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Abstract: Maintaining high system performance is critical for a multi-hop flying mesh network (Fly-
Mesh) to perform missions in different environments. Although the Poisson point process (PPP) has
been widely used for the performance analysis of FlyMesh, it still has flaws in describing the spatial
distribution of the UAVs since it does not restrict the minimum distance between them. The spatial
deployment of FlyMesh varies depending on the environment. Considering the relevance and practi-
cality, we modeled the multi-hop FlyMesh using the β-Ginibre point process (β-GPP) and equipped
each UAV with a directional antenna. Under the condition of the decode-and-forward protocol, we
derived the connection probability and ergodic capacity of a multi-hop FlyMesh utilizing the Laplace
transform of interference. Then, we calculated an approximate expression for the interference Laplace
transform based on the diagonal approximation and further obtained the coverage probability. Finally,
the numerical simulation results verified the correctness of the theoretical derivation, indicating that
it is possible to optimize the system’s performance based on the expressions derived in this paper.

Keywords: unmanned aerial vehicles; β-Ginibre point process; multi-hop; directional antenna;
performance analysis

1. Introduction

Recently, unmanned aerial vehicles (UAVs) have received much attention and research
due to their controlled mobility and on-demand deployment. For example, UAVs can
be used as airborne wireless communication platforms, such as mobile base stations, to
quickly restore communication services and ensure communication quality [1]. UAVs
can also act as mobile relays to connect two or more distant users for communication [2].
As an aerial base station or mobile relay, they greatly improve the service quality of the
network [3]. In addition, UAVs can be applied to mobile data collection and information
dissemination to facilitate various Internet of Things (IoT) applications. Multiple UAVs
are organized into a group and deployed together to achieve the coverage of an area, in
which UAVs communicate with each other in a decentralized and ad hoc manner; this type
of network is called a flying mesh network (FlyMesh). Directional antennas are used to
improve the efficient coverage of UAVs. At the same time, they can increase the network
capacity and increase the robustness of the network [4]. It is known that FlyMesh will
experience frequent topological changes due to the rapid movement of UAV nodes [5]. To
ensure the continuous service of FlyMesh, maintenance personnel must maintain good
connections between drones. Therefore, establishing a suitable mathematical model to
analyze the performance of FlyMesh is crucial.

Stochastic geometry is commonly used as a tool for modeling and analyzing the
performance of FlyMesh [6]. For ease of handling, UAV locations are usually modeled
as a Poisson point process (PPP) [7]. PPP only applies to networks where transmitters
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(jammers) are deployed in a completely unplanned manner, where each UAV is consid-
ered an independent point in space and there is no relationship between UAV locations.
However, existing models are difficult to reconcile because UAVs usually keep a distance
from each other to improve coverage and prevent collisions. In addition, UAVs commonly
use directional antennas to reduce self-interference of signals. However, in real-world
environments, the location of UAVs is carefully planned to avoid interference or to extend
the coverage area. That is to say, there is a repulsion (or attraction) between UAVs, which
means that the actual deployed UAV locations usually form a more regular pattern of
points than PPP.

The β-Ginibre point process (β-GPP) has received wide attention as point processes
reflect repulsive forces [8] . β-GPP is repulsive and treats PPP as a particular case. In this
context, β-GPP was utilized to explain the spatial regularity among UAVs in this paper. In
contrast to PPP, β-GPP employs the parameter β to restrict the minimum distance between
UAVs. Different deployment environments are reflected by the repulsive parameter β.
GPP is similar to PPP when β → 0, and the UAVs are in a uniform distribution while
β→1. Therefore, the distribution of UAVs in a given environment can be more accurately
described by the repulsive parameter β. We derived the connection probability of a multi-
hop relay link by utilizing the Laplace function of the β-GPP distribution, based on the
connection probability to derive the ergodic capacity of the multi-hop relay. To better
describe the ability of FlyMesh to provide services, we used the approximate expression
of the diagonal kernel matrix to calculate the coverage probability. Finally, numerical
simulations verified the accuracy of the derived theoretical expressions. The main objective
of this paper was to introduce and promote β-GPP as a UAV network model in which
nodes exhibit repulsive forces. Compared with the PPP model, β-GPP not only captures
the application scenarios of real networks but is also analytically easy to handle. The main
contributions of our work can be summarized as follows:

• The spatial distribution of the UAVs was modeled as β-GPP, and the UAVs were
equipped with directional antennas to reduce signal self-interference. The repulsive
parameter β describes different application environments with tunability. Different
values of β describe the UAVs’ deployment in different environments, which makes
our model more practical;

• We considered the information transmission performance of a certain instantaneous
snapshot. By ignoring small-scale fading of interfering links and using random
geometry tools, an approximate expression for the coverage probability of multi hop
relay systems was obtained, thereby obtaining the traversal capacity. Then, according
to the diagonal approximate matrix property of β-GPP, we derived the approximate
expression of the coverage probability. The above analysis results can better predict
the performance of FlyMesh in different environments;

• Based on the theoretical expressions obtained, we analyzed the effects of various
parameters on the performance of FlyMesh in different environments. The simulation
results verified the correctness of the theoretical expression. We also adjusted the beam
width theta and the number of relay hops N, to achieve the best network performance
according to the repulsive parameter β.

The rest of this paper is organized as follows. Section 2 describes the related work.
Section 3 briefly introduces the β-GPP related mathematics and FlyMseh system model.
Section 4 gives the connection probability and ergodic capacity of multi-hop relaying,
and derives an approximate expression for the coverage probability. Section 5 provides
numerical results to verify the correctness of our theoretical derivation. Finally, Section 6
summarizes the work and looks forward to the application of the results.

2. Related Work

UAVs are widely utilized as low-altitude platforms owing to their effortless flexibility,
inexpensive price, and simplicity of deployment [9]. Current academic research and
industrial associations propose UAVs as aerial base stations and evaluate their application
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characteristics in various systems. For example, the authors of [10] consider UAVs to
provide downlink services for network coverage in rural areas. The authors of [11] construct
a UAV network that collects data from IoT devices and starts transmission whenever the IoT
devices are within the coverage area of the UAV. In [12,13], radio power transmission from
UAVs to end devices was proposed to improve battery life or to enable local computing.
In [14], a deep reinforcement learning-based algorithm was proposed to solve the UAV
trajectory planning, mission scheduling, and deployment in complex regional scenarios.

To facilitate the modeling and analysis of wireless geometric networks, PPP is widely
used because of its ease of handling. In most of the research on stochastic FlyMesh,
PPP is usually used to model the spatial distribution of UAVs. In [15], a 3D wireless
network of UAVs was modeled as a multilayer network with the location of UAVs at
each layer following the PPP model, which was derived analytically in addition to the 3D
UAVs switching probability. Reference [16] derived the coverage performance of the UAV-
assisted millimeter-wave cellular network using the PPP model and analyzed the optimal
key parameters to maximize the coverage probability. Although the PPP model provides
many useful theoretical results for our UAV network analysis, it has certain drawbacks due
to the independence of the described UAVs’ location distribution.

Therefore, a better point process must be considered to capture the deployment of
UAVs in real-world environments. β-GPP had received much attention as describing a
point process with repulsive power, where 0 < β < 1, describing the strength of repulsion
between points. In contrast, GPP belongs to a class of deterministic point processes
(DPP) [17]. β-GPP falls between GPP and PPP, and it is more regular than PPP and
treats PPP as a particular case. Therefore, β-GPP was a soft-core model with a scaling
function according to the variation of the repulsive parameter β. In [18], an ambient radio
frequency energy harvesting wireless sensor network was considered, where the location
of the ambient radio frequency source was modeled as a β-GPP and the average value of
energy, outage probability, and transmission interruption probability were harvested by
the Laplace transform of β-GPP. In [19], the performance of a specific clustered network
with a wireless node distribution location modeled as β-GPP was investigated and its
approximate expressions were obtained by approximating the simplified palm distribution
of β-GPP as an inhomogeneous Poisson point process (IPPP). On this basis, the approximate
expressions for the message outage probability, the overall outage probability, and the
transmission capacity were obtained by further neglecting the small-scale fading of the
interfering links. The β-GPP was applied and generalized in [20], where the mean and
variance of the interference were derived using the Palm measurement and the simplified
second moment method, and the correlation of the model with the cellular system was
further verified. Han-Bae Kong et al. [21,22] analyzed the system performance of single-hop
and multi-hop relaying under β-GPP interference fields and obtained the outage probability
and ergodic capacity.

The above study analyzed the network performance of mobile nodes in wireless self-
organizing networks based on GPP distribution, but did not consider the self interference
factors of wireless networks. The antenna is a major factor affecting self-interference in
self-organized networks. Therefore, directional antennas are utilized to reduce spatial
self-interference because they have the advantages of assigning shapes to the antenna and
improving signal gain. Therefore, we equipped the UAVs with directional antennas. Many
studies have also been conducted on the use of directional antennas. In [23], the maximum
coverage of the UAVs with adjustable antenna beam width was analyzed. In [24], the
directional transmission communication was proposed to improve the transmission quality.
Peng et al. analyzed the coverage performance of UAVs equipped with directional anten-
nas [25]. The beam multiplexing technique of directional antennas was intensively studied
in the future development of 6G [26]. They both analyzed the effect of directional antennas
on network performance under the PPP model. However, the rejection relationship of
network nodes in the real environment was not considered.
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To summarize, we followed the β-. The GPP model deploys the UAV in the air and
equips the UAV with directional antenna. The research focus of this paper was to derive
the connection probability, ergodic ability, and coverage probability of the multi-hop relay
system based on a UAV network under β-GPP, as well as the fitting of accurate data. Since
the β-GPP series constitutes an intermediate category between PPP (random independent)
and GPP (relative regular), we can visually simulate many real drone networks by adjusting
the variation of β.

3. Mathematical Preliminaries and System Model
3.1. β-GPP Model

This section provides a brief overview of β-GPP. For the positive integer χ, we assumed

β = − 1
χ

and considered a Hilber–Schmidt operator K [27]:

(1) K is a symmetric integral operator with upper and lower bounds, whose kernel is
defined as K;

(2) The spectrum of K belongs to [−1/β, 1];
(3) K is a local mapping of tracking classes.

Then, the β-GPP Ω with intensity ρ and in a viewing window B is characterized by
the core K. It is defined by

K(x, y) = ρ exp
(

πρxȳ− πρ

2

(
|x|2 + |y|2

))
; (1)

here, x, y ∈ B. x, y and x̄, ȳ illustrate the conjugate and the Euclidean 2-norm of complex
scalars x, and x, respectively. A ⊂ R2 and B ⊂ R2 are disjoint-bounded sets. We can obtain
the following equation:

Cov(N(A), N(B)) = α
∫

A×B
| K(x, y) |2 dxdy, (2)

where N(A) and N(B) represent a random number of points in set R2. The correlation
between N(A) and N(B) becomes higher as β −→ 1. That is, the rejection between points
increases and the spatial distribution is more uniform and regular. If the points in β −→ 0,
β-GPP are independent of each other, approximating PPP.

For a function q : R2 7→ [0, ∞] and an β-GPP Ω, the Laplace transform is given by

E[exp(−Σx∈Ωq(x))] = Det
(
I + βKq

)− 1
β ,

(3)

where Kq(x, y) =
√

1− exp(−q(x))K(x, y)
√

1− exp(−q(y)), and Det(I + X) denotes the
Fredholm determinant and I denotes the identity operator [28].

According to [27], for a point process Ω ∼ DPP with kernel K, the reduced Plam
distribution coincides with another DPP, which has the kernel,

Kxo (x, y) =
1

K(xo, xo)

∣∣∣∣ K(x, y) K(xo, x)
K(x0, y) K(xo, xo)

∣∣∣∣. (4)

Performing simple algebraic manipulations, the intensity of the points under the
reduced palm distribution β-GPP is given by

K(x, x) =
c
π

(
1− exp

(
− c

β

(
|x− xo|2

)))
. (5)

3.2. FlyMesh System Model

In this paper, the multi-hop FlyMesh was established to provide communication ser-
vices for flight mobile terminals and ground mobile terminals, as shown in in Figure 1. The
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multi-hop FlyMesh system is composed of a flight base station (FBS), a flight mobile termi-
nal (FMT), and a ground mobile terminal (GMT), which forms a complex network topology.
Due to the rapid movement of drones, the topology structure will randomly change.

 

FBS

FMT

GMT

Figure 1. FlyMesh model.

The information randomly selected a link for data transmission. To facilitate the analy-
sis, we assumed the information transmission at a certain instant, that is, the information
was fixed on a particular link for communication. The nodes outside the link were all
interference nodes. Simultaneously, UAVs were equipped with directional antennas to
reduce the effect of signal interference [29], as shown in Figure 2. The transmission gain gt

and the receive gain gr can be described separately as:

gt = 1 + γ cos θ, (6)

gr = 1 + γ cos ϕ, (7)

where θ represents the transmission beam width and ϕ is the receiving beam width. γ
is the degree of influence of beam width on antenna gain. Then, the gain of information
transmission between the two nodes can be expressed as:

G = δgtgr, (8)

where δ ∈ (0, 1) indicates the degree of alignment of the directional antenna. δ→ 0 means
that the beams are parallel and no information can be sent between nodes, as shown in
Figure 2c. δ → 1 indicates that the beam is aligned, as shown in Figure 2a. Figure 2b
indicates that δ belongs to (0, 1) and its value adjusts with the degree of beam alignment.

Figure 2. Three different alignment modes between beams: a, b, c.
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4. Performance Probability Analysis

In this paper, we considered the network performance of a multi-hop FlyMesh under
β-GPP distribution. We used a more reliable decode-and-forward (DF) protocol. Based
on this, the connection probability and ergodic capacity of multi-hop relay were obtained
based on the Laplace transform of the interference, and the coverage probability was further
derived. In this way, we hoped to describe the network performance of the multi-hop
FlyMesh in detail.

4.1. Connection Probability

As shown in Figure 3, information was transmitted from the source node S to the end
node D through the relay node Ri(i = 1, 2, · · ·, N). UAVs outside the transmission link
were regarded as interference nodes. So, the signal-to-interference-to-noise ratio (SINR)
between each hop can be expressed as:

Υi =
Pihid−α

i Gi

r1 I + T0
, (9)

where I = ∑j∈Φ, 6=i PId−α
j hjGj is the total interference received by the relay node, Φ repre-

sents the UAVs node in space. The channel gains hj and hi have an exponential distribution
with a mean of one. Pi and PI indicate the transmission power and interference source
power at relay node Ri, respectively. r1 is the interference impact factor. di is the distance
from Ri to Ri+1, and α is the path attenuation factor, which depends on the environment.
T0 is the average background noise power. Gi/j can be obtained by (8).
 

 

Source node S and end node D Relay node SINR

Figure 3. Multi-hop UAVs relay system based on β-GPP.

In a multi-hop node information transmission, SINR exists between each hop node.
When operating under the DF protocol, according to (9), the end-to-end SINR is ex-
pressed as:

ΥDF = min(Υ1, Υ2, · · ·, ΥN). (10)

Then, the connection probability can be expressed as:

Pcon = P(ΥDF > Q). (11)

Since Υi is independent, from (10) and (11), we can obtain the connection probability
Pcon as:

Pcon = FΥDF (Q) =
N

∏
i=1

(1− FΥi (Q)). (12)

Here, FX = P(X < x) = 1− exp(−ax) is an exponential random variable cumulative
density function with parameter X. The cumulative density function can be written as:
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FΥi (Q) = P

(
hi >

Q(r1 I + T0)

GiPid−α
i

)

= EΥi

[
1− exp

(
−Q(r1 I + T0)

ΘhGiPid−α
i

)]
= exp(−AΥT0)LI(AΥ),

(13)

where hi and I are independent, AΥ =
Q

ΘhGiPid−α
i

. LI(X) is the Laplace transform of a

random variable x. Combined with (12), the Laplace transform LI(AΥDF ) can be obtained
as follows:

LI(AΥDF ) = E
[

exp

(
− ∑

x∈Φ
AΥ PtGjhi(|x|+ ε)−β

)]

= E
[

∏
x∈Φ

E
[
exp(−AΥ PtGjhi(|x|+ ε)−β)

]]

= E

∏
x∈Φ

(
1 +

Θg AΥ PtGj

(|x|+ ε)
β

)−1


= E
[

exp

(
− ∑

x∈Φ
ln

(
1 +

Θg AΥ PtGj

(|x|+ ε)
β

))]
.

(14)

According to (3), there is

LI(AΥ) = Det(I + βKi)
−

1
β ,

(15)

and the core matrix Ki can be interpreted as:

Ki(x, y) =

√
ΘgηΥ PI Gj

Θg AΥ PI Gj + (|x|+ ε)α
K(x, y)

×
√

Θg AΥ PI Gj

ΘgηΥ PI Gj + (|y|+ ε)α
.

(16)

We assume

ð(x) =

√
Θg AΥ PI Gj

Θg AΥ PI Gj + (x + ε)α
. (17)

Denote ζn as an eigenvalue of Ki. Then, the Fredholm determinant of kernek Ki can
be expressed as

Det(I + βKi) = ∏
n≥0

(1 + βζn). (18)

Therefore, (15) can be described as

Det(I + βKi)
−

1
β = ∏

n≥0
(1 + βζn)

−
1
β . (19)

For simplicity, we introduced a closed form expression for the Fredholm determinant.
According to Mercer’s theorem, the kernel Ki(x, y) can be written as:

Ki(x, y) = Σn=0ζnφn(x)φn(y), (20)
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where ζn and φn(x) are the basis of eigenvectors and corresponding eigenvalues of Ki(x, y),
respectively. For x ∈ R2 and n ≥ 0, we can know that φn is an orthogonal basis and ζn is
eigenvalues. There are

∫
R2 | φn(x) |2 dx = 1 and

∫
R2 φn(x)φn(x)dx = 0. Define

ζn =
2(πρ)n+1

n!

∫ L

0
ð(x)2 exp(−πρx2)x2n+1dx

φn(x) =
√

ρ

vnn!
ð(|x|)(√πρx)n exp

(πρ

2
|x|2
)

.
(21)

Therefore, Det(I + βKi)
− 1

β can be represented as:

Det(I + βKi)
−

1
β =

= ∏
n≥0

(
1 +

2β(πρ)n+1

n!

∫ L

0
exp(−πρx2)x2n+1ð(x)2dx

)
.

(22)

Thus, the connection probability can be rewritten as

Pcon =
N

∏
i=1

exp(−AΥT0)×

∏
n≥0

(
1 +

2β(πρ)n+1

n!

∫ L

0
exp(−πρx2)x2n+1ð(x)2dx

)
.

(23)

It can be seen that the connection probability is influenced by the number of relay
nodes, the repulsive parameter, and the beam width. According to (23), the relevant
parameters can be adjusted to maintain a high connection probability, ensure the stability
of the information link, and improve the reliability of data transmission.

4.2. Ergodic Capacity

According to Shannon, ergodic capacity is a crucial performance metric because it
quantifies the maximum achievable transmission rate at which errors can be recovered. In
this paper, the DF relay protocol was selected. Specifically, the received signal of each relay
station was fully decoded, re-encoded, and then transmitted to the next relay station. The
code words transmitted from the source node S were selected from the Gaussian codebook.
The minimum capacity of the link determines the capacity of the entire system. On the other
hand, according to the minimum cut maximum traffic theorem [30], the overall capacity of
the system is less than or equal to the capacity of each link. Then, the ergodic capacity of
the ith (i ∈ N) relay can be expressed as

Ci = log(1 + Υi). (24)

Therefore, the ergodic capacity of multidirectional multi-hop networks can be given as:

C = min(C1, C2, ..., CN). (25)

According to Jensen’s inequality, the upper bound of the ergodic capacity in (25) is

C >
1
N
E(log(1 + Υi))

=
1
N
E(min{log(1 + Υ1), · · ·, log(1 + ΥN)})

=
1
N
E(log(1 + min{Υ1, · · ·, ΥN})),

(26)
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where E(·) denotes mathematical expectation. Considering the Taylor series expansion,
utilizing partial integration, we can rewrite the traversal capacity as

C =
1

N ln(2)

∫ ∞

0

1
1 + ΥDF

(1− FΥi (Q))dΥ. (27)

Combined with the connection probability, the ergodic capacity can be calculated as

C =
1

N ln(2)

∫ ∞

0

1
1 + ΥDF

×

N

∏
i=1

exp(−AΥ T0)Det(I + βKi)
−

1
β dΥ.

(28)

The ergodic capacity is derived from the connection probability; thus, we can improve
the ergodic capacity while considering the connection probability.

4.3. Coverage Probability

The coverage probability is a measure of the service provided by FlyMesh, as shown in
Figure 4. Due to the motion invariance of GPP, we can assume that the coverage probability
of a typical user bo (bo ∈ Φ) is the same at any location. Each typical user is connected to its
closest FBS, i.e., the typical user is served by only one closest FBS. Therefore, the coverage
probability when SINR is greater than the threshold ν is denoted as:

Pcov = P(SINR > ν, |bo| ≤ |bi|)

= P

{
Pth

′
bo
|bo|−αGbo

r2 I2 + σ2 > ν, |bo| ≤ |bi|
}

,
(29)

where Pt is the transmit power of the UAVs. h
′
i indicates that the mobile user only ex-

periences Rayleigh fading, which is an exponential random variable with a mean of 1.

I = ∑bk∈Φ\bo Pth
′
bk
|bk|−α

′
Gbk

is the total interference received at the typical user, and r2 is
the interference impact factor. σ0 denotes the background noise. | · | is the Euclidean dis-
tance from the FBS to the user. We usually assume that the path loss exponent α

′
> 2. Gbo/bk

can be obtained by (8). Therefore, the coverage probability can be further expressed as:

Pcov =
∞

∑
bo=0

P(SINR > ν | bo, |bo| ≤ |bi|)

=
∫ ∞

|bo |=0
P

{
h
′

bo
>

ν
(
r2 I2 + σ2)

Pt|bo|−α′Gbo

, |bo| ≤ |bi|
}

f (bo)dbo

=
∫ ∞

|bo |=0
E
{

exp

(
−νσ2

Pt|bo|−α′Gbo

)
exp

(
−νr2 I2

Pt|bo|−α′Gbo

)}
f (bo)dbo

=
∫ ∞

|bo |=0

{
exp

(
−νσ2

Pt|bo|−α′Gbo

)
LI2 (s), |bo| ≤ |bi|

}
f (bo)dbo,

(30)

where s =
νr2

Pt|bo|−α
′
Gbo

, f (bo) can be simplified for β-GPP after applying a diagonal

approximation as f (bo) = 2cboecb2
o . Therefore, (30) can be written as:

Pcov =
∫ ∞

|bo |=0
exp

(
−νσ2

Pt|bo|−α
′
Gbo

)
LI2(s)2cboecb2

o dbo. (31)
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The authors of [31] gave the following expression for the Laplace transform of the
interference of a general motion-invariant DPP under the recent FBS correlation scheme, i.e.,

LI2 (s) =Ebo [e
−sI ]

=
∑∞

0
(−1)n

n!
∫
(R2)n det[Kbo (bi, bj)]

∑∞
0

(−1)n

n!
∫
B(o,bo)n det[Kbo (bi, bj)]

· ··

∏n
i=1

[
1− |bi| ≥ |bo|

1 + Gbo νPt|bi|−α

]
db1 · · · dbn

db1 · · · dbn
.

(32)

We used the approximation for the determinant of kernel matrix Kbo (bi, bj)

det[Kbo (bi, bj)]1≤i,j≤n
≈

n

∏
i=1
Kbo (bi, bi), (33)

and we know ∑∞
n=0
−xn

n!
= e−x. Combined (4) and (5), the (32) can be rewritten as:

E!
bo
[e−sI ] = exp

(
− c

π

∫
B(o, bo)

c

(
νGbo Pt|b|−α

′

νGbo Pt|b|−α′ + 1

+
e
−

c
β
|b−bo |2

νGbo Pt|b|−α′ + 1
− e
−

c
β
|b−bo |2

db

.

(34)

For ease of expression, we split (34) by drawing on Reference [32]; it can be written as:

Ebo [e
−sI ] = exp

(
− c

π
(Θ1 + Θ2 + Θ3)

)
. (35)

Here, we transform the Cartesian coordinate into a polar coordinate system and let
|b| = r, Θ1 can be written as:

Θ1 =
∫ 2π

0

∫
ro

νGbo Ptr−α
′

νGbo Ptr−α
′
+ 1

rdrdθ
′
, (36)

where r denotes the distance to the origin of the polar coordinate system and θ
′

is the polar

angle. Replacing

(
r

ν
1
−α
′

)2

with u, we can get

Θ1 = πν
2
α

∫ ∞ ro

ν
1
−α
′

2 Gbo Pt

Gbo Pt + u
α
′

2

du.
(37)

Equation Θ2 can be expressed in polar coordinate system as:

Θ2 = 2π

∫ ∞

ro

e−
c
β (r−ro)2

νPtr−α
′
+ 1

rdr

. (38)

According to the same method, Θ3 can be represented as:

Θ3 =
∫ 2π

0

∫ ∞

0
e−

c
β u2

ududθ
′−

2
∫ π/2

0

∫ 2rocos(θ
′
)

0
e−

c
β u2

ududθ
′
.

(39)
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For the first part replacing u2 with y and the second part replacing u2 with x, we
can obtain

Θ3 =
πβ

c
− βπ

2c
− β

c

∫ 4ro

0

− c
β√

4ro − x
dx. (40)

Bringing (37), (38) and (40) into (34), we are able to obtain the expression for the
interference Laplace transform under β-GPP as:

LI2(s) = exp

−cν
2

α
′
∫ ∞ ro

ν
1
−α
′

2 Gbo Pt

Gbo Pt + u
α
′

2

du

2π

∫ ∞

ro

e−
c
β (r−ro)2

νGbo Ptr−α
′
+ 1

rdr

+

πβ

c
− βπ

2c
− β

c

∫ 4ro

0

− c
β√

4ro − x
dx.

)
.

(41)

Combining (41) and (31), Pcov is expressed as:

Pcov =
∫ ∞

|bo |=0
exp

(
−νσ2

Pt|bo|−α
′
Gbo

)

exp

−cν
2

α
′
∫ ∞ ro

ν
1
−α
′

2 Pt

Pt + u
α
′

2

du+

2π

∫ ∞

ro

e−
c
β (r−ro)2

νPtr−α
′
+ 1

rdr

+

(
πβ

c
− βπ

2c
− β

c

∫ 4ro

0

− c
β√

4ro − x
dx

))
2cboecb2

o dbo.

(42)

Coverage probability is the ability of a network to provide a service. The expression
shows the effect of the repulsive parameter β and beam width θ on the coverage probability.
We can adjust the parameters according to the expression to ensure the ability of the UAVs
network to provide services.

(a) UAVs network coverage (b) Information transmission model

Figure 4. A multi-hop relay UAVs coverage model based on β-GPP distribution, where the coverage
probability of the UAVs network is equal at each location.

5. Numerical Results

This section uses Monte-Carlo methods to verify the correctness of the theoretical
analysis. For better validation, some parameters are assumed in Table 1. In order to
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facilitate the calculation and analysis, the beam width θ = π/3 is taken according to the
adopted mathematical model of antenna gain. We also note that the results of β-GPP
corresponding to the actual base station locations have been provided in [20], where the
authors showed the accuracy of β-GPP for cellular network modeling by adjusting the
parameter β instead of using the analytical results of the derived coverage probabilities.
We drew on the same approach β-GPP for the coverage probability curve, based on the fact
that the distribution of the squared modes (distances) of the points in β-GPP follows the
gamma distribution ([27], Proposition 1).

Table 1. Simulation parameters.

Definition Parameters Values

End-to-end distance d ∑N
i=1 di

Interference power coefficient k PI/P
Transmission power coefficient Pi P
Effective signal coefficient Θh, Θg 1
Threshold value Q 1
Background noise T0 1
Length coefficient L 30

5.1. Connection Probability Verification

Figure 5 shows the relationship between connection probability and the increasing
power. The results show that the connection probability increases gradually as the power
increases. Additionally, under the same conditions, we can see that the connection probabil-
ity under the β-GPP model is superior to the PPP model. The more uniform the distribution
of the nodes, the higher the connection probability of the network, which indicates that the
regular distribution of the nodes reduces the interference between nodes. At the exact β, the
connection probability can be increased by increasing the number of hops of relay nodes.
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Figure 5. Connection probability versus P with different N and node deployment, where sita = pi/3.

Figure 6a shows the influence of beam width on connection probability under different
power. The spatial self-interference is reduced due to the directional antenna, which
improves the stability of the connection between the nodes. The connection probability
increases as the beam width decreases. It also shows that the connection probability of
nodes with a particular regular distribution is better than that of the nodes that are randomly
distributed. When the power increases to a certain level, the advantage of antenna gain can
be ignored but, at this point, a large amount of energy consumption will increase. Figure 6b
shows the relationship between the connection probability and the beam width for the
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same power. As the beam width increases, the connection probability decreases. However,
when the beam width exceeds π, the connection probability decreases significantly, which
is due to a sudden increase in signal interference between nodes. Again, it shows that the
number of hops of the relay nodes improves the connection probability. Additionally, all
the results demonstrate that the distribution rules of the nodes are beneficial for reducing
signal interference and improving the connection probability.
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(a) beam width N = 3.
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(b) Transmitted power P = 1.

Figure 6. The connection probability is influenced by the number of relay nodes N and the repulsive
parameter β.

Figure 7 illustrates the effect of the degree of beam alignment on the connection
probability. The connection probability is highest when the beams are perfectly aligned.
The perfect alignment of the beam reduces the signal loss and the information capacity
carried can be completely absorbed by the target node, thus improving the information
transmission efficiency; otherwise, the energy carried by the beam will be wasted with the
directional offset.
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Figure 7. The degree of alignment of the directional antenna to the connection probability.

5.2. Ergodic Capacity Verification

Figure 8 shows the relationship between ergodic capacity and power, where the
ergodic capacity increases as the power increases. We can see that the more hops of
relay nodes, the higher the ergodic capacity. This phenomenon is directly related to the
connection probability. At the same time, the ergodic capacity of nodes under specific
regular distribution is more significant than that under the PPP model, which is still due to
the self-interference reduction.
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Figure 8. The ergodic capacity as a function of P for different numbers of relay hops.

The effect of different beam widths on the ergodic capacity is shown in Figure 9. The
directionality of the antenna increases the antenna gain and also increases the traversal
capacity. The directionality of the antenna concentrates the energy and improves the
efficiency of information transmission. Interference is also a factor that affects the traversal
capacity, and the uniform deployment of nodes is beneficial for capacity improvement.
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Figure 9. The ergodic capacity as a function of P at different beam width.

5.3. Coverage Probability Verification

Figure 10 depicts the relationship between the threshold and the coverage probability
for different β. As β increases, the negative correlation between points increases, so the
distribution of nodes becomes more regular and most of the disturbances are restricted to
areas closer to a point. Therefore, the regularity leads them to cover a wider area. Figure 11
describes the coverage probability for different beam widths. The directionality of the beam
helps to increase the connection probability but decreases the coverage probability, which is
due to the fact that assigning a shape to the beam reduces the width of the beam. Therefore,
we need to consider that the beam width can be adjusted to keep the performance of the
whole network balanced.
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Figure 10. Comparison of coverage probabilities at different beam widths.
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Figure 11. Comparison of coverage probabilities under different repulsion factors.

6. Conclusions

In this paper, we analyzed a multi-hop FlyMesh based on a β-GPP distribution. The
location distribution of UAVs followed a β-GPP model, which was a scalable UAV network.
We simulated the the deployment of FlyMesh in different environments by adjusting
the repulsive parameter β, which was the degree of exclusion between control points.
Neglecting the small-scale fading between interfering links, we derived an approximate
expression for the connection probability utilizing stochastic geometry and further obtained
the ergodic capacity. Finally, we obtained an approximate expression of the coverage
probability using an approximation of the diagonal core matrix to analyze the ability of
FlyMesh to provide services. The results of the performance analysis provide theoretical
guidance for deploying multi-hop FlyMesh in different environments. For example, in a
densely populated urban environment, UAVs can be deployed evenly. At this time, the
rejection factor β→ 1 . Engineers can set the beam width to θ and the number of relay hops
to N according to the rejection factor to improve the overall network performance.
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