 300

GA

1 12, 2, 3, 14, 6, 13, 15 1, 12 7, 15, 11, 8
2 11, 17 17, 6, 19, 4, 7 13, 20
3 19, 7, 4, 20, 8 10, 9, 14, 20, 11, 8, 15 17, 3, 12
4 16, 18, 10, 9 16 16, 6, 4, 19, 10, 9
5 5, 1 13, 5, 3, 18, 2 5, 1, 14, 18, 2

AGA

1 11 9, 4, 19, 6, 7 7, 6, 19, 4, 12
2 15, 8, 20, 13, 6, 19, 7 11, 15, 20, 13, 8 8, 20, 13, 15, 11
3 16 16 16
4 4, 9, 10, 14, 18, 2 12, 3, 14, 10, 18, 2 3, 14, 9, 10, 18, 2
5 17, 1, 5, 3, 12 17, 5, 1 5, 1, 17
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After repeated experiments, it can be found that GA is difficult to obtain optimal
mission assignment with high complexity; differently, the AGA proposed in this pa-
per can obtain optimal allocation only with fewer iterations. In order to further ver-
ify the effectiveness of SCPSO, we further supplement the comparative experiments of
AGA + PSO and AGA + SCPSO under the same simulation experiment of 5 drones per-
forming 20 mission points. The algorithm parameters are the same as those in Section 4.3.
A total of 20 simulation experiments are performed. Table 11 shows the evaluation indexes
of AGA + PSO and AGA + SCPSO. It can be seen that the performance of AGA + SCPSO is
better in environments with higher mission complexity, i.e., the path is shorter and the route
is smoother. Compared with the previous results in Section 4.3, it can be seen that SCPSO
performs better when the mission complexity increases, and SCPSO is more suitable for
path planning problems with high mission complexity. Figure 13 shows the visualization
results of the corresponding drone disaster rescue experiment.

Table 11. The path length statistics of different methods.

Path Length

Method OV WV MV SDV

AGA + PSO 936.6954 1016.0094 972.2957 19.4389
AGA + SCPSO 920.5319 1012.6603 967.2762 27.2980
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Figure 13. Visualization results of a multi-drone disaster rescue simulation experiment under different
methods (20 mission points). (a,b) visualization results of method AGA + PSO; (c,d) visualization
results of method AGA + SCPSO.

The effectiveness of the proposed model is demonstrated in this paper through a
series of experiments. The fitness function and processing time are used in the experiment.
When the number of missions is small, AGA generally reaches the optimal value within
10 generations, while GA needs hundreds of generations to reach the optimal value, and its
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optimal value is not as good as the optimal value of AGA. When the number of missions
increases, AGA generally reaches the optimal value within 100 generations, while GA will
use even 300 generations to reach the optimal value. Although AGA uses more computing
resources and takes more computational time, it obviously takes less time if the time
to reach the optimal value is discussed instead of the same number of iterations. For
PSO and SCPSO, since SCPSO balances the ability of global and local optimizations, its
convergence speed and optimal value are better than PSO. Clearly, all of the aforementioned
experimental results demonstrate that our proposed method exhibits strong performance.

The method proposed in this paper has at least three advantages. First, the proposed
system is designed to address the real-world scenarios of multi-drone disaster relief. The
typical threat sources of disaster rescue scenarios, the requirements of disaster areas, and
the performance of drones are considered when designing the cost–revenue function. This
study can provide a basis for future drone disaster rescue. Second, for the problem of multi-
drone disaster rescue, an optimization method with higher calculation accuracy is proposed,
and this method is more suitable for optimization problems with high complexity. Third,
the model has good scalability. Our model can simulate common disaster rescue scenarios
and can be applied to various disaster relief environments with minimal modifications.
Despite its advantages, our method also has limitations. For instance, our approach is
specifically tailored for scenarios where complete environmental information is available.
The presence of partially unknown information in the environment can potentially lead to
mission planning failures. Moreover, an excessive amount of information regarding drones
and mission points may have a detrimental impact on the real-time performance of the
algorithm. These could be addressed in future work.

5. Conclusions

This paper realizes the problem of multi-drone mission planning in a complex 3D
environment. The original digital terrain of drone flight and three common threat sources
are constructed in this paper, including mountains, transmission towers, and severe weather.
When constructing the cost–revenue function, factors such as the performance of the drone,
the requirements of each mission point, the elevation cost, and the threat source are
considered. AGA is designed to solve the problem of multi-drone mission assignments.
The improved circle algorithm, adaptive crossover rate and mutation rate, and a strategy
that uses both roulette and elite retention methods are used to improve the efficiency of our
method. The experimental results demonstrate that AGA exhibits stronger optimization
abilities than GA. SCPSO is designed to plan the optimal path between adjacent mission
points. The inertia and acceleration coefficients of linear weights are designed to maintain
an effective balance between global exploration and local development, further enhancing
the performance of SCPSO. The experimental results show that the SCPSO algorithm can
plan an effective and safe path for drones. This study can provide a basis for future disaster
rescue decisions.
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