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Abstract: Real-time 3D reconstruction combined with MAVs has garnered significant attention in
a variety of fields, including building maintenance, geological exploration, emergency rescue, and
cultural heritage protection. While MAVs possess the advantages of speed and lightness, they also
exhibit strong image blur and limited computational resources. To address these limitations, this
paper presents a novel approach for onboard, depth-only, real-time 3D reconstruction capable of
accommodating fast-moving MAVs. Our primary contribution is a dense SLAM system that combines
surface hierarchical sparse representation and particle swarm pose optimization. Our system enables
the robust tracking of high-speed camera motion and facilitates scaling to large scenes without
being constrained by GPU memory resources. Our robust camera tracking framework is capable of
accommodating fast camera motions and varying environments solely by relying on depth images.
Furthermore, by integrating path planning methods, we explore the capabilities of MAV autonomous
mapping in unknown environments with restricted lighting. Our efficient reconstruction system is
capable of generating highly dense point clouds with resolutions ranging from 2 mm to 8 mm on
surfaces of different complexities at rates approaching 30 Hz, fully onboard a MAV. We evaluate the
performance of our method on both datasets and real-world platforms and demonstrate its superior
accuracy and efficiency compared to existing methods.

Keywords: onboard 3D reconstruction; micro aerial vehicles (MAVs); RGB-D SLAM,; fast camera
tracking; particle swarm pose optimization; hierarchical sparse 3D representation

1. Introduction

With the rapid development and extensive utilization of micro aerial vehicles (MAVs),
MAUVs equipped with online 3D reconstruction capabilities have gained considerable atten-
tion and importance. By autonomously capturing 3D information about the environment to
optimize their action path and behavioral decisions, MAVs can enhance the efficiency and
precision of task execution in complex environments. Additionally, they can achieve envi-
ronment modeling and map construction without human intervention, relieving humans
from repetitive or hazardous tasks. Hence, MAVs have the potential to be widely employed
in areas such as building maintenance, geological exploration, and emergency rescue. The
research on simultaneous localization and dense mapping (Dense SLAM) methods has been
advancing with the progression of computing power. Powerful Graphics Processing Units
(GPUs) are now widely accessible, enabling vision algorithms to process large quantities
of data in real-time through parallel processing. Among various approaches in this field,
KinectFusion [1] is one of the most representative techniques that enables the construction
of dense 3D scenes in real-time via commodity depth sensors.

To apply dense SLAM in MAVs and adapt to challenging environments such as light-
constrained settings during emergency rescue missions, two challenges must be addressed.
Firstly, it is a challenge to robustly track fast camera motion, which results in significant
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motion blur in RGB images, particularly in lighting-constrained conditions, and this issue
is particularly significant for agile MAVs. Secondly, many existing systems [2—4] are limited
by computational power, making it difficult to demonstrate their real-time capabilities on
the onboard computer.

We propose OwlFusion, an end-to-end solution for onboarding dense RGB-D recon-
struction of scalable scenes for fast-moving MAVs. Our method relies solely on depth
information as the depth image actively sensed is not limited by lighting. Additionally,
depth images typically do not produce the same full-frame pixel blur as RGB images
when the camera is moving fast [4]. To address the challenges of dense SLAM application
in fast-moving MAVs, we introduce two key methods. Firstly, we propose a fast pose
estimation method that reduces the consumption of many unnecessary particle fitness
evaluations by introducing planar constraints. This method accelerates the convergence
efficiency of optimized iterations using the same computational resources and enables
real-time tracking of high-speed camera motion on onboard computing devices. Secondly,
we integrate surface hierarchical sparse representation and particle swarm pose optimiza-
tion methods, and weighted depth fusion of depth images with noise at different voxel
levels to achieve real-time, high-quality reconstruction of large-scale scene 3D models on
an airborne computer with very limited computational and storage resources. We mounted
a commodity depth camera, Intel RealSense D435i, on a MAV with a wheelbase of only
450 mm and achieved real-time 3D reconstruction of scalable scenes, as shown in Figure 1.

Figure 1. MAV performing onboard scalable scan and dense mesh being generated in real time. Our
lightweight system is capable of generating sub-centimeter resolution meshes at 30 Hz, fully onboard.

This paper is divided into five sections. We have introduced the research issues and
objectives in this section. Section 2 presents an overview of existing methods and their
limitations, as well as a discussion of the relevant literature. Section 3 outlines the proposed
methodology, with a general overview of the approach and detailed descriptions of individ-
ual building blocks in subsections. Section 4 reports on the experimental results, including
a description of the setup, presentation of results, and analysis. Section 5 concludes the
article with a summary of the findings, implications of the results, limitations of the study,
and suggestions for future research.

2. Related Work

With advancements in GPU architecture and General-Purpose Graphics Processing Unit
(GPGPU) algorithms, real-time 3D reconstruction has significantly improved since the
inception of DTAM [5]. There has been a substantial increase in the number of publications
in this field in the past decade. Unlike DTAM, which achieves real-time dense 3D scene
reconstruction using RGB cameras, we are primarily interested in using low-cost RGB-
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D sensors. These sensors are more readily available and provide more accurate depth
information. In this section, we provide an overview of related systems, with a focus
on 3D reconstruction methods that rely on RGB-D cameras and tracking methods for
fast-moving cameras.

2.1. Real-Time RGB-D Reconstruction

The representative work for real-time dense 3D reconstruction using RGB-D cameras
is KinectFusion [1]. It was the first to demonstrate convincing real-time 3D reconstruction
results. Prior to this, there were also some great attempts, a famous example being the
method of Curless and Levoy [6], which is based on active triangulation sensors such as
laser range scanners and structured light cameras, and can generate very high-quality
results. The characteristic of this method is the use of a fully volumetric data structure to
implicitly store samples of the continuous function, with the depth map being transformed
into a Truncated Signed Distance Function (TSDF), and the accumulated averages becoming a
regular voxel grid. Finally, the reconstructed surface is extracted as the zero-level set of
the implicit function through ray casting. Unfortunately, due to computing limitations,
Curless and Levoy’s work did not achieve the real-time 3D reconstruction of scene objects.
KinectFusion inherits and improves upon such methods and achieves small-scale real-time
dense 3D reconstruction with the help of high-performance graphics computing units.

To reconstruct larger spaces, Whelan et al. [2] extended the pipeline of KinectFusion,
allowing voxels to flow out of the GPU based on camera motion to make room for storing
new data. However, this moving volume process is one-way and lossy, with surface data
being compressed into meshes, which cannot flow back to the GPU once it has moved to
the CPU. To address this issue, Niefiner et al. [7] proposed a bidirectional data exchange
method that allows for the flexible exchange of reconstructed surface data between the
GPU and CPU, pushing the application of real-time 3D reconstruction to even larger spaces.
However, even with the support of the moving volume method and data exchange method,
the use of regular voxels is still limited in reconstructing larger scenes. This is because
regular voxels densely represent both empty space and surface, namely free space, leading
to a lot of wasted graphics memory.

Although tree-based hierarchical data structures [8-10] can effectively subdivide
space and avoid graphics memory waste, they are not effectively parallelizable when the
computational complexity increases. Point-based methods [11-17], on the other hand, do
not require spatial data structures, but the reconstruction quality has trouble matching
the results achieved by volume-based reconstruction methods. To address these issues, a
new data structure has been proposed by Niefiner et al. [7] and Kahler et al. [18], which
subdivides space into a group of sparse sub-blocks and uses hash functions to access them
efficiently. Building on this data structure, ref. [19] combines the features of tree structures
to provide surface representations at different resolutions, which effectively solves the
problems of scene expansion and memory occupation in reconstruction.

One of the challenges of conducting real-time RGB-D-based 3D reconstruction on
MAVs is their limited computing and storage resources. Previous vision-based 3D re-
construction systems on drones have achieved success only by transmitting data back
to a ground station for processing [20-23], generating only sparse maps for navigation
online [24-27], or only being able to reconstruct small-scale 3D maps [28-31] onboard.
These systems can operate onboard but are prone to failure during fast drone movement,
which is another focus of this article and also another challenge in conducting RGB-D-based
real-time 3D reconstruction on drone platforms.

2.2. Pose Estimation of Fast Camera Motion

Although the fast-moving advantages of MAVs have undoubtedly heightened task
efficiency, they have also presented substantial challenges in estimating their motion states.
Fast camera movement poses two major challenges to camera pose estimation. Firstly,
fast camera motion causes significant rotation, rendering the optimization of camera pose
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highly nonlinear. When seeking to optimize the pose using gradient descent, it is easy for
the optimization to become trapped in a local optimum. Secondly, fast camera motion can
lead to serious motion blur in RGB images, especially under dark lighting conditions and
when taking close-up shots. The motion blur in images makes it difficult to perform reliable
RGB feature tracking, which is catastrophic for many feature-based SLAM methods [32,33]
and dense RGB-D 3D reconstruction methods [3].

Numerous researchers have adopted various approaches from different perspectives
to address the problem of fast-moving camera pose estimation. At the camera level, a
straightforward method to mitigate the adverse effects of image motion blur is to increase
the camera’s frame rate. However, high frame rates lead to brief exposure times that lower
the image’s signal-to-noise ratio, especially under dim lighting conditions [34,35]. The sud-
den surge in data volume within a short period significantly increases the computational
cost of the system, which is unfavorable for real-time algorithm execution. Saurer et al. [36]
have also considered the jelly effect caused by fast-moving rolling-shutter cameras. Another
study used event cameras for fast-moving pose estimation [37]. At the image level, re-
searchers have attempted to minimize the negative effects of motion blur on the image to the
maximum extent possible by performing image deblurring before feature extraction [38,39].
Unfortunately, considering the computational cost, these methods are challenging to use in
real-time 3D reconstruction systems. Introducing additional information, such as fusing
Inertial Measuring Unit (IMU) data, is also an effective method for estimating fast-moving
camera pose. The IMU provides acceleration data at high frequencies and can serve as good
inijtialization to predict inter-frame motion during gradient descent pose optimization [40].
Considering the high cost of IMUs, some researchers have sought to use low-cost IMU
sensors to assist pose estimation [41]. However, the gyroscope sensors of IMUs, especially
those built into commodity RGB-D cameras, are more effective in measuring directional
changes than estimating translation. Many researchers have found that translation errors
are too large to be used for tracking, either serving for attitude initialization [18,42,43] or
for joint optimization [44].

Another unique approach is to utilize the Particle Filter Optimization (PFO) algorithm,
which tracks the camera’s rapid movements solely based on depth images. This is because
fast camera movements may cause motion blur in RGB images but have a smaller impact
on depth images. Fast camera moving often results in depth value overshoot or undershoot
at the foreground and background transitions, rather than mixed pixel depth values across
the entire image [45]. The basic idea of the PFO algorithm is to transform the objective
function into a target Probability Density Function (PDF), and then to simulate the target
PDF through sequential importance sampling. It is hoped that the optimal value of the
objective function can be covered by the sampled particles. Particle Swarm Optimization
(PSO) randomly generates a set of particles and drives them to move towards good local
optima based on the designed system dynamic function. Ji et al. [46] use the update
and optimization of particle swarm as a system dynamic to drive the movement of the
particle ensemble. However, due to the high cost of continuous sampling and updating of
particles, it has not been widely adopted in real-time applications. In a recent attempt, the
problem of dense particle sampling and updating in standard PFO that affects the real-time
performance of the system was solved by moving and updating a pre-sampled Particle
Swarm Template (PST) instead of sequential importance sampling [4]. This method shows
good real-time performance on a ground workstation, but still cannot run in real-time on
airborne computing hardware platforms. We have provided a table comparing the most
representative real-time RGB-D reconstruction systems in terms of four key capabilities: fast-
moving tracking, sparse representation, scalable reconstruction, and onboard performing,
as shown in Table 1. Our proposed method combines the sparsity of surface representation
to enhance PFO, aiming to reduce system complexity, accelerate optimization convergence
speed, and overcome certain limitations present in existing systems.
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Table 1. State-of-the-art real-time dense 3D reconstruction systems based on RGB-D camera. v/
denotes the presence of the specific capability, while x denotes the absence of the specific capability.

Systems Fast-Moving Sparse Scalable Onboard
Tracking Representation Reconstruction Performing
KinectFusion [1] x x x x
Kintinuous [2] x x v X
Voxel Hashing [7] X v v x
InfiniTAM [15] x v v v
Hierarchical voxels [19] x v v x
BundleFusion [3] x x v x
RoseFusion [4] v x x x

3. Methodology

The input for onboard 3D reconstruction consists of a sequence of RGB-D frames
captured in real-time by RGB-D cameras, denoted by {I¢, I ;};_.x where I and I; represent
the RGB and depth images, respectively. The output is the surface reconstruction S of the

captured scene and the 6 Degrees of Freedom (6DoF) camera pose trajectory { [Rk‘tk} }k:O:K'

where RF € SOj3 and t* € R3 represent the 3D rotation and translation in the global
coordinate system. We employ our method, OwlFusion, within a framework of randomized
optimization [4], which is the de facto method for large-scale high-quality online dense 3D
reconstruction on low-computational hardware platforms. The key challenge is to estimate
the 6DoF pose of each frame and to fuse the captured surface data. The randomized
optimization framework allows for fast camera motion tracking in low-light conditions. To
reduce the computational cost and accelerate the optimization convergence of randomized
optimization on low-computational hardware, we introduce planar constraints based on
sparse representation of the scene surface, which is our key contribution. Figure 2 provides
a block diagram overview of our method.

(W)
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% Reconstructed Surface
g ] | } s
3 Surface ) Surface Pose T Surface
- Measurement Representation Estimation Reconstruction »
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Figure 2. The proposed OwlFusion overview. The purple arrows indicate operations related to
scene reconstruction, the blue arrows indicate operations related to pose estimation, and the yellow

indicates optional operations.

Our method consists of three main parts: surface measurement, surface reconstruction,
and pose estimation. In the surface measurement step, we preprocess each depth image
frame input by computing the vertex map V¥ and normal map A% and generating a
Partition Normal Map (PNM) P¥, which we use to introduce plane constraints. In the surface
reconstruction step, we adaptively allocate voxel blocks of different resolutions in GPU
memory for surface representation based on the correlation between the measured depth
values | fi‘ (u) and the vertex normals, achieving sparse representation of the scene. Based
on the allocated voxel space and the pose T¥" of the depth images, we continuously weight
and fuse the measured depth frames into the volume to reconstruct the scene surface S.
The quality of the scene reconstruction heavily relies on the accuracy of the pose estimation.
In the pose estimation step, we evaluate the fitness of random particles P¥() based on the
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reconstructed sparse surface S and PNM P¥, which serves as a constraint to alleviate the
computational burden and accelerate the optimal pose estimation speed. Finally, we use
the classical ray-casting method [1] to extract the scene surface.

3.1. Surface Measurement

Surface Measurement is the first step in our method, which takes the raw depth image
I; as input. We use u = (x,)" € R? to represent a two-dimensional pixel on I;. Given the
camera intrinsic parameter matrix K, we convert each depth measurement I;(u) into the
three-dimensional position v(u) of a vertex in the camera coordinate system using

v(u) = [;(u)K! (uT,l)T e R?, (1)

which forms the vertex map V¥ corresponding to the depth map. We then determine the
normal map N k at each vertex in the vertex map by computing

n(u) = ¢por X Voer, (2)
where
Vhor = (0(x —1,y) —v(x+1,y)) € R3 )
and
Vyer = (U(X,yfl)—v(x,erl)) e R 4)

represent the direction vector of the three-dimensional points on both sides of the point
u horizontally and the direction vector of the three-dimensional points on both sides of
the point u vertically, respectively. We normalize the cross-product result to obtain the
normal vector n2(u) at the current point. At this point, the direction of the normal vector
points away from the camera center, so we flip the direction to point towards the camera
center. Points located at the edge of the depth image are not used to calculate the normal
vector. Here, v(u) and 7(u) represent the elements in the vertex map V¥ and normal map
N*, respectively.

In OwlFusion, a PNM P¥ is generated based on the normal map N to introduce
planar constraints, as shown in Figure 3. The PNM can be considered as the result of
grouping pixels in the normal map A* based on their similarity in the normal direction. It
clusters adjacent pixels based on their similarity in the normal direction and visualizes the
clustering result as different-colored regions, each representing a plane. In this process, we
use a growth method to obtain the PNM P*. Specifically, we choose a pixel in the normal
map as the seed pixel and calculate the normal angle and Manhattan distance between
it and its neighboring pixels. If both evaluation criteria are below a given threshold, the
neighboring pixel is accepted as a region growth unit. We choose the normal angle threshold
as 0.6° and the Manhattan distance threshold as the sum of the image’s width plus height
based on experience. After growth, if the number of pixels in a segmented region is less
than 4% of the total image pixels, the region is rejected; otherwise, the segmented region is
too small. In a region growth process, the seed pixel and the pixels in the segmented region
will not be repeatedly calculated. Through the segmented normal map, we can quickly
drive the particle swarm to move to the vicinity of the optimal pose, thereby accelerating
the optimization convergence. Compared to directly extracting the scene plane on the
depth map, the normal map-based region growth method is more robust to depth map
measurement noise and faster in parallel computing on graphics processing units.
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RGB Image

Depth Image Partition Normal Map

Figure 3. The PNMs generated for two different viewpoints. The top row displays the frames
captured with slow camera motion, while the bottom row displays the frames captured with fast
camera motion, where noticeable motion blur can be observed in the RGB images.

3.2. Surface Reconstruction

The design requirements for adaptive resolution fast surface reconstruction include
efficient hierarchical voxel allocation and noise-robust depth data fusion methods. To
achieve this, we build upon previous work that uses a fixed number of L-level resolution
layers to store surface voxels [19] and implement effective access to each level’s voxels
using a hash table [7,18,19]. However, instead of uniform voxel allocation, we selectively
allocate voxel blocks to pixels in different regions using a PNM as a mask. For pixels
in planar regions, we allocate voxel memory at the coarsest resolution level, while for
non-planar regions, we skip the coarsest level and directly allocate voxel memory at the
next coarsest level. On the coarsest level hash table entry, we implicitly refer to the position
of the sub-blocks in finer resolution levels by a special marker.

To reconstruct the surface, we first dynamically allocate memory for voxels within the
camera field of view and then use voxel splitting and merging to achieve a hierarchical
representation of the surface. When a new depth frame k is input into our system, we
construct a ray R for each depth measurement I;(u) with respect to the camera center,
where

R =Ty 1K (uT, 1)T. ®)

0
camera coordinate system to the global frame g, where Ry 1 € SQOj is the rotation

Rop1 tor_ . . .
Here, Tgx 1 = [ & 1 g’li 1} € SEj is the transformation from frame k in the

transformation matrix and tgx 1 € R3 is the translation transformation vector of the
previous frame. Given the truncation range y of the TSDF [6], we create a line segment
along the direction of ray R within the truncation band of I;(u) — p to I;(u) + p. For
voxels that intersect with this line segment, we create a corresponding entry in the hash
table and allocate memory for the unallocated voxel blocks on the GPU [7,18,19]. After
voxel memory allocation is complete, we compute the roughness r(b) of the surface on
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which the voxels reside, which serves as the criterion for voxel splitting and merging. We
define the roughness of the surface using the correlation of normals, calculated as

r(b) = %ZT:I (AEn(i) — BF,,)?, ©)
where AF,, represents the part of the voxel block b that stores TSDF and m is the number
of TSDF values. A is the gradient operator, AF, (i) represents the normal at voxel i, and
AF,, represents the average normal of m voxels. It should be noted that we use the gradient
of TSDF values to calculate voxel normals, rather than directly using normals from the
normal map derived from depth measurements. This is because the normal map from
depth measurements contains sensor noise, and the TSDF values in voxels are the results
of multiple weighted fusion observations with high credibility. When the roughness is
greater than the segmentation threshold f ¢, the current level voxel is segmented. When the
roughness is less than the merging threshold t;,, the current level voxel is merged, and the
resolution level of each voxel is recorded.

After allocating all voxel blocks within the truncation region, the current depth frame
is fused with the reconstructed visible surface voxels. To efficiently perform the fusion of
TSDE, we first access all entries in the hash table before fusing the depth frames, selecting the
hash entries that point to visible voxel blocks within the camera view frustum [7], thereby
avoiding empty voxel blocks in the hash table. These hash entries are then processed in
parallel to update the TSDF values. The global fusion of all depth maps in the volume
is formed as the weighted average of all individually calculated TSDFs from each depth
frame, which can be viewed as denoising the global TSDF from multiple noisy TSDF
measurements. We adopt the TSDF fusion framework of [18], but redefine the weight W
of the TSDF. Considering the effect of sensor noise, we define

—7%cos 9)

2(52[41 (u) (7)

Wi(o(u) = exp
where v is the normalized radial distance of the current depth measurement I;(u) from the
camera center, and 6 = 0.6 is derived empirically. We define an imaging validity factor and
a scan validity factor, respectively,

o= —1%/26° 8)

p=cos6/1(u), ©)

where 6 is the angle between the ray direction of the depth pixel u and the normal measure-
ment of the corresponding surface point v(u) in the local frame. If the depth measurement
is within the valid distance range and the scan angle of the visible surface points in the
depth map is 0°, the validity of the point is maximum f = 1, which decreases as the scan
distance exceeds the valid range or deviates from 0°. As the reconstructed surface may
extend beyond or revisit the camera view frustum during system running, a bidirectional
GPU-Host data stream scheme [7,18] is used to store the reconstructed voxels that exceed
the current camera view frustum in the host, allowing the system to fully utilize the limited
GPU memory and performance and enable unlimited reconstruction. When the camera
returns to a previously reconstructed position, the voxels stored in the host in that region
are streamed back to the GPU for fusion and reuse.
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3.3. Pose Estimation

Accurate image pose estimation is crucial for surface reconstruction using depth im-
ages. However, traditional methods [3,14,33,47-51] for pose estimation on MAV platforms
can fail to track the camera due to fast camera motion, resulting in incorrect pose estimation
results. To address this challenge, our work uses a particle swarm template random opti-
mization [4]. Unlike previous work, we introduce planar constraints with the help of PNM
(Section 3.1) based on hierarchical sparse surface representation (Section 3.2). Our method
performs Candidate Particle Set (CPS) filtering firstly before particle fitness evaluation, and
subsequent iterations of particle optimization select particles from the CPS. Compared to
the Advantage Particle Set (APS) defined in [4], the CPS is a much smaller particle swarm
set that is strictly constrained, which helps to reduce computational cost during random
optimization and accelerate the convergence of pose optimization iterations.

To reflect the alignment between the current and the previous frame accurately, we
need to determine the overlapping area between the planar regions of the two frames. To
identify the set of overlapping pixels OF between the PNMs P* and P*~1, we adopt an
unproject-and-reproject approach:

ok = {(i,]’) ! (Tk)il[(i,]’)] e P*lwith(i,j) € Pk}, (10)

where T is the projection matrix of frame k under the camera pose P¥. Based on OF, CPS is
calculated by projecting the overlapping pixels onto the volume and normalizing based on
whether the corresponding voxel is in the coarsest voxel level:

oF = {Pk(i) €0

,ga >o.%}, )

where PK() represents any pose particle in the PTM Q and N; is the number of overlapping
pixels projected onto the coarsest voxel level. Due to the uncertainty of edge pixels in the
PNM plane segmentation, we relax the percentage of N relative to the total overlapping
pixels to 96% based on the empirical values obtained in the experiment to ensure coverage of
the optimal solution. Meanwhile, we use the same method to identify the set of overlapping
pixels QF between the depth frames Ifd‘ and I§*1:

QF = {(i,j) T+ (Tk)il[(i,j)} e I lwith(i,j) € 1{;}. (12)

In each iteration t during the optimization of P¥, Qf is used as the valid pixel set to
evaluate the particle fitness:

L peor ¥ (R + )
|Qf]

p(Ptk(i)> =exp| — , (13)

where RF and t¥ represent the rotation and translation of the pose particle Ptk 0 e 0F, and
§(-) represents the so far constructed TSDF. Note that the inter-frame overlap is deliberately
maintained at a non-negligible level to avoid any potential over-evaluation of poses with
minimal overlap. Our PST scaling scheme ensures that the sampled transformation, relative
to the pose of the previous step, remains within a controlled range of 10 cm in translation
and 10° in rotation. This careful constraint ensures that the evaluations remain within
appropriate bounds and accurately reflect the relevant transformations. In each iteration,
we use the method in [4] to scale and move PST until we find the optimal pose T, i.e.,

T = (P |max (o (PI")) ). (14)
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The experiments will demonstrate that our method requires significantly fewer itera-
tions to find the optimal solution compared to the method in [4] while also reducing the
time and resource consumption for pose estimation.

4. Experiments

In this section, we first introduce the hardware information and computational per-
formance of our platform, as well as the settings of experimental parameters. Then, we
describe the dataset used in our experiments. After that, we evaluate the effectiveness of
planar constraints in improving the efficiency of random optimization for pose estimation
and the importance of imaging validity factor and scan validity factor weighting for surface
reconstruction, as well as the memory usage and processing efficiency of our entire system.
Finally, we compare our onboard real-time 3D reconstruction method with state-of-the-art
methods through qualitative and quantitative experiments.

4.1. Performance and Parameters

We conducted all experiments on an embedded computing device, the Nvidia Xavier
NX. This device is equipped with a six-core ARM Cortex-A57 CPU and a dual-core NVIDIA
Denver 2.0 CPU, along with 8 GB of LPDDR4x RAM and an NVIDIA Volta GPU with 512
CUDA cores, providing a processing capacity of 1.3 TFLOPS. Furthermore, it is equipped
with 16 GB of high-speed HBM2 memory, which offers fast data transfer and processing
capabilities. We set the basic voxel size to by = 2 mm, which provides a very high level
of detail. In our hierarchical representation, we used three levels of resolution, resulting
in a coarsest voxel size of b, = 8 mm. The truncation distance for the TSDF was set to
u = 24 mm. To increase the credibility of our experiments, we did not add any additional
acceleration processing to the proposed method, kept the consistency of the experimental
data input, and left all other parameters at their default values unless otherwise specified.

4.2. Benchmark

We defined a fast camera motion as having a linear velocity greater than 1 m/s
or an angular velocity greater than 2 rad/s. We found two publicly available datasets,
FastCaMo [4] and FMDataset [52], that satisfy this definition. FastCaMo is the first RGB-
D sequence dataset specifically designed for fast camera motion, comprising synthetic
(FastCaMo-Synth) and real captured (FastCaMo-Real) parts, as well as ground truth tra-
jectories and reconstructions for evaluating system performance. FMDataset not only
provides color and depth images captured by a depth camera but also IMU information
of the camera. We also evaluated our method on traditional RGB-D datasets, including
TUM RGB-D [53], ICL-NUIM [54], and ETH3D [55]. The motion speed of the former two
is lower than our defined fast camera motion (usually less than 1 m/s), while in ETH3D,
we focus on three sequences with the prefix “camera shake”, all of which have angular
velocities above 2.5 rad/s. In addition, we captured four RGB-D sequences in our flight
experiments, namely, “corridorl_slow”, “corridorl_fast”, “corridor2”, and “courtyard”.
Table 2 provides speed information for all datasets being tested. Note that the speed of
the publicly available datasets comes from ground truth camera trajectories obtained by
a visual motion capture system, while the speed of FastCaMo-Real, FMDataset, and our
captured real-world RGB-D sequences comes from successfully tracked camera trajectories,
as it is difficult for a visual motion capture system to track such fast camera motion.

4.3. Evaluation

In this section, we conducted comprehensive ablation experiments to evaluate key
design aspects of our system. This included assessing the effectiveness and efficiency of
the planar constraint in the random optimization process, evaluating the benefits of a
hierarchical sparse surface representation for scalable reconstruction, and analyzing the
weighted depth fusion scheme incorporating imaging and scan validity. Additionally, we
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assessed the efficiency of the overall system. These experiments provide valuable insights
into the performance and significance of each component in our proposed method.

Table 2. Statistics on camera moving speed (average linear velocity 7, maximum linear velocity v;uax,
average angular velocity @, and maximum angular velocity wy,x) for different benchmark datasets.

Sequence 7 (m/s) Vmax(m/s) w (rad/s) Winax(rad/s)
TUM_frl/desk 0.41 0.66 0.41 0.94
TUM_frl/room 0.33 0.76 0.52 0.85
TUM_fr3/ office 0.25 0.36 0.18 0.35
ICL_Ir_ktO 0.13 0.27 0.16 0.33
ICL_Ir_ktl 0.05 0.09 0.10 0.40
ICL_Ir_kt2 0.28 0.40 0.23 0.46
ICL_Ir_kt3 0.27 0.38 0.12 0.41
ETH3D_camera_shakel 0.46 0.64 1.88 2.65
ETH3D_camera_shake2 0.33 0.48 1.90 3.27
ETH3D_camera_shake3 0.37 0.51 2.16 3.43
FastCaMo_real/lab 0.98 3.62 0.91 5.20
FastCaMo_real/apartmentl 1.05 422 1.08 5.73
FastCaMo_real/apartment2 1.71 3.73 1.38 4.21
FastCaMo_synth/apartmentl  1.53 3.88 0.92 2.08
FastCaMo_synth/hotel 1.66 3.94 1.13 2.23
FMDataset_dorm1_fastl 0.52 0.92 1.24 2.59
FMDataset_dorm?2_fast 0.75 1.60 1.23 2.16
FMDataset_hotel_fastl 0.75 1.26 1.29 2.34
FMDataset_livingroom_fast 0.53 1.77 0.85 241
FMDataset_rent2_fast 0.83 1.54 1.31 2.27
Ours_corridorl_slow 0.40 0.73 0.55 0.89
Ours_corridorl_fast 0.92 1.44 1.31 3.03
Ours_corridor2 0.87 1.95 1.42 2.89
Ours_courtyard 1.01 2.30 1.09 3.37

4.3.1. Random Optimization with Planar Constraint

To evaluate the effectiveness and accuracy of the proposed planar-constrained stochas-
tic optimization method for tracking fast camera movements, we compared stochastic
optimization methods with and without planar constraints [4]. The method without planar
constraints involves sampling particles directly around the best pose from the previous
frame for particle fitness evaluation and iteratively computing APS to obtain the optimal
solution. The iteration counts of the two methods for processing the same dataset were
statistically analyzed on different test datasets, as shown in Figure 4.

Compared to the original approach, the introduction of planar constraints significantly
reduces the number of iterations required to optimize each frame. This greatly improves
the efficiency of the optimization process. Due to the CPS selection mechanism, the range of
randomly selected particles is significantly narrowed, resulting in a set of particles that are
closer to the optimal pose in the initial iteration and to some extent avoid getting trapped in
local optima. Our implementation ensures that the random optimization process converges
quickly with a minimum number of iterations. When we set the termination condition to
“APS is empty for two consecutive iteration steps” and “the change of the optimal pose
T+ in 6DOF is less than 1 x 10~ for two consecutive iteration steps”, our optimization
algorithm typically converges in less than two iterations for slow motion (<1 m/s) and in
less than five iterations for fast motion (>1 m/s).
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Figure 4. Comparison of average iteration counts per frame between the two random optimization
methods with and without the proposed planar constraint [4].

We further validated the efficiency of our implementation by calculating the average
processing time per frame ¢, as shown in Table 3. Additionally, the table presents the
Absolute Trajectory Error (ATE) between our method and the comparison methods against
the ground truth trajectory, as well as the Mean Distance (MD) between the reconstructed
and ground truth models. The Root Mean Square Error (RMSE) of the ATE for slow motion
sequences was calculated using the tool provided by Sturm et al. [53]. Due to the difficulty
of capturing such fast camera motion with a visual motion capture system, there is no
ground truth trajectory available in the public datasets for our captured sequences. Hence,
we indirectly assessed the accuracy of pose estimation by utilizing high-precision 3D dense
laser-scanned reconstruction models provided by Zhang et al. [4] as ground truth. The
accuracy evaluation was conducted by calculating the MD between the reconstructed
model and the laser-scanned model, employing the open-source software CloudCompare
version 2.11.3.

Table 3. Comparing the efficiency and accuracy of pose estimation on whether to introduce planar
constraint. The time and accuracy best results for each sequence are highlighted in blue color.

t (ms) ATE (cm) MD (cm)
Sequence
RoseFusion OwlFusion RoseFusion OwlFusion RoseFusion OwlFusion
fr1/desk 218.38 23.35 2.48 1.93 — —
fr1/room 219.04 24.20 4.86 4.32 — —
fr3/ office 209.98 23.81 2.51 2.63 — —
Ir_ktO 214.63 24.73 0.83 0.77 — —
Ir_ktl 212.69 24.55 0.71 0.80 — —
camera_shakel 224.24 27.09 0.62 0.93 — —
camera_shake2 227.84 26.64 1.35 1.07 — —
camera_shake3 232.18 29.39 4.67 4.54 — —
synth/apartmentl 228.93 29.60 1.10 1.32 4.52 4.37
synth/hotel 230.62 30.08 1.52 1.33 5.25 5.54
real/lab 230.24 30.27 — — 4.86 4.50
real /apartmentl 230.75 30.51 — — 4.88 5.45
real /apartment2 228.69 24.20 — — 4.23 5.01
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Compared to the original random optimization method for pose estimation, the
method with planar constraints improves the efficiency of pose estimation by about 8 times
while maintaining the same level of accuracy. The time it takes to estimate the pose increases
as the camera’s velocity increases since more optimization iteration steps are required to
ensure accurate and stable tracking of fast-moving cameras. However, our pose estimation
method and the comparison method do not have the same iteration time consumption,
as this depends on the chosen strategy for particle sets and fitness evaluation. While
we adopted the same approach to assess the particle fitness as the comparison method,
we pre-selected a particle set with a smaller CPS of planar constraints to significantly
reduce computational costs during the random optimization process and accelerate pose
optimization convergence. The improvement in pose estimation efficiency is due to our
estimation algorithm, as well as the GPU parallel computing and the hierarchical sparse
data structure we used. It is worth noting that in our tests, we only used sequence frames
that could be reconstructed with the same range as the comparison method. The reason for
this is that the method lacked scene scalability, which we addressed in our implementation.

4.3.2. Scalability and Quality of Scene Reconstruction

To evaluate the scalability of our proposed method, we compared its ability to recon-
struct long RGB-D sequences with regular volume reconstruction approaches. Figure 5
presents and compares the reconstruction outcomes of both methods on real-world scenes
captured by our MAV. The sequences’ ground length exceeded 30 m, with corridor 1 and
courtyard exceeding 50 m. Our proposed method produced complete reconstructions of
the entire sequences in all three scenes, while the comparison method only provided partial
reconstructions. This limitation stemmed from the regular volume surface reconstruction
approach’s need to predefine the reconstruction range before surface reconstruction, as
well as the limited GPU memory available in airborne computing devices, which resulted
in a much smaller maximum reconstruction range than that of base stations. However,
our approach did not require such presetting of the reconstruction range and enabled
timely data exchange between the GPU and host via the adopted bi-directional GPU-Host
data exchange approach, thus freeing up space for subsequent surface reconstruction.
Additionally, the random optimization pose estimation in regular volume reconstruction
experienced a decline in precision when the camera approached the edge of the predefined
reconstruction boundaries, leading to reconstruction misalignment, as demonstrated by
the red box in Figure 5.

To validate whether the imaging and scan validity weighting introduced is useful in
reducing sensor noise in deep fusion, we compared the reconstruction details of two meth-
ods, one with weighting and the other without. Figure 6 depicts the partial reconstruction
details of two publicly available datasets. Our approach measures the observation validity
in the deep fusion, thus obtaining high-quality denoising modeling from defective data. In
an extreme case, as shown in Figure 7, there is a defect in scanning the left part of the teddy
bear, causing significant noise on the reconstructed surface (as indicated by the red circle).
On the contrary, our weighted fusion method demonstrated better modeling performance.
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Our scalable reconstructions Regular volume reconstructions

corridorl

Figure 5. Gallery of 3D reconstruction results for the three real captured sequences by our MAV.
For each sequence, we compare the scalability of our reconstruction method and regular volume
construction method (other modules are consistent with our system).

fr3/office hotel

Figure 6. Gallery of 3D reconstruction details for the two publicly available datasets. In the comparison
figure, the left side considers weighting by imaging and scan validity, while the right side does not.

Color image 3D Reconstruction Depth image

Figure 7. An extremely unfavorable observation: throughout the entire scanning sequence, the left
side of the teddy bear’s body remains at a too far distance from the camera (Distance too far), deviated
from the camera center (Off-center), or with a large scanning angle (Large angle).
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4.3.3. System Efficiency

Real-time performance is a critical requirement in many applications, particularly
in robotics technology. Table 4 presents typical frame rates achieved by our CUDA par-
allel processing implementation, measured on Nvidia Xavier NX GPU. In all cases, they
significantly exceed the real-time performance of the comparison method [4] on airborne
consumer-grade graphics hardware. Our system operates in real-time at a rate of 28-37 Hz
without enabling real-time visualization. When real-time visualization is enabled, the sys-
tem’s efficiency decreases, but it still runs at a minimum rate of 30 Hz. This is mainly due to
the more complex interpolation scheme used in the hierarchical voxel representation during
the ray-casting process [19]. The introduction of the effectiveness weighting increases the
time consumption of the surface reconstruction step, which accounts for approximately
8.7% of the total time consumption compared to the comparison method’s 7.5%, which can
be negligible.

Table 4. Comparing the system running efficiency on different systems (the comparison method [4],
our method with real-time visualization, and our method without real-time visualization), measured
in Frames Per Second (FPS).

FPS (Hz)
Sequence
Comparison Ours w/ Vis. Ours w/o Vis.
fr1/desk 3.50 30.19 37.18
fr1/room 3.49 29.14 35.88
fr3/ office 3.64 29.60 36.46
Ir_kt0 3.56 28.51 35.11
Ir_ktl 3.60 28.72 35.37
camera_shakel 3.41 26.02 32.05
camera_shake2 3.36 26.46 32.59
camera_shake3 3.29 23.99 29.54
synth/apartmentl 3.34 23.82 29.34
synth/hotel 3.32 23.44 28.87
real/lab 3.32 23.29 28.68
real/apartmentl 3.32 23.11 28.46
real/apartment2 3.35 30.19 37.18

4.4. Comparison

In this section, we compared our proposed method with the state-of-the-art approaches
in the field. We discussed the similarities, differences, strengths, and limitations of various
methods, providing readers with a thorough and critical assessment. This comparative anal-
ysis helped readers understand the unique contributions and advantages of our proposed
method in relation to other existing techniques.

4.4.1. Quantitative Comparison

We quantitatively evaluated the performance of our method and several state-of-the-art
methods on both normal and fast motion sequences. Table 5 compares our method with
the state-of-the-art online ORB-SLAM?2 [33], ElasticFusion [56], InfiniTAM [18], Bundle-
Fusion [3], and BAD-SLAM [55] on two sequences each from the slow-motion dataset,
ICL-NUIM, and the fast-motion dataset, FastCaMo_synth, in terms of ATE. Our method
achieved camera tracking accuracy comparable to the best-performing BundleFusion on the
slow-motion sequences, which involves global pose optimization through Bundle Adjustment
(BA), while our method does not involve any global pose optimization. As a result, our
method slightly lags behind BundleFusion in terms of accuracy. Our method’s advantage
is best demonstrated in the fast-motion sequences, in which the average speed of camera
motion is over 10 times faster than that of ICL-NUIM. Other comparison methods failed
to achieve successful reconstruction with these fast-motion datasets, whereas our method
still achieved tracking accuracy with an ATE of less than 1.5 cm on all three sequences.
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This discrepancy arises due to the fact that the other methods rely on feature points or
other photometric information for localization. However, in the case of fast motion, the
resulting blurry RGB images pose challenges in providing relevant information for accurate
localization.

Table 5. Comparing the ATE RMSE (cm) of camera tracking on the four RGB-D sequences from two
datasets, ICL-NUIM and FastCaMo_synth. The best and the second-best results for each sequence

are highlighted in blue and colors, respectively.

Method Ir_kt0 Ir_kt1 syn./apartment1 syn./hotel
ORB-SLAM2 1.11 0.46 — —
ElasticFusion 1.06 0.82 41.09
InfiniTAM 0.89 0.67 10.38 —
BundleFusion 0.61 65.33
BAD-SLAM 1.73 1.09 — —
OwlFusion 0.72 1.08 1.47

We compared the reconstruction performance of two synthetic sequences and three real
capture sequences from the FastCaMo dataset in Table 6. The ground truth reconstruction
of real capture sequences was obtained from high-precision Light Detection and Ranging
(LiDAR) scans, and synthetic sequences also had ground truth surfaces of the same type.
As a result, we evaluated the completeness, accuracy, and real-time performance of the
reconstructed surfaces with regard to the ground truth surfaces. Since the reconstruction
accuracy measures only the MD of overlap (inlier) areas between the reconstructed surfaces
and ground truth surfaces, we set the inlier threshold to 15 cm in Table 6. When the
threshold was set to 5 cm, the average error was between 1 and 3 cm, and the completeness
decreased by about 10%. Reconstruction quality is best reflected in completeness, and in
this regard, our method is consistently superior to the two comparison methods, as shown
in the visual results of the reconstruction presented in Figure 8. This is attributed to the fact
that, on one hand, the comparative methods struggle to track fast motion accurately, and on
the other hand, their re-localization modules struggle to function effectively solely based on
blurry RGB images after tracking failure. Real-time performance is a focus of interest in the
robotics community, and our system achieves an efficiency equivalent to that of InfiniTAM,
the state-of-the-art high frame rate 3D reconstruction system, on mobile devices. Although
the FPS is slightly lower than that of InfiniTAM, our method is significantly superior to it
in terms of reconstruction completeness and accuracy. In contrast, BundleFusion requires
more processing time to handle input frames on resource-limited mobile devices and even
encounters program running failures due to the high computational overhead of running
BundleFusion.

Table 6. Comparing the reconstruction completeness (Compl. %), accuracy (Acc. cm), and running
efficiency (FPS Hz) on the five RGB-D sequences from the FastCaMo_synth and FastCaMo_real
datasets. The best results for each sequence are highlighted in blue color.

InfiniTAM BundleFusion OwlFusion
Sequence

Compl. Acc. FPS Compl. Acc. FPS Compl. Acc. FPS
syn./apartmentl 21.74 7.32 31.87 39.82 5.48 0.67 93.65 4.37 29.34
syn./hotel 33.13 6.98 28.33 47.64 4.90 0.42 94.57 5.54 28.87
real/lab 11.21 9.24 30.75 16.88 5.42 — 92.81 4.50 28.68
real /apartmentl 9.83 8.73 29.37 34.23 6.39 — 87.23 5.45 28.46
real /apartment2 15.07 8.68 32.92 25.17 5.23 — 89.65 5.01 37.18
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Figure 8. Gallery of 3D reconstruction results for the three real captured sequences by our MAV.

4.4.2. Qualitative Comparison

In the qualitative comparative experiment, we present the visual results of 3D re-
construction for the fast-motion dataset. Figure 8 shows the reconstruction of three real
capture sequences by our MAV. For each sequence, we display the reconstruction results
of OwlFusion (left), InfiniTAM (middle), and BundleFusion (right). It is evident that our
reconstruction is more complete and the surface quality is acceptable compared to the com-
parison methods. Although BundleFusion failed to succeed on these fast-motion sequences,
the few frames with successful tracking correspond to a well-reconstructed surface.

Due to the almost complete lack of loops in our dataset, which is a problem that robots
must face directly in their actual applications, and our desire not to complete too much
redundant work, even though both comparative methods have re-localization modules, it is
difficult to recover reconstruction after losing tracking. Additionally, the aggressive camera
motion results in severe image motion blur, making the loop closure of BundleFusion,
which depends on color information, not work well. Although InfiniTAM successfully
detects loops using depth images, it still cannot correct the significant accumulation error
caused by fast camera motion. In contrast to these frame-to-frame pose estimation methods,
our motion tracking uses a frame-to-model method, which has higher robustness and
accuracy [2,56]. This makes our system much less prone to drift in fast motion at the same
distance than some frame-to-frame methods, as shown in Tables 5 and 6. However, the
accuracy of the frame-to-model pose estimation method depends on an accurate model,
which forces us to pay more attention to the surface quality of reconstruction. Despite this,
significant drift still occurs in the reconstruction of extremely long-distance scenes.

5. Limitations

Although our method has achieved excellent scalable real-time 3D reconstruction
performance on low-compute devices, it still has some limitations. Firstly, the efficiency
of our system just meets the “real-time” requirement, i.e., a frame rate of 30 Hz for image
processing, which makes it impossible to simultaneously perform scene reconstruction
and path planning algorithms onboard devices. Additionally, our method may suffer
from pose estimation errors in scenes with degraded geometric features, such as graffiti
walls. Joint estimation of geometric and photometric information may be a possible
solution. Furthermore, within this paper, our focus has been primarily on the geometric
reconstruction of scenes. However, it is crucial to acknowledge that rich texture information
plays a pivotal role in achieving high-fidelity 3D reconstruction. Unfortunately, blurry
RGB images pose a challenge in providing high-quality texture mapping. Finally, our
system lacks the capability of global model optimization, which limits the application of
high-quality ultra-long distance scene reconstruction. We believe that these limitations are
worth exploring in future research.
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6. Conclusions

In this work, we proposed a depth-only onboard scalable real-time 3D reconstruction
method on MAVs. Our approach leverages two main design choices to achieve satisfactory
results. Firstly, we introduced planar constraints in the random particle selection process
by computing partition normal maps, reducing the computational cost of the random
optimization and improving the efficiency of pose estimation. Secondly, we combined
the hierarchical voxel hashing function with particle swarm optimization to further re-
duce the computational burden and storage cost of onboard devices, enabling real-time
reconstruction of large-scale scenes. Lastly, we considered the validity of camera scanning
and imaging and quantified it before incorporating it into the depth data fusion process
to control the noise impact on the reconstructed surface. Future research can address the
limitations of our approach, such as increasing the global model optimization capability,
further improving the robustness of pose estimation while reducing the demand for com-
putational resources, and expanding the application scenarios. Additionally, integrating
other sensor data, such as stereo cameras and LiDAR, can be explored to further improve
the accuracy and robustness of 3D reconstruction.
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