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Abstract: The estimation of crop yield is a compelling and highly relevant task in the scenario of
the challenging climate change we are facing. With this aim, a reinterpretation and a simplification
of the Food and Agriculture Organization (FAO) fundamentals are presented to calculate the fresh
biomass of forage crops. A normalized difference vegetation index (NDVI) series observed from a
multispectral camera on board an unmanned aircraft system (UAS) was the basis for the estimation.
Eight fields in Spain of different rainfed intercropping forages were flown over simultaneously, with
eight field measurements from February to June 2020. The second derivative applied to the NDVI
time series determined the key points of the growing cycle, whereas the NDVI values themselves
were integrated and multiplied by a standardized value of the normalized water productivity (WP*).
The scalability of the method was tested using two scales of the NDVI values: the point scale (at the
precise field measurement location) and the plot scale (mean of 400 m2). The resulting fresh biomass
and, therefore, the proposal were validated against a dataset of field-observed benchmarks during
the field campaign. The agreement between the estimated and the observed fresh biomass afforded a
very good prediction in terms of the determination coefficient (R2, that ranged from 0.17 to 0.85) and
the agreement index (AI, that ranged from 0.55 to 0.90), with acceptable estimation errors between 10
and 30%. The best period to estimate fresh biomass was found to be between the second fortnight of
April and the first fortnight of May.

Keywords: fresh biomass; NDVI; second derivative; UAS; AquaCrop; intercropping

1. Introduction

In the current climate change scenario, the prediction and estimation of crop pro-
duction in terms of biomass or yield are paramount tasks for the agricultural scientific
community; these have become urgent and highly important objectives in the response on
the global scale to the food demands of a growing world population [1].

Crops whose productivity depends on the amount of plant biomass usually belong
among forage cultivars, which are considered the main feed source for ruminants. These
animals are capable of transforming an initially poor-quality foodstuff, generally cereal-based
forages with a low protein content, into high-quality products for human consumption, such
as milk and meat [2]. Thus, the improvement of forage quality can be translated into the
optimization of animal productivity; thereby, more inefficient and unsustainable practices,
such as purchasing protein supplements, can be avoided [3]. In this context, intercropping
systems, i.e., the simultaneous growth of two or more species [4] in which cereal and legume
species are combined, have emerged as a sustainable alternative that may be used to increase
the quality and quantity of forages [5]. In contrast to grain crops, these forages are usually

Drones 2023, 7, 347. https://doi.org/10.3390/drones7060347 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7060347
https://doi.org/10.3390/drones7060347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-8396-6550
https://orcid.org/0000-0002-8908-1606
https://orcid.org/0000-0001-5509-7573
https://orcid.org/0000-0001-5170-4698
https://orcid.org/0000-0002-9127-495X
https://orcid.org/0000-0001-6736-5854
https://orcid.org/0000-0001-5876-6226
https://doi.org/10.3390/drones7060347
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7060347?type=check_update&version=1


Drones 2023, 7, 347 2 of 19

harvested with a certain moisture content and have the best nutritional properties; thus, their
yields are quantified primarily in terms of fresh plant biomass.

Among the many methods for producing crop statistics described by the Food and
Agriculture Organization (FAO) [6], the yield and biomass statistics are usually gathered
using crop cuts and/or farmer declarations. During highly expensive surveys, experts may
sample subplots within the plot and measure the production by area. This may include
visual estimations and the giving of questionnaires to farmers. Alternatively, farmers
may be requested to provide a post-harvest estimation of the production in a given area,
although visits to parcels and granaries are common. The complexity of estimating biomass
over mixed crops is even higher, since intercrops involve two or more crops growing in
the same field. In this context, remote sensing and modeling approaches are emerging as
alternative procedures to crop production or yield [6].

The FAO has also promoted global initiatives to facilitate the study and applications
of the relationship between crop yield and water use by publishing comprehensive guides
about the generic topic of “irrigation and drainage”, namely, paper 24: “Crop water
requirements” [7], paper 33: “Yield response to water” [8], and paper 66: “Crop yield
response to water” [9]. All of these publications attempt to assist farmers and agricultural
managers in implementing effective agricultural practices to enhance yield while preserving
water consumption. In particular, the FAO paper 66 relies on the AquaCrop model to
simulate biomass and yield [10]. AquaCrop belongs to a model group that addresses
crop biomass productivity in relation to water availability [11]. Therefore, it is a so-called
water-driven model based on the concept of water productivity (WP). The conceptual
equation at the core of AquaCrop states that biomass production is proportional to the
cumulative amount of water transpired [12]. Since its launch, AquaCrop has been at
the core of many studies [13–15], including a specific version supported by geographical
information systems and remote sensing [16,17]. In fact, the new developments are mainly
oriented toward remote sensing data assimilation, which provides the missing spatial
information required [18].

However, other larger groups of models exist, either carbon-driven or solar-driven,
in which the growth (and, therefore, biomass) estimations are based on carbon or light
assimilation, respectively. A ten-year review of AquaCrop [18] performed a thorough
and up-to-date revision of different families of models, with many examples. Far from
physical modeling, other statistical approaches to predict yield and water production
are also nurtured by satellite imagery. Simple or multiple regression models relating
remote sensing data features with productivity are still in use [19,20] since they are the
simplest and easiest methods to compute, although the results are often inconsistent and
not easy to generalize [21]. More sophisticated artificial intelligence techniques from the
fields of machine and deep learning, which apply algorithms based on convolutional
neural networks, support vector machines, random forest, etc., have been progressively
implemented owing to the increasing availability of large and high-quality datasets [21].
The work of van Klompenburg et al. (2020) [22] presents a systematic literature review of
these crop yield prediction alternatives.

As ground-based phenological observations are limited, phenology derived from
remote sensing can be used as an alternative to parameterize phenological models [23].
Remote sensing data offer many advantages in crop prediction. First and foremost, the
images provide a wide spatial range and scalability; they are spatially seamless and may
fill in situ data gaps [24]. Second, satellite data can provide a synoptic overview of actual
growing conditions and can be used to diagnose discrepancies from normal conditions [25].
Finally, remote data assimilation allows different alternatives: direct substitution of the
model parameters, calibration/initialization, or sequential assimilation of algorithms and
models [26,27]. In particular, in AquaCrop, the remote sensing inputs are usually assim-
ilated as either indicators or surrogates of the model parameters and include the data
(or their derivative products) of remotely sensed temperature, vegetation indices, leaf
area indices, soil moisture, the fraction of photosynthetically active radiation, and many
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others [27–31]. Other examples use satellite data to calibrate AquaCrop inputs [28,32,33],
and in other cases, the remotely sensed time series provides the temporal metrics of the
growing cycle, such as the start, end, or length of the growing season [16,30].

Among the many remote sensing products, the normalized difference vegetation index
(NDVI) [34] seems to be the most popular input in crop production simulation models.
The NDVI is simple and easy to interpret and is readily available from most satellite
providers [32]. In addition, all multispectral commercial cameras on board unmanned
aerial systems (UAS) include red and infrared bands, which are the basis of its calcula-
tion [35]. Many examples of yield estimation through UAS observations have also been
proposed [35–37]. These platforms provide a superhigh spatial resolution but present the
disadvantage of their lack of an automatic revisit, as in the case of satellites. Occasion-
ally, this might hamper the monitoring of the complete growing cycle, including the key
moments of crop development or senescence.

All applications of the NDVI for yield, biomass, or water productivity are related to
the well-known fit between the NDVI time evolution and the growing cycle and phenology
of many crops [35,38,39]. Therefore, the NDVI has been used as an effective indicator
of crop yield or plant biomass [20,40,41] from different perspectives, such as the direct
correlation or the aforementioned assimilation modeling. The shape of the NDVI curve
and the particular features of it, such as the integrated, maximum, and moving average or
the relative range, have been used as synoptic indicators of biomass or production [19,20].
As another indicator, the second derivative of the NDVI curve has been used for estimating
phenological information such as the start of the growing season [42], while its maximum
has been related to the beginning of the green-up phase [23,43]. The inflection points
resulting from the second derivative of the NDVI curve have inspired our hypothesis on
the determination of the period in which the biomass is produced, together with the NDVI
value itself.

A novel and simple method was proposed to estimate the fresh biomass of several
forage associations based on the joint use of the FAO66 guidelines regarding water pro-
ductivity together with a temporal series of UAS imagery. The validation of the approach
was performed after a field campaign to determine the direct measurements of the biomass
that were coincident with those of the flights. The novelty of our proposal lies in (1) the
use of the second derivative to determine the period in which the biomass is produced
and (2) the replacement of the crop transpiration coefficient with the NDVI summation
as a synoptic value of the crop and its status. The calculation is totally independent of
any AquaCrop software: only the second derivative and summation of the NDVI series
are needed. The detailed scale of the UAS imagery, together with the comprehensive
dataset of field measurements, could help to validate the approach in a robust manner.
Ultimately, since the majority of the parameterizations used in biomass estimations are only
available for single crops, this research enabled the study and comparison of the biomass
estimation among eight intercropping forage mixtures, including cereals (rye, triticale, oats,
and barley) and legumes (vetch and pea).

2. Materials and Methods
2.1. Study Area

The field experiment was carried out on the organic farm “Gallegos de Crespes”
(40◦42′13′′ N–5◦25′43′′ W), located in the southwestern part of the province of Salamanca
(Castilla y León, Spain) in a typical semiarid rangeland area, commonly known as “dehesa”
(Figure 1). The field measurements and flights were conducted during the rainfed growing
season of 2019–2020, i.e., from February to June. The geographical area has a continental
Mediterranean climate, characterized by a high thermal range between short, hot summers
and long, cold winters, very scarce precipitation (350–400 mm/year on average), and a frost
period that extends from October to April. Table 1 shows the meteorological conditions of
the studied period: the values were within the normal ranges for these climatic conditions.
Therefore, it could be assumed that the potential yields of the forage associations during
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the period of study were not affected by weather conditions that differed from those of the
expected average. Sandy–clay–loam soils characterize the edaphic conditions, which are
developed over arkosic sandstones and are typically of slight acidity (pH 5.5–6.0).
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Table 1. Meteorological conditions of the rainfed growing season in the study area.

Parameter October 2019–June 2020

Mean temperature (◦C) 9.5
Total precipitation (mm) 380.2

Spring precipitation (mm) 121.3
Average relative moisture (%) 81.1
Total solar radiation (MJ/m2) 3893.1

Data provided by the Spanish Meteorological Agency (AEMET).

The eight forage associations were constructed from the combination of six forage
crops: vetch (Vicia sativa cv. “Rada”); pea (Pisum sativum cv. “Cabestrón”); triticale (Triticum
× Secale cv. “Elleac”); six-row barley (Hordeum vulgare ssp. Hexastichum cv. “Yuriko”);
rye (Secale cereale cv. “Serafino”); and oat (Avena sativa cv. RGT “Chapela”). Overall, four
vetch-based and four pea-based associations, sown at a rate of 140 kg/ha (70% legume–30%
cereal) and 130 kg/ha (60% legume–40% cereal), respectively, were proposed: vetch–barley–
triticale (VBT); vetch–triticale (VT); vetch–rye (VR); vetch–oats (VO); pea–barley–triticale
(PBT); pea–triticale (PT); pea–rye (PR); and pea–oats (PO). Each association was grown in
triplicate in a randomized block design of 24 experimental plots of 400 m2 each, accounting
for a total surface width of one hectare flown over by the drone [44]. However, the field
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measurements of fresh biomass were only available for the first eight rows of plots, and
therefore, a biomass estimation was conducted for these eight fields (Figure 1).

2.2. UAS and Direct Measurements

During the growing cycle of the associations, eight UAS flights were conducted on
the dates 2/4/2020, 2/26/2020, 3/26/2020, 4/14/2020, 5/2/2020, 5/17/2020, 5/29/2020,
and 6/10/2020. The drone mission was the same for each date, and all drones were flown
around midday (to avoid shadows) using the flight planning software (DJI GS Pro and
Pix4Dcapture). The flight duration was approximately 12 min.

Jointly with the flights, eight field campaigns were deployed in the first eight fields,
1–8 (Figure 1). These dates were selected to depict the key stages of the growing cycle,
especially in April and May, when the main phenological changes take place.

2.2.1. UAS Imagery

The drone model was an Inspire1 from the DJI company (SZ DJI Technology Co., Ltd.,
Shenzhen, China), with a Micasense Red Edge M camera (AgEagle Sensor Systems Inc.,
d/b/a MicaSense, Wichita, KS, USA) on board [44]. This camera has an image resolution of
1280 × 960 pixels and captures a maximum of one image per second. The image spatial
resolution was set to 3 cm, resulting in a flight at a height of 43 m. The camera was
mounted in the drone using an in-house-made gimbal and included the GPS receiver
and the downwelling light sensor (DLS, MicaSense Inc., Seattle, WA, USA). The DLS
faces skyward to embed the solar irradiance data in the multispectral imagery spectrum
during the flights [45], allowing the normalization of the varying illumination and thereby
automatically adjusting the camera exposure. A calibrated reflectance panel completed the
UAS equipment, which ensured a radiometrically corrected reflectance retrieval by taking
images of it before and after each flight. The treatment of the images was performed in
Pix4D Mapper software (Pix4D P.A., Prilly, Switzerland) using a customized template that
included the radiometric calibration and the retrieval of the corrected reflectance maps
together with the vegetation indices. In addition to the radiometric correction, geometric
correction and ortho-mosaicking were performed by means of four permanent ground
control points (GCPs) installed over the flight area (Figure 1, in green). Those points were
then geolocated to georeference the images in the Pix4D mapper with centimetric errors.
To do so, real-time kinematic (RTK) observations were recorded using a 1200 Leica GPS
receiver (Leica Geosystems, Heerbrugg, Switzerland), whereas a local network service
provided data from a reference station close to the area. The GPS equipment is described in
Plaza et al. (2022) [46].

At each date, the images were registered and input into the Pix4DMapper, which
transformed them into five reflectance maps, one per band. The radiometric and geometric
corrections ensured a fair comparison of the maps from each date. Previous results obtained
with the same dataset in Plaza et al. (2021) [44] suggested that the vegetation index that
best followed the growing cycle in terms of biomass was the NDVI. Therefore, eight NDVI
maps were composed from February to June (Figure 2) as the cornerstone for the biomass
estimation. The NDVI was computed as the difference between the infrared and the red
reflectances divided by the sum of both reflectances.

2.2.2. Field: Fresh Biomass in Eight Fields

All the methods performed during the study were conducted in accordance with the
relevant guidelines and legislation. This experiment was conducted within the framework
of a research project funded by the local government (see acknowledgements). Therefore,
prior to the establishment of the experimental design and sample collection, the owners
of the “Gallegos de Crespes” organic farm were included as collaborating members of the
project; therefore, they gave their explicit permission to collect plants on their land.
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Figure 2. NDVI maps for the eight crop association fields (only four dates are shown) together with
the NDVI time evolution of each field (at the point scale). NDVI: normalized difference vegetation
index; VBT: vetch–barley–triticale; VT: vetch–triticale; VR: vetch–rye; VO: vetch–oats; PBT: pea–
barley–triticale; PT: pea–triticale; PR: pea–rye; and PO: pea–oats.

Among other parameters, field estimations of fresh biomass were gathered during
the eight flights through destructive sampling. Plants within a fenced area of 1/8 m2 were
cut, immediately fresh-weighed (gr/m2), and subsequently dry-weighed after being dried
in an oven at 60 ◦C for 48 h until they were of a constant weight (dry biomass, gr/m2).
The difference between the fresh and the dry biomass, expressed in %, was the percentage
of water content, PWC (%). Two measurements were taken at each field and geolocated
with the GPS and later averaged for each field and association. The measurements for the
date 6/10/2020 were not used in this analysis, since the focus of the research was the fresh
biomass, and at that date, the associations were in the senescence phase (the PWC was less
than 50% for all the associations).

2.3. The WP* Kc,Tr Approach

The FAO66 methodology [9] estimates the biomass (g/m2) as the product of the
normalized water productivity (WP*, in g/m2) times the summation of the ratio between
the crop transpiration (Tr, in mm) and the reference evapotranspiration (ET0, in mm)
(Equation (1)). WP* is the biomass water productivity normalized for climate (depending
upon the location, season, and CO2 concentrations). The normalization with respect to the
location and season is obtained by dividing the daily amount of water transpired (Tr) by the
reference evapotranspiration (ET0) for that day [12]. The normalization for CO2 consists
of considering the water productivity for a reference atmospheric CO2 concentration of
369.41 ppm [12]. WP* remains virtually constant over a range of environments and crops
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and is 18 g/m2 for many crops [9,30]. The temporal limits t0 and t of the summation (with
daily intervals) must be known.

B = WP*
t

∑
t0

Tr

ET0
(1)

B = WP*
t

∑
t0

Kc,Tr (2)

The ratio of Tr to ET0 is equivalent to the crop transpiration coefficient, denoted by
Kc,Tr and defined as the crop coefficient for transpiration “when the canopy fully covers the
ground and stresses are absent” [9] (Equation (2)). In AquaCrop, this equation is inserted
into a complete set of additional model components, including the characteristics and
calculations pertaining to soil, crop, climate, and management [10]. In addition, stress
conditions (water supply, temperature, soil fertility, and salinity, among others) modulate
the core equation of AquaCrop by means of a variety of stress coefficients.

A time series of UAS imagery offers an alternative way to monitor Kc,Tr during the
entire growing season. Whereas Kc,Tr has been related to the vegetation indices through
a linear equation [30], our approach directly replaces Kc,Tr with the NDVI. This solution
is based on several analogies between Kc,Tr and the NDVI. First, Kc,Tr is proportional to
the fraction of green canopy cover (CC in AquaCrop) and is thus continuously adjusted.
Likewise, the linear relationship between CC and NDVI is well known [47–49], and their
temporal dynamics are quite similar. Therefore, the NDVI time series seems to be able
to threshold the temporal limits of the maximum CC. Second, the numeric limits of Kc,Tr
and the NDVI are within the same maximum range. Third, as stated before, the biomass
calculation should be later refined in AquaCrop, taking into account stress conditions,
crop physiology, and management through other coefficients. The NDVI precisely depicts
the real state of the crop because it represents the actual response of the plant to the
edaphoclimatic conditions, including any kind of stress. The NDVI may be considered
a synoptic output of the vegetation activity. Therefore, the direct use of the NDVI might
avoid the application of other coefficients.

The core of the proposed biomass calculation is therefore based on the use of the NDVI
instead of Kc,Tr in Equation (2) and on the estimation of the t0 and t limits of the summation
based on the NDVI curve, as explained in the following section.

2.4. Use of the NDVI Second Derivative to Retrieve the Temporal Thresholds

The second derivative of a function indicates its curvature or its concavity/convexity.
Our hypothesis was that the local minima second derivative may indicate the temporal
onset (the day when the maximal convexity in the NDVI is reached and the slope is positive)
and offset (the day when the maximal convexity in the NDVI is reached and the slope
is negative) of the biomass production (Figure 3). During this period, the green canopy
reaches its full development and fully covers the ground to its maturity (as required in the
WP* Kc,Tr approach); thus, the NDVI at this stage may represent an estimator of the rate of
fresh matter accumulation. After this, the declining phase due to leaf senescence begins.



Drones 2023, 7, 347 8 of 19

Drones 2023, 7, x FOR PEER REVIEW 8 of 19 
 

WP* Kc,Tr approach); thus, the NDVI at this stage may represent an estimator of the rate of 
fresh matter accumulation. After this, the declining phase due to leaf senescence begins. 

The eight-point NDVI curve resulting from the flights (Figure 2) was fitted to a spline 
function prior to computing the second derivative. Then, by scanning the second deriva-
tive from the initial growing stages to the end of the cycle, two points of local minimum 
values of the second derivative were detected. These points correspond to the local maxi-
mal downward concavity of the derivative (Figure 3) and, consequently, the maximal con-
vexity of the NDVI curve and were assumed to be the temporal limits of the fresh biomass 
production period, i.e., 𝑡଴ and 𝑡 in Equation (2). 

 
Figure 3. NDVI curve and second derivative for the (a) VO and (b) PO associations. The points 
determined by the two local minima of the second derivative correspond to the t0 and t thresholds 
for the NDVI summation. NDVI: normalized difference vegetation index. 

  

Figure 3. NDVI curve and second derivative for the (a) VO and (b) PO associations. The points
determined by the two local minima of the second derivative correspond to the t0 and t thresholds
for the NDVI summation. NDVI: normalized difference vegetation index.

The eight-point NDVI curve resulting from the flights (Figure 2) was fitted to a spline
function prior to computing the second derivative. Then, by scanning the second derivative
from the initial growing stages to the end of the cycle, two points of local minimum values
of the second derivative were detected. These points correspond to the local maximal
downward concavity of the derivative (Figure 3) and, consequently, the maximal convexity
of the NDVI curve and were assumed to be the temporal limits of the fresh biomass
production period, i.e., t0 and t in Equation (2).

2.5. Scalability

Two spatial resolutions for the NDVI were tested to study the scalability of the proposal:

(a) At the point scale, the precise location of the ground measurements was used. The
NDVI of each date was extracted at each location (two replicates per field) by applying
a buffer of the same size as the fenced area used in the field sampling. For each
association, the two NDVI values were averaged.

(b) At the field scale, the NDVI was averaged for each whole experimental plot. The aim
of the idea to use an averaged value for an area of 400 m2 was to assess the robustness
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of the approach when using satellite scales, i.e., to estimate biomass production at the
regional scale.

2.6. Validation of the Approach

To assess the feasibility of the proposed method, several comparisons between the
estimated and the observed fresh biomass were performed. First, an exploratory analysis
between the NDVI observations and the biomass measured at each date was conducted
using the linear Pearson correlation coefficient, R. The NDVIs of the eight associations were
compared to the fresh biomass measured for each plot over time (temporal evolution of
NDVI vs. biomass) and at each date (NDVI vs. biomass for the eight associations combined
at each date). These correlations aimed to preliminarily analyze which period (if any) of
the NDVI series was better suited to retrieving fresh biomass.

The validation was then accomplished by the statistical comparison between the
biomass estimations after the WP*NDVI method and the field observations using the fol-
lowing statistics: the mean absolute bias (MAB) (Equation (3)) to measure the difference
between the observed and the estimated values; the coefficient of determination R2 to
measure how well the estimation predicted the fresh biomass; the root-mean-square dif-
ference (RMSD) (Equation (4)) to measure the differences between both datasets); and the
agreement index (AI) (Equation (5)), which is typically used in hydrological modeling [50]
to assess a model predictions. Specifically, the AI varies between 0 (total disagreement
between predicted and observed values) and 1 (perfect agreement).

MAB =
∑n

i=1|xi − yi|
n

(3)

RMSD =

√√√√ n

∑
i=1

(xi − yi)
2

n
(4)

AI = 1− ∑n
i=1(xi − yi)

2

∑n
i=1 (|xi −

−
x|+ |yi −

−
x|)

2 (5)

In the above equations, xi is the observed biomass for a given date for the eight
associations, and yi is their fresh biomass estimated through the WP*NDVI approach. The
average for those datasets is indicated by a bar. These statistics were obtained for the two
scales of the analysis.

3. Results
3.1. Exploratory Analysis of the Fresh Biomass–NDVI Relationships

The fresh biomass measurements for each association over time (Table 2) showed two
main characteristics: (1) a higher biomass for the vetch-based associations and (2) higher
values between the second half of April and the first half of May.

Table 2. Fresh biomass (gr/m2) for each association (field measurements).

Fresh Biomass
(gr/m2) VBT VT VR VO PBT PT PR PO

2/4/2020 90.0 58.0 122.9 120.2 70.9 84.1 100.2 73.8
2/26/2020 309.6 257.3 228.6 236.1 118.9 121.8 268.9 237.6
3/26/2020 608.0 600.0 468.0 360.0 192.0 344.0 396.0 580.0
4/14/2020 650.0 580.0 572.0 608.0 324.0 380.0 232.0 580.0
5/2/2020 692.0 704.0 808.0 724.0 488.0 520.0 440.0 412.0

5/17/2020 636.0 883.0 783.5 772.0 480.0 596.0 621.5 344.0
5/29/2020 132.0 140.0 216.0 176.0 132.0 96.0 132.0 28.0

VBT: vetch–barley–triticale; VT: vetch–triticale; VR: vetch–rye; VO: vetch–oats; PBT: pea–barley–triticale;
PT: pea–triticale; PR: pea–rye; and PO: pea–oats.
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The temporal evolution of both the NDVI and the fresh biomass for the eight associa-
tions (Figure 4) followed a similar pattern, which was typically shaped as a “plateau” [51,52].
However, a time lag was recognizable between them (except for the PO and VBT curves),
which suggests that the time integration of the NDVI values would be a better option
to calculate biomass than a direct estimation through the NDVI [53,54]. This temporal
shape was also clear for the NDVI calculated at the field scale (Figure 4b), although in
this case it was noticeable that the field average smoothed the NDVI, displaying smaller
differences between the associations. Nonetheless, in both cases, the vetch-based associa-
tions exhibited a higher NDVI and biomass production (Figure 4). In fact, the behaviors of
both associations in terms of NDVI and biomass were clearly distinguishable (Figure 4d).
For the given example of 2 May in Figure 4d, less biomass, approximately 500 g/m2

(5000 kg/ha), was related to a lower NDVI, approximately 0.7 for the associations contain-
ing pea, whereas a higher biomass, approximately 700 g/m2 (7000 kg/ha), was related to a
higher NDVI, approximately 0.85 for the vetch-based associations. These preliminary re-
sults suggested that the NDVI was a reasonable indicator of fresh biomass, as hypothesized
in the methodology section.
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Figure 4. NDVI temporal curves at the point scale (a) and at the field scale (b); biomass observations
(c) and scatter plot between the NDVI (at the point scale) and the measured fresh biomass on
2 May (d). Vetch-based associations are represented in warm colors, and pea-based associations
are represented in cold colors. NDVI: normalized difference vegetation index; VBT: vetch–barley–
triticale; VT: vetch–triticale; VR: vetch–rye; VO: vetch–oats; PBT: pea–barley–triticale; PT: pea–triticale;
PR: pea–rye; and PO: pea–oats.

The exploratory correlations between the temporal evolution of fresh biomass and
the NDVI (Table 3) showed a good fit, with no remarkable differences between the scales
and the associations. The correlation was significant (or very close to significant) for all
the associations except for the PO association. This good fit between the temporal curve of
the NDVI and that of the fresh biomass triggered the hypothesis of the research, while the
aforementioned lag between them suggested the integration of the NDVI values.
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Table 3. Correlations (R of Pearson) between the temporal evolution of the NDVI and the fresh
biomass for the eight associations.

Fresh Biomass vs. NDVI (R) VBT VT VR VO PBT PT PR PO

At point scale 0.79 * 0.78 * 0.72 0.85 * 0.77 * 0.88 ** 0.70 0.35
At field scale 0.82 * 0.76 * 0.82 * 0.80 * 0.85 * 0.83 * 0.72 0.53

* Significant correlation at the 0.05 level (2-tailed). ** Significant correlation at the 0.01 level (2-tailed).
NDVI: normalized difference vegetation index; VBT: vetch–barley–triticale; VT: vetch–triticale; VR: vetch–rye;
VO: vetch–oats; PBT: pea–barley–triticale; PT: pea–triticale; PR: pea–rye; and PO: pea–oats.

The correlations between the NDVI and thefresh biomass calculated separately at each
date for the eight associations (Table 4) indicated that the highest correlations occurred in
April and May and, more specifically, at the beginning of May. These results suggest that
the period between April and May might be the best period to calculate the fresh biomass
through the NDVI. Again, there were no remarkable differences when changing the NDVI
scale of observation.

Table 4. Correlations (R of Pearson) between the NDVI and the total fresh biomass of the eight
associations on the seven measurement dates.

Fresh Biomass vs. NDVI (R) 2/4/20 2/26/20 3/26/20 4/14/20 5/2/20 5/17/20 5/29/20

At point scale 0.82 * 0.73 * 0.46 0.77 * 0.97 ** 0.82 * 0.74 *
At field scale 0.51 0.70 0.72 * 0.87 ** 0.91 ** 0.88 ** 0.72 *

* Significant correlation at the 0.05 level (2-tailed). ** Significant correlation at the 0.01 level (2-tailed).
NDVI: normalized difference vegetation index.

3.2. Results of t0 and t

The second derivative of the NDVI curve afforded the limits t0 and t needed for the
integration of the NDVI values. At the point scale, the results for t0 were 14 April for all
the associations except for PT. For t, it was 1 June for all of them except for PT and PO,
for which t was 17 May. Figures 3b and 4a may explain this delay of t for these pea-based
associations due to the existence of a second peak in their NDVI curves.

At the field scale, the results for t0 were similar to those at the point scale (14 April) for
all the associations. However, t resulted earlier for all of them (18 May for the vetch-based
associations and 17 May for the pea-based ones). This difference with respect to the point
scale results may be explained once again by the peak of the NDVI curve around these
dates (Figure 4b). The similarity of the dates for all the associations could be explained by
their similar NDVI curves (Figure 4b), owing to the averaging of the whole field.

3.3. Fresh Biomass Estimation: Regression and Errors

The results of the fresh biomass (kg/ha) estimated through the WP*NDVI method
(Table 5) showed differences between the two scales. The field scale afforded a reduced
biomass production, which can be explained by the shorter period between t0 and t (from
April to May) and the corresponding smaller number of NDVI values integrated in the
summation. Moreover, although the difference between the vetch-based and the pea-based
production was notable, these differences were more remarkable at the point scale. This
result was not surprising, since the NDVIs of the associations were more variable, and
consequently, so were the limits of t0 and t. Overall, the deviations in the biomass obtained
with both scales fit the differences that were also observed in the field measurements
(Table 2).



Drones 2023, 7, 347 12 of 19

Table 5. Fresh biomass estimation through the WP*NDVI method for each association.

Fresh Biomass (kg/ha) VBT VT VR VO PBT PT PR PO

At point scale 7144.4 7369.7 7369.5 7294.3 5974.1 4596.5 6005.4 4235.9
At field scale 5381.6 5179.2 5196.9 5048.9 4234.1 4342.2 4204.4 4329.7

VBT: vetch–barley–triticale; VT: vetch–triticale; VR: vetch–rye; VO: vetch–oats; PBT: pea–barley–triticale;
PT: pea–triticale; PR: pea–rye; and PO: pea–oats.

Note that the smaller values of the resulting biomass for PO agreed well with the
smaller fresh biomass field observed for the dates of late April and May (Figure 4c, pale
blue line, and Table 2) owing to its earlier production compared with the other associations.

The statistical assessment (Tables 6 and 7) was conducted on the dates suggested by
the previous exploratory analysis, i.e., those of April and May. Whereas the predictions
were successful at both scales for the dates 5/2/20 and 5/17/20, the estimation failed
for the date 5/29/20, probably because the moisture content and, therefore, the weight
of the fresh biomass were notably smaller (Table 2) on this date, which coincided with
the beginning of senescence and the NDVI decay. The estimation on 4/14/20, although
satisfactory, afforded poorer statistics at the point scale, probably for the same reason,
but in the opposite sense: the first half of April appeared as a relatively early period to
estimate a final biomass. The dates that exhibited more accurate estimations were 5/2/20
and 5/17/20.

Table 6. Statistical comparison between estimated and observed fresh biomass on the dates of April
and May (point scale).

Fresh Biomass at Point
Scale (kg/ha) R2 MAB

(kg/ha) MAB (%) RMSD
(kg/ha) AI

4/14/2020 0.17 1732.3 35.3 1975.2 0.58
5/2/2020 0.73 592.2 9.9 776.1 0.90

5/17/2020 0.69 834.9 13.1 939.5 0.88
5/29/2020 0.73 4933.7 375.2 4997.7 0.14

R2, determination coefficient; MAB: mean absolute bias; RMSD: root-mean-square difference; and AI: agreement index.

Table 7. Statistical comparison between estimated and observed fresh biomass on the dates of April
and May (field scale).

Fresh Biomass at Field
Scale (kg/ha) R2 MAB

(kga/ha) MAB (%) RMSD
(kg/ha) AI

4/14/2020 0.66 1023.1 20.8 1116.2 0.67
5/2/2020 0.85 1297.8 21.7 1588.1 0.64

5/17/2020 0.51 1877.8 29.4 2125.8 0.55
5/29/2020 0.34 3424.6 260.4 3454.5 0.18

R2, determination coefficient; MAB: mean absolute bias; RMSD: root-mean-square difference; and AI: agreement index.

The statistical assessment of the biomass estimation revealed a very good fit in terms
of R2 and AI for both scales; the fit was slightly better at the point scale, and a very high
AI was shown for the first half of May. At the plot scale, the best estimation took place
for 5/2/22, and R2 and AI were lower for the second half of May, whereas the MAB and
RMSD were slightly worse. The MAB ranged from 10 to 30% (except for the end of May)
and was remarkably better for the point scale retrieval (10 and 13% of MAB for the dates
5/2/20 and 5/17/20, respectively). In terms of absolute values, the MAB ranged from
592.2 to 1877.8 kg/ha, with all values being positive, i.e., the calculation underestimated
the observed values.
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4. Discussion

The integration of NDVI values to estimate plant biomass, net primary production, or
grain yield is one of the most popular approaches for the remote sensing community [54,55].
The main difficulty of the retrieval based on the NDVI integration lies in (1) choosing the
precise time-critical crop growth stages that lead to the final biomass accumulation and
(2) searching for these key phenological stages and identifying them over the NDVI time
series within which the integration is to be performed. Regarding the first issue, the
proposal was made to begin biomass accumulation during the late flowering and maturity
stages, as was also suggested by Hassan et al. (2019) [35], rather than at the green-up of
the initial development phases, as proposed by many other authors [30,40,54] who sought
a sudden increase that might signal the onset of significant photosynthetic activity [55].
This selection is in line with Calera et al. (2004) [51], who selected the NDVI plateau stage
coinciding with the linear growth phase as an estimator of the potential rate of matter
accumulation. In addition, this choice fits the FAO66 condition of using Kc,Tr when the
canopy cover is full, since the NDVI second derivative limits ensure a CC close to 100%.

Regarding the second question, i.e., how to identify the NDVI critical growth stages,
thresholds based on the NDVI maxima, averages, or moving averages have frequently
been proposed [56,57]. Although these thresholds possess the advantage of being easy
to recognize, they are not systematic and can be affected by local conditions, such as
vegetation, soil, and illumination [55], as well as by sensor biases. The use of NDVI
derivatives, although less frequent in the literature, may overcome these problems. The
first, second, and third derivatives were applied to determine the start of the season as
the date of the maximum increase in the respective NDVI derivative curve [23,42]. In
particular, the maximum of the second derivative has been related to the beginning of
the green-up phase [43] or to the time when the majority of pixels are turning green [42].
Our data confirmed that the maximum of the second derivative indicates the downward
concavity of the NDVI curve (end of March in Figure 3a,b) and thus also the onset of the
green-up. However, our perspective is rather different. The biomass accumulation was
produced during a later stage, coinciding with the local minimum of the second derivative
and the maximum convexity of the NDVI curve (Figure 3). In particular, in our study,
this point corresponded to 14 April. Our proposal agrees with Labus et al. (2002) [58]
and Doraiswamy and Cook (1995) [59] in that the early-season NDVI parameters were not
consistent indicators of the wheat yields, and the NDVI growth profiles showed a stronger
relationship with the yield later in the season during the grain-filling stage. Conversely, at
the end of the curve, the green biomass production decayed before the offset of the cycle,
in the middle of May, coinciding with the latter minimum of the second derivative. This
point would be readily identifiable at the end of the cycle and would allow farmers to
harvest during an optimal time of production and forage conditions. The method may also
provide an early warning about a potential harvest decline due to adverse weather or crop
conditions. In addition, this early-season estimation could not only reduce resource input
and environmental pollution, but also increase crop yield and the subsequent profits [60,61],
as well as determine inputs such as nutrients, pesticides, and water in order to optimize
the yield potential.

While the NDVI has repeatedly been used in AquaCrop as a surrogate of some
parameters, including CC or crop coefficients [16,30–32], our approach considered the
NDVI as a single synoptic indicator of crop vigor, biomass production, and plant status.
Supporting this idea, it was shown that the NDVI may include different stresses, such as
the impacts of fire, frost, or drought, during sensitive crop stages [25]. Therefore, following
the water productivity fundamentals, the integrated NDVI was multiplied by WP* as a
constant. In this first attempt, a value of WP∗ = 18 gr/m2 (180 kg/ha) was chosen based
on the literature. However, this value could be adapted to the specific characteristics of the
forage associations. As a given example, taking into account that the NDVI maximum is 1,
the expected maximum daily productivity would be 180 kg/ha. Furthermore, considering
that the number of days ranged between 34 and 50 (depending on the association and the
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scale), the possible maximum fresh biomass production ranged from 6300 to 9000 kg/ha,
which are considered feasible values of forage yield in a semiarid rangeland ecosystem
such as the dehesa [62,63]. The actual results for the forage associations ranged from 4200 to
7400 kg/ha (Table 5) and were in line with the observed values and the different behavior
observed with respect to the vetch-based and pea-based associations. The accuracy of these
estimations in terms of the RMSD (excluding the failed date at the end of May) ranged
from 700 to 2000 kg/ha, and the MAB ranged from 600 to 1900 kg/ha (all the values were
positive), which represented error percentages ranging from 10 to 30% (Tables 6 and 7).
Although rather high, these numbers are in accordance with other crop biomass/yield
estimations that used remote sensing and more complex approaches or models. Ajith et al.
(2017) [64] used an integrated NDVI for rice and found error percentages ranging from 11
to 21%. Benedetti and Rossini (1993) [65] found an error from 10 to 19% using cumulative
NDVI profiles in a regression model for wheat, and in a similar approach, Doraiswamy
and Cook (1995) [59] found much higher and variable errors at the county/regional levels
in two regions of the USA. Using the simple algorithm for the yield estimates (SAFY)
model for maize with high spatial and temporal resolution remote sensing data, Battude
et al. (2016) [66] found a relative error for dry biomass of 14%. Using the same model,
Claverie et al. (2012) [67] found a relative error of 25% for maize and of 39% for sunflower.
Ji et al. (2022) [68] used three machine learning algorithms for faba beans, obtaining yield
estimation errors from 18 to 31%. Many other examples may be cited [69], although most
of them present the error in terms of absolute errors of biomass (kg or tons per ha) for a
given crop; so, they are hardly comparable to the forage associations studied here, which,
in addition, are not frequently studied in the literature. In any case, the estimation may
supply a rough estimate of forage biomass for livestock feeding that could otherwise have
been difficult to draw from traditional surveys, as also stated by Benedetti and Rossini
(1993) [65].

In addition to its simplicity, another relevant advantage that should be emphasized with
regard to this approach is its objectivity. Occasionally, the parameterization of a model is
applied in a relative manner, through comparison with other users or the same user over
time, rather than applied as an absolute value [69]. This objectivity is sustained by the NDVI’s
capacity to determine the status and vigor of the plant, which ultimately implies its biomass
production capacity. While a higher NDVI value is associated with a faster growth rate
and higher biomass accumulation during the vegetative stage [35], this higher NDVI is not
always related to a higher grain yield. Nevertheless, there is a deep discussion in the scientific
literature about the predictive capacity of the NDVI for biomass or grain yield depending
on the developmental stage [40,65,70]. The approach performed reasonably well for fresh or
green biomass, but this was not the case for the final biomass estimated at the end of May,
when senescence had already initiated. The relationship between the biomass measured on
29 May and the NDVI on the same date for the eight associations showed good agreement
in terms of R (Table 4), but substantial differences between the observed and the estimated
weights were found on this date (Tables 2 and 5, respectively). Hence, the MAB and RMSD
were unacceptable. It should be highlighted that the focus of the work was the estimation of
green forage for livestock feeding at the time of the highest nutritional quality of the forage
crops. Hence, the last date was beyond the focus of the research.

In addition, the objectivity of the approach was built upon a new, systematic way to
determine the key stages through the second derivative, although much more research
should be conducted with other crops, different edaphoclimatic conditions, and remote
sensors to validate the hypothesis. As the calculation directly depends on the NDVI
values, one essential requirement is a previous, rigorous calibration and correction of the
sensor reflectance to ensure a fair integration between the NDVIs from different dates. In
this case, the radiometric calibration, together with the correction of the light conditions,
guaranteed the stability of the images regardless of the illumination conditions and the
sensor characteristics. Another remark that could be made is on the use of the red-edge
band of the Micasense camera, profiting from its spectral capacity. However, this band was
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previously tested in comparison with crop parameters with the same dataset [44], and it
was found that the indices based in the red-edge band did not correlate well with structural
parameters such as LAI and biomass; however, it seemed better suited to the depiction of
chemical parameters, as was also found in another similar research study [71].

The scale of observation is also a key factor to be accounted for. In this work, two
scales of NDVI observations were used: point scale (approximately 1/8 m2) and plot scale
(approximately 400 m2), both of which were enabled by the superhigh spatial resolution
of the images. Other studies have compared regional vs. local results, profiting from the
scalability of remote sensing images [58,65,66]. Predictions based on satellite platforms appear
to improve with the increased radiometric purity of the pixels [59,65]. In this vein, UAS would
seem a perfect alternative because the derived image resolution is much higher than that from
satellite systems and because it excludes land cover mixed pixels and atmospheric effects. Our
estimations using the UAS resolution were superior in terms of biomass and errors at the point
scale, probably because the NDVI values that were strictly bound by the sampling area better
fit the field estimations. In fact, when the NDVI was averaged onto a plot scale, the biomass
variability between plots was slightly lost, particularly for the pea-based associations (Table 5).
However, other authors [53] found that an integrated average NDVI determined using a
window size larger than a 1 × 1 pixel improved the results. Considering that regional yield or
biomass statistics usually provide an averaged value over large areas, it seems reasonable that
the averaged values of the image may better fit those broad statistics. Further applications
must then be applied at regional scales to appraise the method’s performance, particularly
when using remote sensing sensors such as the Landsat series or Sentinel-2 or recent high-
resolution systems such as Geosat-2. These optical sensors may allow long temporal NDVI
series to be readily available, affording repeatability and continuous observations instead of
labored drone campaigns.

5. Conclusions

There are well-recognized methods for the estimation of crop yield or biomass. Agro-
nomic, physical, or statistical modeling assisted by remote sensing databases aims to
estimate the agricultural production. One of the most popular approaches is the growth
model developed by the Food and Agricultural Organization, AquaCrop; this model is
particularly suited to the simulation of yield based on the response of herbaceous crops to
water under limiting conditions. Our proposal implemented the idea of “water productiv-
ity” (WP*) from AquaCrop to develop a simple calculation of fresh biomass using an NDVI
time series as the main input together with a conventional and accepted value of WP*. The
main objective was then to evaluate the feasibility of the methodology when applied at
superhigh spatial resolution over rainfed forage associations. The major novelty is the use
of the second derivative to define the time limits of biomass production, which in turn
demarcated the integration of the NDVI values. The second derivative of the NDVI time
series resulted in being a strong indicator of the crop status, determining the key temporal
points of the onset and offset of the forage yield and therefore creating an unexplored
way to estimate the forage yield. The estimation was successful, with acceptable errors
and good predictions. The best period to estimate fresh biomass occurred between the
second half of April and the first half of May. During this period, a farmer may decide
that the expected forage production is good enough to make the harvesting and haying
process economically profitable or, on the contrary, that it would be better for the animals
to consume the forage directly from the field, thus avoiding the costs of harvesting in
situations with low expected forage yields. It should be highlighted that the method can
be useful in estimating fresh biomass even one month before harvesting. Although the
approach appeared to be scalable, the biomass estimation with the NDVI series should be
supported by other large-scale remote sensors, as well as other single crops under different
climatic and agricultural regimes.
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