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Abstract: The robust flight-path angle consensus tracking control problem for multiple unmanned
fixed-wing aircrafts is investigated in this paper, where the non-minimum phase properties and the
presence of measurement errors are systematically addressed. A three-module control scheme is
proposed for each aircraft: a Distributed Observer that obtains the available information from the
reference system and the neighbor aircraft to provide the estimates of the reference states; a Casual
Stable Inversion that calculates the bounded estimates of the desired input, desired external states, and
most importantly, desired internal states to resolve the divergence issues caused by the non-minimum
phase properties; and a Local Measurement Error Rejection Controller that includes a measurement
error estimator (MEE) to actively compensate for the adverse effect of measurement errors to achieve
robust consensus tracking control. Stability, convergence, and robustness of the proposed control
are analyzed, showing that (1) the non-minimum phase issue can be systematically resolved by
the designed Casual Stable Inversion to ensure aircraft internal stability and flight safety, and (2) the
consensus tracking accuracy can be improved by tuning a single MEE parameter, which is favorable
in practical applications to large-scale unmanned aircraft formations. Comparative simulation results
with classic PID-based consensus control demonstrate the advantage of the proposed control in
transient oscillations, steady-state tracking accuracy, and robustness against measurement errors.

Keywords: consensus trajectory tracking; non-minimum phase system; measurement error rejection;
flight-path angle control; fixed-wing aircraft

1. Introduction

Formation control of unmanned fixed-wing aircrafts has received considerable at-
tention in the past decades, as it holds promise for extending the capability of a single
aircraft to satisfy the growing demand for complex flight missions at a large scale, such
as aerial surveillance [1], monitoring [2], search [3], target tracking [4], and so on. As one
fundamental control mode in these missions, flight-path angle consensus tracking control
achieves motion synchronization of the unmanned aircraft during the climb [5], steady
wing-level flight, and landing [6]. However, compared with consensus control of other
aircraft states (such as pitch angle, angle of attack, velocity, or height), flight-path angle
consensus control is much more challenging due to the inherent non-minimum phase
properties of the flight-path angle dynamics. Specifically, for the conventional unmanned
fixed-wing aircraft longitudinal model, one real open right half-plane zero (sometimes
called the “non-minimum phase zero”) exists in the input–output relationship between the
elevator deflection and flight-path angle [7], rendering the corresponding internal dynamics
unstable. If the internal dynamics stabilization is not considered in the output tracking

Drones 2023, 7, 350. https://doi.org/10.3390/drones7060350 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7060350
https://doi.org/10.3390/drones7060350
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-4331-0618
https://orcid.org/0000-0002-0812-7095
https://doi.org/10.3390/drones7060350
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7060350?type=check_update&version=2


Drones 2023, 7, 350 2 of 26

control design for non-minimum phase systems, the internal states will almost certainly
diverge to destabilize the whole system. Unfortunately, most existing consensus control
and consensus tracking control methods (such as [8–14]) assume the controlled system to
be minimum-phase or have no internal dynamics. These methods can hardly be applied to
the considered problem in this paper.

To the best of the author’s knowledge, only a handful of works in the literature
deal with the problem of consensus control of non-minimum phase systems. Work [15]
presents a pole-placement-based distributed adaptive output consensus control scheme
for heterogeneous non-minimum phase multi-agent systems in a leader-follower manner,
to address the issues of unknown agent parameters and unknown non-identical relative
degrees. A low-gain feedback consensus protocol is proposed in [16] for non-minimum
phase discrete-time linear multi-agent systems, to achieve output consensus to the optimal
point that minimizes the overall objective function, within any specified consensus error.
In [17], a two-term control law is proposed for non-linear non-minimum phase multi-
agent systems, where a local term stabilizes the internal dynamics, and a coupling term
guarantees output consensus. A Lyapunov-like function-based time-dependent switching
law is proposed in [18] to ensure state-stabilization of a class of non-minimum phase
non-linear systems with switched dynamics. The non-uniform and unknown delays in the
consensus control problem of multiple heterogeneous general linear systems are considered
in [19], and a pre-filter is utilized to shape the dynamics of the agent that are stabilized
by a local feedback controller, such that the consensus condition is satisfied. Work [20]
presents an output redefinition-based control method for non-linear non-minimum phase
multi-agent systems to achieve output consensus while stabilizing the internal dynamics.

One important limitation of the methods proposed in the aforementioned works,
however, lies in the fact that only output consensus is considered in the design, whereas
the output tracking of a reference can hardly be achieved. This restricts the application of
these methods to the considered problem, because flight-path angle consensus tracking
control, instead of consensus control, is generally required in real flight missions to achieve
the path-following of certain desired trajectories. To guarantee accurate output consensus
tracking for multiple non-minimum phase systems, an iterative output redefinition-based
method is proposed in [21], which overcomes the inherent tracking accuracy limitation of
classic output redefinition methods. In [22], this goal is attained by employing a distributed
iterative learning control based on the successive projection framework that ensures the
satisfaction of the system constraints. In contrast, an inversion-based control approach
is proposed in [23], where a causal stable inversion module uses local and neighbors’
information from the distributed observer network to calculate the estimates of the bounded
input and state reference for the controller, such that the output tracking and internal
dynamics stabilization are simultaneously delivered.

Another practically important issue for aircraft control is measurement error rejection.
The measurement errors, when brought to the closed-loop system by the feedback con-
trol, can degrade the control accuracy, wear the actuator, and even cause instability [24].
However, none of the above works takes measurement error rejection into account in the
control design, and the related discussions in the literature are few. The measurement errors
are considered in the non-minimum-phase multi-agent system output consensus control
problem in [25,26], but the measurement errors and external disturbances are assumed to
be generated by the states of the same exosystem. This assumption may be impractical
in the sense that measurement errors and external disturbances can exhibit completely
different frequency characteristics, and thus, they cannot, in most cases, be described based
on a single exosystem model. From the above observations, the consensus tracking control
of multiple non-minimum phase systems in the presence of measurement errors, as well as
its application to fixed-wing aircraft, are still open to be investigated.

In this paper, a three-module control scheme is developed to deal with the flight-path
angle consensus tracking control problem for multiple unmanned fixed-wing aircraft. The
modules Distributed Observer, Casual Stable Inversion, and Local Measurement Error Rejection
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Controller achieve distributed reference system estimation, bounded estimation of desired
input and state for internal dynamics stabilization, and robust measurement error rejection
tracking control, respectively. The novelties and contributions of this paper are summarized
as follows.

1. Regarding the consensus control of multiple non-minimum phase systems, compared
with the existing approaches (such as [15–20]) that are only capable of achieving output
consensus with perfect measurements, the proposed approach is the first attempt to
systematically resolves the output consensus tracking and the measurement error
rejection problems simultaneously. Moreover, this paper shows the application of the
proposed approach to the flight-path angle consensus tracking for multiple unmanned
fixed-wing aircrafts;

2. The separation property of the proposed three-module control scheme allows it to be
easily modified and adapted to other robust or optimal consensus tracking control
problems of non-minimum phase unmanned aircraft formations or heterogeneous
unmanned aircraft formations;

3. As proved theoretically and verified by simulations, a single parameter Tni in the
proposed Local Measurement Error Rejection Controller determines the system robustness
against measurement errors and the overall control accuracy. This property makes
parameter tuning easier and more intuitive than other approaches involving multi-
parameter tuning and optimization, especially for formations of large numbers of
unmanned aircraft.

The rest of this paper is organized as follows. Section 2 formulates the flight-path angle
consensus tracking control problem for multiple unmanned fixed-wing aircraft, where the
aircraft model, communication topology, and control objectives are described. Section 3
presents the proposed control scheme with the detailed designs of the three modules
Distributed Observer, Casual Stable Inversion, and Local Measurement Error Rejection Controller.
Stability, convergence, and robustness analysis is provided in Section 4, and the theoretical
analysis results are further verified by numerical simulations in Section 5. Finally, the
conclusions are drawn in Section 6.

2. Problem Formulation

In this section, the modeling of the flight-path angle motion of an unmanned fixed-
wing aircraft is first presented, followed by the description of the considered consensus
tracking control problem of multiple aircraft in the presence of measurement errors.

The linearized longitudinal dynamics of conventional unmanned fixed-wing aircraft
can be expressed in a state-space form as: α̇

q̇
θ̇

 =

 a11 a12 0
a21 a22 0
0 1 0


︸ ︷︷ ︸

Ao

 α
q
θ


︸ ︷︷ ︸

xo

+

 b1
b2
0


︸ ︷︷ ︸

Bo

δe,

y =
[
−1 0 1

]︸ ︷︷ ︸
Co

xo,

ys = xo + n, (1)

where α ∈ R denotes the angle of attack, q ∈ R denotes the body-axis pitch rate, θ ∈ R
denotes the pitch angle, δe ∈ R is the system input, denoting the elevator deflection angle,
the system output is the flight-path angle denoted by y = γ = θ− α, and ys is the measured
output with measurement error n.

Assumption 1. ‖n(t)‖2 is bounded for all t ≥ 0.
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According to Section 3.1.2 of [27], the normal form (in which the internal states are
not explicitly driven by the control inputs) of system (1) can be obtain by applying a non-
singular linear transformation matrix T ∈ R3×3 to system (1). Specifically, applying the
following coordinate transformation matrix:

T =

 −1 0 1
1 − b1

b2
0

0 0 1

 (2)

to the original state xo generates a new state vector:

xT = Txo =
[

γ ηT ]T , (3)

where γ is the external state and η ∈ R2 is the internal state. Suppose b1 6= 0 and b2 6= 0
are true under all flight conditions, which is reasonable in the sense that b1 = b2 = 0
renders the aircraft uncontrollable. Then, it is clear that the transformation matrix (3) is
non-singular. In the new coordinate, the system matrix and input matrix satisfy:

AT = TAoT−1,

BT = TBo, (4)

where AT can be partitioned into four 2× 2 blocks as:

AT =

[
Aγ Aη

G D

]
, Aγ ∈ R, Aη ∈ R1×2, G ∈ R2×1, D ∈ R2×2, (5)

and BT is expressed explicitly as:

BT =
[

bT1 0 0
]T , bT1 ∈ R. (6)

The original system model (1) has now been converted into its “normal form” as:

ẋT = ATxT + BTδe,

y =
[

1 0 0
]
xT . (7)

Based on the feedback linearization technique, the virtual input is defined as:

u = Aγγ + Aηη+ bT1δe, (8)

then, the original input δe can be calculated from the virtual input u and the new state
vector xT :

δe =
1

bT1
(u− Aγγ− Aηη). (9)

With (8), the normal form (7) can be further rewritten as:

γ̇ = u, (10)

η̇ = Dη+ Gγ, (11)

where (10) denotes the external dynamics and (11) denotes the internal dynamics. It is
observed from the above equations that in the normal form, the external state γ is driven
explicitly by the virtual input u, whereas the internal state η is not directly controlled by u,
but is driven by the external state γ.

We employ the following assumptions for the internal dynamics (11):

Assumption 2. D has at least one right half plane pole, and D is non-singular.
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Assumption 3. The pair (D, G) is stabilizable.

The statement “D has at least one right half plane pole” in Assumption 2 limits the
discussion of this paper to a non-minimum phase unmanned fixed-wing aircraft, and the
statement “D is non-singular” ensures the solvability of the bounded particular solution of
the unstable internal dynamics with a casual output reference. Meanwhile, Assumption 3
ensures the stabilizablity of the internal dynamics and the solvability of the considered
control problem.

The state-space equations of (10) and (11) is written as:

ẋ = Ax + Bu,

y = Cx, (12)

where the state vector satisfies x = xT =
[

γ ηT ]T , and the system matrix, input matrix,
and the output matrix are, respectively, given by:

A =

[
0 01×2
G D

]
, B =

[
1

02×1

]
, C =

[
1 0 0

]
. (13)

It is worth noting that the original and new state-space Equations (1) and (12) share
the same output y = γ, the flight-path angle, but have different inputs.

In what follows, the consensus tracking control problem is formulated. To start with,
a group of N ∈ R aircraft is considered, and we define:

N = {1, 2, . . . , N}. (14)

To permit an application to a group of aircraft, the subscript “i” is added to each vari-
able (including the states, input, output, and other related variables such as measurement
error n and internal state η) of the aircraft model. Then, the original model (1) for the group
is rewritten as:

ẋoi = Aoxoi + Boδei ,

yi = Coxoi ,

ysi = xoi + ni, i ∈ N , (15)

to which, when the coordinate transformation (2) is applied, the following normal form
expressed in the new coordinate is obtained:

ẋi = Axi + Bui,

yi = Cxi, i ∈ N . (16)

Suppose the desired output ydi for each aircraft is generated by the same reference
system to achieve consensus output tracking control. Define the reference system as:

żd = Adzd,

ydi = Cdzd, (17)

where zd ∈ R2 is the state of the reference system, ydi = γdi ∈ R is the desired flight-path
angle for i-th aircraft, and Ad ∈ R2×2 and Cd ∈ R2×1 are the state matrix and output matrix
of the reference system, respectively. To ensure the boundedness of the reference signal, Ad
is selected to be Hurwitz.

To describe the communication topology among the union of the aircraft group (15)
and the reference system (17), the following switching graph:

Ḡ(t) = {V̄ , Ē(t)} (18)
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is introduced, where the i-th aircraft is denoted by a node vi, and the reference system is
denoted by the node v0. Use V̄ = {v1, v2, . . . , vN , v0} to denote the node set that includes
the reference system, Ē(t) ⊆ {(vi, vj)|vi, vj ∈ V̄} to denote the edge set which may switch
from time to time. Then, the directed edge ēij(t) indicates that the information of node vj is
accessible to its neighbor node vi at time t. The adjacency matrix and Laplacian matrix of
graph Ḡ(t) is denoted by Ā(t) ∈ RN×N and L̄(t) ∈ RN×N , respectively, where āij(t) = 1
if ēij(t) ∈ E(t), and otherwise āij(t) = 0. Define B̄(t) = diag{b̄ii(t)} ∈ RN×N to describe
the information interaction between each aircraft and the reference, where b̄ii(t) = 1 if
ēi0(t) ∈ E(t), indicating that the i-th aircraft can access the reference system at time t, and
otherwise b̄ii(t) = 0.To ensure the information reachability of the group, the following
assumption on Ḡ(t) is imposed.

Assumption 4 (Assumption 5 in [28]). There exists a subsequence {ik} of {i|i = 0, 1, . . .} with
tik+1
− tik < τ for some positive τ such that every node is reachable from the reference v0 in the

union graph
⋃ik+1−1

j=ik
Ḡ(t).

Figure 1 demonstrates one possible switching communication topology satisfying
Assumption 4, which allows one or some of the subgraphs to be unconnected.

0

1 2

4 3

0

1 2

4 3

0

1 2

4 3

0

1 2

4 3

Subgraph 1

Subgraph 4 Subgraph 3

Subgraph 2

11 1b =

41 1a =

22 1b =
34 1a =

32 1a =

43 1a =

Unconnected Subgraph

Figure 1. The switching communication topology satisfying Assumption 4.

The control objective of this paper is to design a robust consensus tracking controller
δei for each aircraft in the group using its own and its neighbors’ information.

(i-a) Asymptotic consensus tracking: the flight-path angle γi of each aircraft tracks
asymptotically the desired output γdi generated by the reference system (17), namely:

lim
t→∞
|γdi(t)− γi(t)| = 0, ∀i ∈ N , (19)

provided that the measurement error satisfies ni = 03×1;
(i-b) Approximate consensus tracking: γi tracks γdi within an specified error, i.e.,

|γdi(t)− γi(t)| ≤ ςi, ∀t ≥ tςi , ∀i ∈ N , (20)

when ni 6= 03×1, where ςi > 0 is a constant, representing the specified ultimate bound of
the tracking error |γdi(t)− γi(t)|, and tςi > 0 is the settling time;

(ii) Internal state stabilization: the state xoi and the internal state ηi satisfy:

‖xoi (t)‖ < ∞, ‖ηi‖ < ∞, ∀t ≥ 0, ∀i ∈ N . (21)
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In the above objectives, the consensus tracking performance is quantized by the
objective (19) in the absence of measurement error, and the ultimate bound ςi in (20)
specifies the robustness of the controller against measurement errors. Meanwhile, the
objective (21) is essential for the considered non-minimum phase system to ensure that the
unstable internal dynamics are appropriately stabilized.

3. Control Design
3.1. Overall Control Scheme

In this paper, a three-module control scheme is proposed for i-th aircraft shown in
Figure 2. Specifically, by using the available information zd and ẑj from the reference
system (17) and its neighbors, the Distributed Observer of i-th aircraft generates the estimate
of zd, denoted by ẑj, from which the Casual Stable Inversion calculates the feedforward
control term δ̂edi and the state reference x̂odi expressed in the original coordinate system (1)
for the controller. Then, the Local Measurement Error Rejection Controller generates the
elevator deflection control command δei that achieves robust trajectory tracking of the
reference using noisy output feedback signal ysi obtained from the sensors. The design of
each module will be detailed in what follows.

Distributed 

Observer

Casual Stable 

Inversion

Local Measurement Error 

Rejection Controller

The i-th 

Aircraft

ˆ
jz ˆ

iz

dz

ˆ
die

d
ˆ
dio
x

ie
d

Sensor

io
x

is
y

Figure 2. The proposed control scheme.

3.2. Design of the Distributed Observer

The role of Distributed Observer is to provide Casual Stable Inversion with the asymp-
totic estimation of the reference system (17) under a switching and possibly occasionally
disconnected communication topology. The Distributed Observer for the i-th aircraft in the
group is designed as:

˙̂zi(t) = Adẑi(t) + liei(t),

ei(t) = b̄ii(t)[zd(t)− ẑi(t)] + ∑
j∈N

āij(t)[ẑj(t)− ẑi(t)], i ∈ N , (22)

where ẑi ∈ R2 is the state of the Distributed Observer and li ∈ R is the observer feedback gain.
The feedback term ei(t) consist of two components: the first component b̄ii(t)[zd(t)− ẑi(t)]
drives the Distributed Observer to synchronize its state ẑi with the reference system state zd
when the reference information is accessible, i.e., when b̄ii(t) 6= 0; the second component
∑

j∈N
āij(t)[ẑj(t)− ẑi(t)] is to achieve synchronization of the state of the Distributed Observer

of the i-th aircraft with that of its neighbors.
Based on the reference system model (17), the desired flight-path angle for the i-th

aircraft can be calculated from the Distributed Observer (22) as:

γ̂di = Cdẑdi. (23)

Since the controlled system (16) is of non-minimum phase, simply designing an output
feedback controller that tracks the output reference (23) for system (16) can lead to the
divergence of the unstable internal dynamics (11). To stabilize the internal dynamics, an
internal-state feedback control component should be employed in addition to the output
tracking controller. Therefore, the idea of the proposed control scheme is to convert the
original output tracking problem into a full-state tracking problem, such that not only the
output tracking, but also the internal dynamics stabilization, are simultaneously achieved.
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To design a full-state feedback controller, the key problem is to calculate the state reference
from the Distributed Observer (22), which will be discussed in the following section.

3.3. Design of the Casual Stable Inversion

For the i-th aircraft expressed in the new coordinate (16), respectively, define its desired
state and input that correspond to its desired output ydi given by (17) as xdi and udi, which
satisfy the following dynamics:

ẋdi = Axdi + Budi,

ydi = Cxdi. (24)

The process of using ydi and (24) to calculate xdi and udi is called “Inversion”. The
major difficulty of such process lies in the fact that the non-minimum phase property
of (16) renders its inversion dynamics unstable, since the unstable zero in (16) becomes the
unstable pole in the inversion system. If the calculated xdi and udi become unbounded, the
controller can generate unbounded control signal that renders the system states divergent.
Therefore, it is necessary to calculate the bounded particular solution of xdi and udi, denoted,
respectively, by x∗di and u∗di, from system (24). This calculation process is also known as
finding the “ideal internal dynamics” [29] or “stable inversion” [30].

However, classic stable inversion-based approaches require the output reference γd
to be a non-causal signal, whereas in this paper, this requirement is not satisfied due
to two facts. First, the output reference γd for each aircraft is not prior known, but is
obtained online by the Distributed Observer, making the reference a causal signal. Second,
since the subgraphs of the switching communication topology can be unconnected, the
output reference might not be available to some of the aircraft in the formation at certain
times, and thus, obtaining a non-causal reference signal is impossible in the considered
formation control problems. The requirement is only satisfied in the extreme case where
every aircraft in the formation is informed with the full knowledge of the reference system
before formation flights are taken place, but this case, it is not practically meaningful
because no cooperative action is needed for the formation to achieve consensus trajectory
tracking. In this paper, to overcome the limitation of classic approaches, a Casual Stable
Inversion module is designed that only uses the casual reference signals generated by the
Distributed Observer to calculate the asymptotic estimates of the bounded particular solution
in real-time.

In what follows, the state of the Distributed Observer (22) is used to first calculate
the estimate of the desired input ûdi, and then, the estimate of the desired state x̂di is
constructed based on casual stable inversion technique. From (10) and (17), the desired
input is readily obtained by:

udi = γ̇di = Cd Adzdi, (25)

and along with (23), the estimate of the desired input is designed as:

ûdi = ˙̂γdi = Cd Adẑdi. (26)

The estimate of the desired state x̂di can be expressed in a partitioned vector form as:

x̂di =
[

γ̂di η̂T
di
]T , (27)

where γ̂di is already given by (23) and η̂di ∈ R2 is the estimates of the desired internal state
ηdi. To ensure the boundedness of η̂di, the following virtual dynamics are constructed that
η̂di satisfies:

˙̂ηdi = Dη̂di + Gγ̂di + gi, i ∈ N , (28)
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where gi ∈ R2 are auxiliary functions to render (28) globally input-to-state stable. According
to [31], gi can be designed as:

¨̂ηi + p1 ˙̂ηi + p0η̂i = F1 ġi + F0gi, i ∈ N , (29)

where p0 and p1 are the coefficients of the characteristic polynomial of Ad in the reference
system (17) given by:

P(s) = s2 + p1s + p0, (30)

and F0 ∈ R2×2 and F1 ∈ R2×2 satisfy:

F0 = c0(I2 − F1)D−1 − p0D−1,

F1 = I2 − (I2 + p1D−1 + p0D−2)(I2 + c1D−1 + c0D−2), (31)

where c0 > 0 and c1 > 0 determines the convergence speed of gi → 02×1, and I2 is the
2× 2 identity matrix. In the rest of this paper, the notation IN is used to denote the identity
matrix of N-th order. Plugging (28) into (29) eliminates gi to obtain the dynamics of η̂i as:

¨̂ηi + c1 ˙̂ηi + c0η̂i = −(P1G ˙̂γdi + P0Gγ̂di), i ∈ N , (32)

where ˙̂γdi = ûdi, and P0 ∈ R2×2 and P1 ∈ R2×2 satisfy:

P0 = c0D−1 − (P1 + I2)p0D−1,

P1 = (I2 + c1D−1 + c0D−2)(I2 + p1D−1 + p0D−2)−1 − I2. (33)

By running the virtual dynamics (32), each aircraft is able to solve η̂di from γ̂di and ûdi
given by (23) and (26). Up to now, the estimates of desired input, state, and output (denoted,
respectively, by ûdi, x̂di, and γ̂di) have been derived based on the new coordinate (12). The
next step is to convert them back into the original coordinate (1). Define δedi and xodi as
the desired input and state in the original coordinate, respectively, then from (9) and (3)
we have:

δedi =
1

bT1
(udi − Aextxdi),

xodi = T−1xdi, (34)

where
Aext =

[
Aγ Aη

]
∈ R3×1 (35)

denotes the system matrix of the external states. For each aircraft, it is natural to replace ud
and xd in (34) with their estimates ûdi and x̂di, respectively, to obtain:

δ̂edi =
1

bT1
(ûdi − Aext x̂di),

x̂odi = T−1 x̂di, i ∈ N , (36)

which are regarded as the outputs of the Casual Stable Inversion.

3.4. Design of the Local Measurement Error Rejection Controller

In this section, a measurement error estimator (MEE)-based robust controller is devel-
oped to achieve not only trajectory tracking but also measurement error rejection. Specifi-
cally, the MEE is designed based on the closed-loop model to generate the measurement
error estimation signal, by which the controller could employ a corresponding compensa-
tion signal to cancel out the adverse effects of measurement errors. By this idea, the local
robust controller for the i-th aircraft is designed as:

δei = δ̂edi + Ki(x̂odi − ysi + n̂i), i ∈ N , (37)
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where the feedforward signal δ̂edi and the state reference x̂odi are generated by the Casual
Stable Inversion, Ki =

[
k1i k2i k3i

]
is the feedback gain matrix and n̂i is the estimate of

the measurement error ni generated by MEE. In the frequency domain, MEE is designed to
satisfy:

N̂i(s) = Gni(s)Ni(s), i ∈ N (38)

where Gni(s) is a proper stable transfer function, which represents one design freedom of
MEE. Combining (15), (37) and (38) yields:

N̂i(s) = Gni(s)[Ysi (s)− (sI3 − Ao)
−1[Bo δ̂edi (s) + BoKi[X̂odi (s)− Ysi (s) + N̂i(s)] + xoi (0)]], (39)

from which solving N̂i(s) gives the following explicit form of MEE:

N̂i(s) = Ḡni(s)[Ysi (s)− Po[δ̂edi (s) + Ki[X̂odi (s)− Ysi (s)]]], (40)

where

Po(s) = (sI3 − Ao)
−1Bo =


b1s+a12b2−a22b1

s2−(a11+a22)s+(a11a22−a12a21)
b2s−a11b2+a21b1

s2−(a11+a22)s+(a11a22−a12a21)
b2s−a11b2+a21b1

s3−(a11+a22)s2+(a11a22−a12a21)s

, (41)

Ḡni(s) = Gni(s)[I3 + Gni(s)(sI3 − Ao)
−1BoKi]

−1. (42)

It is worth mentioning that the initial condition term xoi (0) is neglected in MEE
design (40), since this term cannot be measured precisely in the presence of measurement
errors. The neglect of xoi (0) can cause an estimation error given by:

Gni(s)(sI3 − Ao)
−1xoi (0)

= Gni(s)


αi(0)s+(−a22αi(0)+a12qi(0))

s2−(a11+a22)s+(a11a22−a12a21)
qi(0)s+(a21αi(0)−a11qi(0))

s2−(a11+a22)s+(a11a22−a12a21)
θi(0)s2+(qi(0)−a11θi(0)−a22θi(0))s+(a21αi(0)−a11qi(0)+a11a22θi(0)−a12a21θi(0))

s3−(a11+a22)s2+(a11a22−a12a21)s

,
(43)

where
xoi (0) =

[
αi(0) qi(0) θi(0)

]T (44)

is the initial state. According to [32], to asymptotically eliminate the adverse effect caused
by (43), the transfer function Gni(s) should include at least one differentiator “s” in its
numerator to cancel out the integrator “ 1

s ” existing in (43), and thus, Gni(s) can be selected
as the following first-order high-pass filter:

Gni(s) =
s

s + Tni
, i ∈ N , (45)

where Tni > 0 is the filter parameter. Under this design, the Ḡni(s) in (42) becomes:

Ḡni(s) =
1

ḠD(s)

 Ḡ11(s) Ḡ12(s) Ḡ13(s)
Ḡ21(s) Ḡ22(s) Ḡ23(s)
Ḡ31(s) Ḡ32(s) Ḡ33(s)

, (46)

where

ḠD(s) = [s3 + (Tni − a11 − a22 + b1k1i + b2k2i)s2 + (−Tnia22 − Tnia11 + a11a22 − a12a21

+ b2k3i − a11b2k2i + a12b2k1i + a21b1k2i − a22b1k1i)s + (Tnia11a22 − Tnia12a21

− a11b2k3i + a21b1k3i)](s + Tni),
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and the entries in the transfer function matrix satisfy:

Ḡ11(s) = s4 + (Tni − a11 − a22 + b2k2i)s3 + (−Tnia22 − Tnia11 + a11a22 − a12a21 + b2k3i

− a11b2k2i + a21b1k2i)s2 + (Tnia11a22 − Tnia12a21 − a11b2k3i + a21b1k3i)s,

Ḡ12(s) = −b1k2is3 + (a22b1k2i − a12b2k2i)s2,

Ḡ13(s) = −b1k3is3 + (a22b1k3i − a12b2k3i)s2,

Ḡ21(s) = −b2k1is3 + (a11b2k1i − a21b1k1i)s2,

Ḡ22(s) = s4 + (Tni − a11 − a22 + b1k1i)s3 + (−Tnia11 − Tnia22 + a11a22 − a12a21 + b2k3i

+ a12b2k1i − a22b1k1i)s2 + (Tnia11a22 − Tnia12a21 − a11b2k3i + a21b1k3)s,

Ḡ23(s) = −b2k3is3 + (a11b2k3i − a21b1k3i)s2,

Ḡ31(s) = −b2k1is2 + (a11b2k1i − a21b1k1i)s,

Ḡ32(s) = −b2k2is2 + (a11b2k2i − a21b1k2i)s,

Ḡ33(s) = s4 + (Tni − a11 − a22 + b1k1i + b2k2i)s3 + (−Tnia22 − Tnia11 + a11a22 − a12a21

− a11b2k2i + a12b2k1i + a21b1k2i − a22b1k1i)s2 + (Tnia11a22 − Tnia12a21)s. (47)

4. Stability, Convergence, and Robustness Analysis

This section presents the stability, convergence, and robustness analysis of the pro-
posed control scheme. From Figure 2, it is seen that the three modules are in a cascade form.
Therefore, each module will be separately analyzed in what follows.

4.1. Analysis of the Distributed Observer

Define the observation error of the i-th Distributed Observer (22) as:

z̃i = zd − ẑi, i ∈ N , (48)

which forms the following observation error vector:

z̃ =
[

z̃T
1 z̃T

2 . . . z̃T
N
]T . (49)

Plugging (17) into (22) gives:

˙̃z(t) = [(IN ⊗ Ad)− li(L̄∗(t)⊗ I2)]z̃(t), (50)

where L̄∗(t) = L̄(t) + B̄(t) and “⊗” is the Kronecker product operator. Then, the conver-
gence of z̃ is shown by the following lemma.

Lemma 1 (Lemma 2 in [28]). Under Assumption 4, ∀li > 0, the state z̃(t) of the observation
error dynamics (50) converges exponentially to 02N×1.

Lemma 1 indicates that for each aircraft, the state of its Distributed Observer (22) satisfies
ẑi(t)→ zd(t) as t→ ∞.

4.2. Analysis of the Casual Stable Inversion

To analyze the stability and convergence of the Casual Stable Inversion, we shall first
define η∗i as the bounded particular solution of:

η̇i = Dηi + Gγdi, i ∈ N . (51)

under any arbitrary initial condition ηi(0). Note that the existence of η∗i is confirmed by
Theorem 1 in [30]. Then, the following lemma is deduced.

Lemma 2. Under Assumption 4, ∀i ∈ N , γ̂di and ûdi are bounded, and will converge to udi and
γdi given in (17) and (25), respectively.
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Proof of Lemma 2. Since Ad is Hurwitz, zd is bounded. Under Assumption 4, Lemma 1
holds. Thus, ∀i ∈ N , ẑi is bounded and converges asymptotically to zd. By comparing
(17) and (25) with (23) and (26), it is readily concluded that γ̂di and ûdi are bounded and
converge asymptotically to udi and γdi, respectively.

Lemma 3. Under Assumptions 2 and 4, ∀i ∈ N , the state η̂di of the virtual dynamics (28) is
bounded and converges asymptotically to the bounded particular solution η∗i of (51), and x̂di is
bounded and converges asymptotically to xdi.

Proof of Lemma 3. Under Assumptions 2, D−1 exists. From Appendix B in [31], virtual
dynamics (28) are input-to-state stable, which ensures the boundedness of η̂di. Under
Assumption 4, Lemma 2 holds, and thus, γ̂di → γdi. Therefore, the solution η̂di of the
virtual dynamics (28) will converge to the bounded particular solution η∗i of (51), since
gi → 02×1. The bounded particular solution η∗i is, by definition, the solution ηdi of the ideal
internal dynamics, and thus, η̂di → ηdi. Based on (27), since γ̂di → γdi and η̂di → ηdi, it is
then concluded that and x̂di is bounded and converges asymptotically to xdi.

4.3. Analysis of the Local Measurement Error Rejection Controller

The closed-loop stability and control performance analysis is presented in this section.
Since the measurement error can degrade the overall trajectory tracking performance, the
estimation performance of MEE is first analyzed. Define the MEE estimation error as:

ñi = ni − n̂i. (52)

Then, we obtain the following lemma.

Lemma 4. Under Assumption 1, ∀i ∈ N , a sufficient small Tni results in an arbitrarily small
estimation error ñi(t) as t→ ∞. Moreover, if ni = 03×1, then ñi(t)→ 03×1 as t→ ∞.

Proof of Lemma 4. Combining (38), (45), and (52) yields:

ñi(t) = Tnin f i(t)− nri(t), i ∈ N , (53)

where

n f i(t) = L−1
{

1
s + Tni

Ni(s)
}

∆
= L−1{H(s)Ni(s)}, (54)

nri(t) = L−1
{

Gni(s)(sI3 − Ao)
−1xoi (0)

}
. (55)

On the one hand, from (43) and (45), it is clear that lim
s→∞

sGni(s)(sI3 − Ao)−1xoi (0) = 0.

By the final value theorem, nri(t)→ 03×1 as t→ ∞. On the other hand, H(s) is a bounded-
input-bounded-output stable transfer function, and ni is bounded under Assumption 1,
and thus, n f i(t) is bounded. Apparently, a sufficient small Tni makes Tnin f i(t) arbitrarily
small, which further leads to an arbitrarily small ñi(t) when t→ ∞.

To analyze the closed-loop control performance, the following lemma is introduced.

Lemma 5 (Lemma 1 in [33]). For the linear time-invariant system:

ẋ = Ax + Bu, (56)

where A is the Hurwitz system matrix, B is the input matrix, x is the state, and u is the input, there
exist a time t∗ ≥ 0, such that x(t) satisfies:

‖x(t)‖2 ≤
2‖B‖2‖u‖∞

ρ

√
(λmax(P))

3

λmin(P)
, ∀t ≥ t0 + t∗, (57)
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for any initial time t0, where 0 < ρ < 1, λmax(P) and λmin(P) are the maximum and minimum
eigenvalue of the symmetric positive definite matrix P, respectively, and P is the solution of the
following Lyapunov equation:

PA + ATP = −I. (58)

Then, the following theorem shows the main results of this paper.

Theorem 1. Under Assumptions 1–4, ∀i ∈ N , the following statements hold:

(i) System (15) is globally uniformly input-to-state stable if the feedback gain matrix is selected
to render Ao − BoKi Hurwitz;

(ii) The state xoi and its corresponding internal state ηi of system (15) are globally uniformly
bounded, i.e., the objective (21) is achieved;

(iii) The output γi of system (15) tracks asymptotically the desired output γdi generated by the
reference system (17) when n = 03×1, i.e., the objective (19) is achieved, and otherwise when
n 6= 03×1, γi tracks approximately γdi, i.e., the objective (20) is achieved.

Proof of Theorem 1. Substituting (37) into (15) gives:

ẋoi = (Ao − BoKi)xoi + Bo(δ̂edi + Ki x̂odi + Kiñi), i ∈ N . (59)

Since (Ao, Bo) is stabilizable, there exists a Ki such that Ao − BoKi is Hurwitz. Then,
the following unforced system:

ẋoi = (Ao − BoKi)xoi , i ∈ N , (60)

is globally exponentially stable at its origin. According to Lemma 4.6 in [34], the forced
system (59), and equivalently, the forced system (15) are both globally uniformly input-to-
state stable. This ends the proof of the statement (i).

For the statement (ii), under Assumptions 1–4, Lemma 2 and 3 hold, and thus, ûdi and
x̂di are bounded. From (36), the boundedness of δ̂edi and x̂odi is further deduced. Then, it is
clear that the input of system (59), i.e., (δ̂edi + Ki x̂odi + Kiñi), is bounded. By the input-to-
state stability of system (59), the state xoi is globally uniformly bounded. Furthermore, the
globally uniform boundedness of the internal state ηi can be readily deduced by applying
the coordinate transformation (3) to the original state xoi . The statement (ii) is, thus, proved.

To prove statement (iii), the following auxiliary system is introduced:

˙̄xoi = (Ao − BoKi)x̄oi + Bo(δedi + Kixodi + Kiñi), i ∈ N , (61)

where x̄oi is the state. The difference between the auxiliary system (61) and the actual
controlled system (59) lies in the use of different reference signals. Specifically, the reference
signals used in the auxiliary system (61) are δedi and xodi , whereas those used in the actual
controlled system (59) are δ̂edi and x̂odi , which are the estimates of δedi and xodi generated
by the Casual Stable Inversion. By Lemmas 2 and 3, ûdi → udi and x̂di → xdi hold. Then,
from (36), it is deduced that δ̂edi → δedi and x̂odi → xodi . Therefore, the input (δ̂edi + Ki x̂odi +
Kiñi) of the actual controlled system (59) converges to the input (δedi + Kixodi + Kiñi) of
the auxiliary system (61), which leads to xoi → x̄oi . It is clear that the output γi = Coxoi , by
definition, convergences asymptotically to γ̄di = Co x̄odi of the auxiliary system (61).

Based on the above analysis, the statement (iii) can be proved by showing that the
auxiliary output γ̄di, instead of the actual output γi, tracks the desired output γdi asymptot-
ically when n = 03×1, or approximately when n 6= 03×1. Taking the derivative of xodi given
by (34), and then using (3)–(6), (12), (13), (24), (34), and (35), the following dynamics of the
reference signal for the auxiliary system (61) are obtained:
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ẋodi = T−1 ẋdi = T−1(Axdi + Budi) = T−1(Axdi + B(bT1δedi + Aextxdi))

= T−1 (A + BAext)︸ ︷︷ ︸
AT

xdi + T−1 BbT1︸ ︷︷ ︸
BT

δedi = T−1 ATT︸ ︷︷ ︸
Ao

T−1xdi + T−1BT︸ ︷︷ ︸
Bo

δedi

= Aoxodi + Boδedi . (62)

Define the reference tracking error of the auxiliary system as:

x̃oi = xodi − x̄oi , i ∈ N . (63)

Then, subtracting (61) from (62) yields the following tracking error dynamics:

˙̃xoi = (Ao − BoKi)x̃oi − BoKiñi, i ∈ N . (64)

Suppose the selected Ki renders Ao− BoKi Hurwitz. When the measurement is perfect,
i.e., n = 03×1, it is seen from the proof of Lemma 4 that ñi → 03×1. Then, system (64) is
reduced asymptotically to a stable unforced system. Thus, the state x̃oi of such system will
converge to the origin, and equivalently, x̄oi → xodi . Moreover, it is already shown that if
xoi → x̄oi , then xoi → xodi is true. Since γi = Coxoi and γdi = Cxdi = CTxodi = Coxodi , it is
readily conclude that γi → γdi, i.e., the objective (19) is achieved.

In what follows, the trajectory tracking performance under n 6= 03×1 is analyzed.
From Lemma 5, it is deduced that there exists a t∗ ≥ 0, such that ∀i ∈ N and for any initial
time t0 ≥ 0, the following inequalities hold:

‖x̃oi (t)‖2 ≤ 2‖Bo‖2‖Ki‖2‖ñi(t)‖∞
ρ

√
(λmax(P))

3

λmin(P)

= ε
∥∥∥Tnin f i(t)− nri(t)

∥∥∥
∞

≤ ε(Tni

∥∥∥n f i(t)
∥∥∥

∞
+ ‖nri(t)‖∞), ∀t ≥ t0 + t∗, (65)

where

ε
∆
=

2‖Bo‖2‖Ki‖2
ρ

√
(λmax(P))

3

λmin(P)
(66)

is a bounded constant, and 0 < ρ < 1. From the proof of Lemma 4, nri(t) → 03×1 holds,
and thus, ‖nri(t)‖∞ is arbitrarily small if t0 is sufficiently large. Meanwhile, a sufficiently

small Tni makes Tni

∥∥∥n f i(t)
∥∥∥

∞
arbitrarily small. Hence, the ultimate bound of ‖x̃oi (t)‖2 can

be adjusted to any arbitrarily small value by changing t0 and Tni. Here, we would mention
again the conclusion made before that xoi → x̄oi , i.e., ‖x̄oi − xoi‖2 is arbitrarily small when
t0 → ∞. Therefore, there exists a t0 ≥ 0, a t∗ ≥ 0, and a Tni > 0, such that ∀i ∈ N and for
any specified ultimate bound ςi > 0, the following inequalities hold:

|γdi(t)− γi(t)| =
∥∥Co(xodi − xoi )

∥∥
2

≤ ‖Co‖2
∥∥(xodi − x̄oi ) + (x̄oi − xoi )

∥∥
2

≤ ‖Co‖2

[
ε(Tni

∥∥∥n f i(t)
∥∥∥

∞
+ ‖nri(t)‖∞) + ‖x̄oi − xoi‖2

]
≤ ςi, ∀t ≥ t0 + t∗. (67)

This result shows that in the presence of measurement errors, the objective (20) can be
achieved by properly choosing a small MEE parameter Tni, and the corresponding settling
time is tςi = t0 + t∗. Up to now, the statement (iii) has been proved.
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4.4. Analysis of the Overall Convergence Time

The above analyses show the stability and convergence of the system, and in what
follows, the convergence time is analyzed. Generally speaking, the overall convergence
time is adjustable, but can be lower bounded by the properties or configurations of the
switching communication topology.

On the ond hand, since the three modules in the proposed control scheme are in a cas-
cade form, as shown in Figure 2, the overall convergence time depends on the convergence
time of each module. The observer feedback gains li in (22), the coefficients c0 and c1 of the
auxiliary function gi in (31), as well as the control feedback gain matrices Ki in (37) are the
determinants of the convergence speed for each module, respectively. Moreover, this speed
can be quantitatively regulated via pole placement or other techniques.

On the other hand, however, the minimum convergence time may exist in general cases
where the subgraphs are not all connected. Specifically, the minimum connectivity require-
ment for the switching communication topology in this paper is given by Assumption 4,
which allows one or some of the subgraphs in the switching sequence to be unconnected.
From Lemmas 1–3 and Theorem 1, the convergence of the three modules is not possible
until Assumption 4 is satisfied, or in other words, until every node vi is reachable from
the reference node v0 in the union graph of the past sequenced subgraphs. The length
of the subgraph sequence that satisfies Assumption 4 can vary due to different sequence
configurations, and thus, the minimum convergence time will also vary in accordance with
the sequence length. This point is best illustrated by taking the switching communication
topology shown in Figure 1 as an example. It is seen that Assumption 4 is satisfied when
starting from Subgraph 1 and switching only once to Subgraph 2. In contrast, when starting
from Subgraph 2, Assumption 4 is not satisfied until the subgraphs switch three times back
to Subgraph 1. This example shows how the minimum convergence time is related to the
configurations of sequenced subgraphs, while in the extreme case where the first subgraph
in the switching sequence is connected, which straightforwardly satisfies Assumption 4 in
the beginning, the overall convergence time can be made arbitrarily small by appropriately
enlarging the aforementioned parameters of the three modules.

5. Application to Unmanned Fixed-Wing Aircraft Formation and Simulation Results
5.1. Unmanned Fixed-Wing Aircraft Model with Non-Minimum Phase Properties

The linearized longitudinal dynamic model of unmanned fixed-wing aircraft with a
conventional configuration can be expressed in the original coordinate (1). One typical
example of the aircraft model is described in what follows. The system matrix and input
matrix of the aircraft satisfy:

Ao =

 −0.839 0.943 0
−0.723 −1.088 0

0 1 0

, Bo =

 −0.108
−11.367

0

. (68)

The coordinate transformation matrix corresponding to Ao and Bo is:

T =

 −1 0 1
1 −0.0095 0
0 0 1

. (69)

In the new coordinate, the block matrices in AT given by (5) satisfy:

Aγ = −6.839, Aη =
[
−6.000 6.839

]
,

G =

[
−99.112
−104.855

]
, D =

[
−99.943 99.112
−104.855 104.855

]
.

(70)



Drones 2023, 7, 350 16 of 26

5.2. Simulation Setup

The simulations are carried out in Matlab/Simulink. A group of four aircrafts (i.e.,
N = 4) is considered herein as an illustrative example, and the control approach is applica-
ble to formations of a larger number of aircraft. The switching communication topology
among the aircraft and the reference system is what is specified in Figure 1. The subgraph
switching sequence starts from Subgraph 1, and the “dwell time” for each subgraph is
2 s. After the dwell time, the subgraph switches from one to another. Moreover, the
subgraph sequence is in a loop manner, and the period of the sequence loop is 8 s. The
initial conditions for each aircraft are:

xo1 =
[
−0.004 rad −0.01 rad/s 0.004 rad

]T ,

xo2 =
[

0.01 rad 0.01 rad/s −0.004 rad
]T ,

xo3 =
[

0 rad 0 rad/s 0 rad
]T ,

xo4 =
[

0.004 rad 0.03 rad/s −0.006 rad
]T . (71)

For the reference system (17), the system matrix, input matrix, and the initial state
satisfy:

Ad =

[
0 0.05π

−0.05π 0

]
, Cd =

[
1 0

]
, zd(0) =

[
0 0.1

]T , (72)

respectively, where the coefficients of the characteristic polynomial of Ad are p0 = 0.0025π2

and p1 = 0. The desired flight-path angle generated by this reference system is γd =
0.1 sin(0.05πt) rad.

For the Distributed Observer of each aircraft, the identical observer feedback gain li = 1
is applied. The initial conditions of each observer are:

z1 =
[
−0.005 0.1

]T , z2 =
[
−0.001 0.08

]T ,
z3 =

[
0 0.1

]T , z4 =
[

0.001 0.12
]T .

(73)

In addition, the initial conditions for the Casual Stable Inversion are:

η̂i = ˙̂ηi =
[

0 0
]T , i ∈ N . (74)

From (33), selecting c0 = 2 and c1 = 3 yields:

P0 =

[
−2.380 2.249
−2.379 2.267

]
, P1 =

[
−3.449 3.281
−3.472 3.332

]
. (75)

As for the Local Measurement Error Rejection Controller, by using linear quadratic regu-
lator (LQR) technique and selecting Q and R as:

Q =

 400 0 0
0 1 0
0 0 300

, R = 1, (76)

the feedback gain for the controller is obtained by:

Ki =
[
−8.210 −2.162 −17.321

]
, i ∈ N . (77)

The MEE parameter of each aircraft is chosen as Tni = 0.02.
To show the advantage of the proposed control, the extensively used PID-based

consensus control shown in Figure 3 is compared in the simulations. The PID control is a
typical output feedback controller, and thus, the process of computing stable inversion to
provide the bounded state reference is not needed. Instead, the PID control additionally



Drones 2023, 7, 350 17 of 26

requires the derivative of the desired output, which, according to the reference system (17),
can be obtained by:

ẏd = Cdżd = Cd Adzd. (78)

Then, for each aircraft, the estimate of the derivative of the desired flight-path angle
can be calculated based on the output of the Distributed Observer as:

˙̂γdi = ˙̂ydi = Cd ˙̂zi = Cd Adẑi, i ∈ N . (79)

Moreover, the PID control cannot be directly applied to the flight-path angle tracking
problem considered in this paper, since the derivative of the flight-path angle γ̇i, which is
required by the derivative control term, is not measurable in practice. To resolve this issue,
a first-order continuous differentiator can be used to approximate γ̇i, which leads to the
following local PID controller design:

δPID
ei

= kp(γ̂di − γsi ) + ki

∫ t

0
(γ̂di(τ)− γsi (τ))dτ + kd( ˙̂γdi −L−1

{
s

τ0s + 1
γsi (s)

}
), (80)

where the feedback gains are selected as kp = −7.5, ki = −0.75, and kd = −3, and the
differentiator time constant is set to τ0 = 0.01.

Distributed 

Observer

Reference 

Conversion
Local PID Controller

The i-th 
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ˆ
jz ˆ
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xˆ ˆ di dig g&
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Figure 3. PID-based consensus control scheme.

5.3. Simulation Results

Table 1 summarizes the three cases considered in the simulation, and the resulting
ultimate bounds of flight-path angle tracking errors in the absence/presence of measure-
ment errors. Specifically, Case 1 and 2 validates and compares the control performance of
the propose control and PID-based consensus control, while Case 3 verifies the theoretical
results of Theorem 1, showing that the ultimate bounds of tracking errors can be reduced
easily by reducing a single MEE parameter Tni.

Table 1. The ultimate bounds ςi of the flight-path angle tracking errors γ̃(t) = γdi(t)− γi(t) after the
settling time tςi = 40 s.

Case
No. Control Approaches Eq.

The Ultimate Bounds
in the Absence of

Measurement Errors ?

The Ultimate Bounds
in the Presence of

Measurement Errors ?

1 The proposed control (37) ςi = 0.0000 rad ςi = 0.0014 rad

2 PID-based control (80) ςi = 0.0003 rad ςi = 0.0138 rad

3 The proposed control
under different Tni

(37) Not Applicable
ςi = 0.0014 rad (Tni = 0.02)
ςi = 0.0023 rad (Tni = 0.2)
ςi = 0.0032 rad (Tni = 2)

? The pitch angle and pitch rate measurement errors are actual sensor noises logged from the MPU6000 series
inertial measurement units on a Pixhawk flight controller. The Pixhawk flight controller is put statically when
logging the data. The pitch angle is calculated from the embedded attitude and heading reference system (AHRS)
algorithm, and the pitch rate is measured directly by the gyroscope. The angle of attack measurement error is
assumed to be a white Gaussian noise. The statistic characteristics, namely, the mean and variance, of these
measurement errors are: E(nθ) = 0 rad, D(nθ) = 1.74× 10−5 rad2, E(nq) = 0 rad/s, D(nq) = 2.67× 10−5 rad2/s2,
E(nα) = 0 rad, D(nα) = 1.00× 10−5 rad2.
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5.3.1. Simulation Results for Distributed Observer and Casual Stable Inversion

For all cases, we start with verifying the proposed Distributed Observer and Casual
Stable Inversion.

As shown in Figure 4, the Distributed Observer of each aircraft generates asymptotic
estimates of the states of the reference system (17) under a switching and occasionally
disconnected communication topology. With these estimated reference system states, the
Casual Stable Inversion is able to first calculate bounded estimates of the desired input udi
and state xdi in the new coordinate, and then use the inverse coordinate transformation (36)
to generate the bounded estimates of the desired input δedi and state xodi in the original
coordinate, as shown in Figure 5. These simulation results validate Lemmas 1–3, that is,
the estimates of the desired input and states (the colored curves in Figure 5) converge
asymptotically to the desired input and states generated by the reference system (the black
curves in Figure 5), and thus, the estimation of reference signals is achieved by the proposed
Distributed Observer and Casual Stable Inversion equipped on each aircraft.
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(b) The estimation errors z̃1i.
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Figure 4. Case 1, 2, and 3: The estimates and estimation error of the Distributed Observer under the
time-varying communication topology 1.
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(a) The estimates δ̂edi of the desired elevator
deflection angle.
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(b) The estimates α̂di of the desired angle of attack.

Figure 5. Cont.
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(c) The estimates q̂di of the desired pitch rate.
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(d) The estimates θ̂di of the desired pitch angle.

Figure 5. Case 1, 2, and 3: The estimates of the desired input and states generated by the Casual Stable
Inversion.

5.3.2. Simulation Results for Case 1

The state responses and tracking errors of each aircraft for Case 1 are shown in
Figures 6 and 7, from which it is seen that all the states are bounded, i.e., the objective
(21) is achieved. Moreover, for the objectives (19) and (20), the proposed control delivers
asymptotic tracking of the desired flight-path angle in the absence of measurement errors,
and delivers approximate tracking with very small ultimate bounds ςi = 0.0014 rad in the
presence of measurement errors, thanks to the proposed Local Measurement Error Rejection
Controller that actively estimates and compensates for the measurement errors.

It is also worth mentioning that the undershoot is observed in the flight-path angle
responses, which results straightforwardly from the nature of non-minimum phase systems.
The undershoot, by definition, is the phenomenon that the steady-state value of the system
step response has a sign opposite from that of its first non-zero derivative at t = 0 [35],
or loosely speaking, that the system response initially starts off in the opposite direction
of the expected steady-state value before moving towards the expected response. The
undershoot occurs, according to [36], in systems with an odd number of real open right
half-plane zeros, such as the flight-path angle control system of a conventional fixed-wing
aircraft considered in this paper, which, in general, has one right half-plane zero. The
physical reason behind this phenomenon lies in the coupling between the aerodynamic
force and the corresponding pitch moment, which are simultaneously produced by the
aircraft elevator. When the elevator deflection is positive, a downward force on the elevator
makes the aircraft start with a height drop, and simultaneously a positive pitch moment is
produced by this downward force, and then the nose of the aircraft rises. As the pitch angle
and angle of attack increase, the aircraft gains additional lift to climb. The physics here
matches well with the mathematical definition and description of the undershoot, since in
the flight-path angle response, the derivative of the flight-path angle starts with a negative
sign due to the downward force generated by the elevator. Therefore, during the control
process, the flight-path angle response of each aircraft exhibits a “first goes down and then
goes up” behavior.

Moreover, some sudden, dramatic state-trajectory changes are observed in Figures 6 and 7,
leading to the piece-wise continued smooth trajectories with several turning points. The
fundamental reason behind these trajectories lies in the switching communication topology.
The turning points in the red curves (Aircraft 2) at t = 10 s are taken as an example
herein, to show how the communication topology switching impacts the aircraft state
responses and tracking errors. When t = 10 s, the considered communication topology
switches from Subgraph 1 to Subgraph 2, and Subgraph 2 is the only subgraph in the
switching sequence that Aircraft 2 can obtain information from the aircraft formation (or
more precisely speaking, Aircraft 2 has access to the reference system, but has no access
to its neighbors). Under this circumstance, the Distributed Observer equipped on Aircraft
2 is enabled by the input information to actively synchronize its states with the reference
system only during the period of time when the topology switches to Subgraph 2. During
other time periods in the switching loop, Aircraft 2 does not receive any information from
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the aircraft formation, and thus, it is in a “self-control” mode. This explains why the states
of the three modules of Aircraft 2 exhibit the sudden trajectory change behaviors at t = 10 s.
The same goes for other aircraft, i.e., the sudden trajectory changes in the blue, green, and
orange curves.
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(h) The pitch angle tracking errors.

Figure 6. Case 1: The proposed control in the absence of measurement errors: output/state responses
and tracking errors.
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Figure 7. Case 1: The proposed control in the presence of measurement errors: output/state responses
and tracking errors.

5.3.3. Simulation Results for Case 2

Figures 8 and 9 demonstrate the simulation results for Case 2. It is observed that
even in the absence of measurement errors, the state responses resulting from PID-based
consensus control exhibit small residual tracking errors when tracking a time-varying
flight-path angle reference, due to the fact that the PID controller (80) does not include the
model-based feedforward control term. In addition, since the differentiator used in the PID
controller (80) can add a dynamic delay to the estimate of γ̇i, which equivalently leads to
an additional “measurement error” in the derivative feedback term, the resulting responses
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of flight-path angle and other system states include large oscillations. For unmanned fixed-
wing aircraft, oscillations in flight-path angle, pitch angle, and angle of attack can endanger
flight safety in practice, and thus, the PID-based consensus control may have certain
limitations in transient performance. Furthermore, the PID controller lacks measurement
error rejection mechanisms, and the derivative control term can further amplify the high-
frequency measurement noises. Therefore, the trajectory tracking performance is greatly
degraded in the presence of measurement errors.
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Figure 8. Case 2: The PID-based consensus control in the absence of measurement errors: output/state
responses and tracking errors.
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(a) The flight-path angle responses.
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(b) The flight-path angle tracking errors.
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Figure 9. Case 2: The PID-based consensus control in the presence of measurement errors: out-
put/state responses and tracking errors.

5.3.4. Simulation Results for Case 3

In Case 3, a set of MEE parameters Tni = {0.02, 0.2, 2} are applied to the Local Measure-
ment Error Rejection Controller, and the simulation results are demonstrated in Figure 10.
When Tni decreases, it is seen that not only the chattering, but also the ultimate bound of
the flight-path angle tracking error is reduced. Thus, the tracking accuracy is improved.
This result verifies Lemma 4 and Theorem 1.
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Figure 10. Case 3: The proposed control in the presence of measurement errors under different Tni:
output/state responses and tracking errors.

6. Conclusions

This paper addresses the flight-path angle consensus tracking problem for a group
of fixed-wing aircraft in the presence of measurement errors. The non-minimum phase
properties of the flight-path angle dynamics are systematically taken into consideration in
the control design to ensure the stability of the internal dynamics. A three-module control
scheme is proposed, where a Distributed Observer is employed to provide the reference
system estimation for the Casual Stable Inversion, which generates bounded estimates of
the desired input and states for the Local Measurement Error Rejection Controller to achieve
robust consensus control. The theoretical stability and performance analysis shows that the
proposed control delivers asymptotic consensus tracking of the reference in the absence
of measurement errors, and delivers approximate consensus tracking in the presence of
measurement errors, within any specified ultimate bound if the MEE parameter Tni is
appropriately selected. Simulation results in which the classic PID-based consensus control
is compared are provided. The advantages of the proposed control are verified with
respect to the transient oscillations and robustness against measurement errors. Besides,
compared with most existing approaches (such as the aforementioned PID-based consensus
control), which require multi-parameter tuning and optimization to enhance the control
performance, the attractive feature of the proposed control is validated in the simulation,
that is, the control performance regarding the steady-state tracking accuracy can be easily
improved by reducing a single MEE parameter Tni.

Future works include the extension of the proposed control scheme to: (i) heteroge-
neous aircraft formations; (ii) more sophisticated systems with possibly non-linear systems,
switching dynamics in the presence of model uncertainties or unknown system parameters;
and (iii) formations with antagonistic interactions..
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