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Abstract: Air logistics transportation has become one of the most promising markets for the civil drone
industry. However, the large flow, high density, and complex environmental characteristics of urban
scenes make tactical conflict resolution very challenging. Existing conflict resolution methods are
limited by insufficient collision avoidance success rates when considering non-cooperative targets and
fail to take the temporal constraints of the pre-defined 4D trajectory into consideration. In this paper, a
novel reinforcement learning-based tactical conflict resolution method for air logistics transportation
is designed by reconstructing the state space following the risk sectors concept and through the use of
a novel Estimated Time of Arrival (ETA)-based temporal reward setting. Our contributions allow a
drone to integrate the temporal constraints of the 4D trajectory pre-defined in the strategic phase. As
a consequence, the drone can successfully avoid non-cooperative targets while greatly reducing the
occurrence of secondary conflicts, as demonstrated by the numerical simulation results.

Keywords: urban airspace; drones; deep reinforcement learning; tactical conflict resolution; D3QN

1. Introduction

With the mature development of small and lightweight drone technology, air logistics
transportation using drones in urban areas is now feasible and has the potential to become
an essential branch of the civil drone market. According to a report [1] by ASDReports,
current applications of drone logistics in cities primarily include the distribution of medical
supplies, point-to-point high-timeliness material distribution, and closed-area material
distribution. However, the operation of drones in such scenarios is characterized by high
density, as has been reported by SESAR [2] and NASA [3].

In the above-mentioned concept of urban air logistics operation, related technolo-
gies [4–6] have been a hot research field. However, many key safety problems associated
with the complexity of urban scenes, high-density operations, and imperfect supporting
infrastructure have yet to be resolved. Urban scenes have the characteristics of large flow,
high density, and complex environments, resulting in frequent conflicts. Thus, resolving
conflicts during the high-density operations of logistics drones is a potential problem
restricting the development of air logistics transportation. Based on different flight phases,
conflict reduction methods can be categorized into two types: strategic trajectory planning
and tactical conflict resolution [7]. The former refers to pre-flight collision-free 4D trajectory
planning before taking off, while the latter primarily aims to deal with the in-flight conflicts
between the aircraft and cooperative or non-cooperative targets during the tracing process
of the aforementioned planned 4D trajectory.

However, traditional in-flight tactical conflict resolution methods for urban air logistics
face two key problems, which may become bottlenecks restricting the rapid development
of the drone logistics industry. First, existing conflict resolution methods lack sufficient
collision avoidance success rates and, so, do not yet satisfy the collision avoidance safety
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standards required by the relevant regulations in multi-target and high-density collision
avoidance scenarios. Furthermore, these methods fail to consider the temporal constraints
of the pre-defined strategic trajectories. Therefore, the drones may fail to reach their next
trajectory points on time while executing their tactical conflict resolution strategies, leading
to more severe secondary conflicts, and possibly even triggering a “domino effect” [8].

To address the problems described above, on the one hand, an innovative approach
is followed to reconstruct the state space by introducing the concept of risk sectors based
on deep reinforcement learning. This new concept enables both the position and relative
distance to be expressed while using less information, resulting in a significant improve-
ment in the success rate of flight missions (as demonstrated in Section 5). On the other
hand, a novel reward setting based on the ETA is incorporated and a novel 4D conflict
resolution method is proposed. This method takes into account the temporal constraints of
the pre-defined 4D strategic trajectories and achieves safe avoidance with non-cooperative
targets simultaneously, thereby reducing the occurrence of secondary conflicts.

1.1. Research Contributions

In summary, although various methods have been developed for drone tactical conflict
resolution, none of them are suitable for future air logistics environments with high traffic
flow and complex environmental characteristics for the following two reasons: first, the
calculation speed and reliability of current methods are still relatively low, meaning that
they cannot ensure the target safety levels for safe air logistics. Second, existing tactical
conflict resolution methods do not take into account the temporal constraint of 4D trajecto-
ries pre-defined at the strategic level, which may result in secondary conflicts. Therefore,
this study proposes a novel deep reinforcement learning-based tactical conflict resolution
method by reconstructing the original state space, along with a novel ETA-based reward.

The specific contributions of this paper are as follows:

1. This study introduces the novel concept of risk sectors to describe the state space,
which improves the success rate of tactical conflict resolution for unmanned aerial
vehicles by allowing the same state information to express both the relative direction
and distance with the collision avoidance target.

2. This study addresses the problem of tactical conflict resolution under the temporal
constraints of the strategic 4D trajectory by modeling it as a multi-objective optimiza-
tion problem. To the best of our knowledge, this problem is considered for the first
time. Specifically, this study proposes a novel deep reinforcement learning method
for tactical conflict resolution, introducing a criterion reward based on the estimated
time of arrival at the next pre-defined waypoint to achieve the coupled goals of colli-
sion avoidance and timely arrival at the next 4D waypoint, thus reducing the risk of
secondary conflicts.

3. The simulation results show that our method outperforms the traditional tactical
confliction resolution method, achieving an improvement of 40.59% in the success rate
of flight missions. In comparison with existing standards, our method can operate
safely in scenarios with a non-cooperative target density of 0.26 aircraft per square
nautical mile, providing a 3.3-fold improvement over TCAS II. We also adopt our
method in a specific local scenario with two drones; the result of which indicated that
the drones can successfully avoid secondary conflicts through our novel ETA-based
temporal reward setting. Moreover, we analyze the effectiveness of each part of our
ETA-based temporal reward in detail in the ablation experiment.

1.2. Organization

The remainder of this paper is structured as follows: Section 2 describes the related
work in the field; Section 3 describes the problems studied in this paper and the relevant
models. Section 4 introduces the background knowledge and relevant typical algorithms
related to the methods applied in this paper. Section 5 elaborates on the settings for the state
space, action space, and reward function of the reinforcement learning method applied
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in this paper, and the algorithmic processes are explained. In Section 6, the design of
the simulation experiment platform and experimental tasks, processes, and results are
introduced and detailed. In Section 7, the simulation results for our method are summarized
and prospects for future research work are presented.

2. Related Work

Methods of conflict resolution [9] have been widely studied as one of the key safety
technical problems of drones. The conflict resolution methods can be divided into the
following two types [7] based on the occurrence time of conflicts: strategic trajectory
planning methods for pre-flight potential conflicts and tactical conflict resolution methods
for in-flight conflicts. Strategic trajectory planning methods generate a feasible pre-flight
trajectory that avoids potential conflicts from the initial state to the final state, while
tactical conflict resolution methods are designed to avoid conflicts with non-cooperative
and cooperative targets during the actual flight by following the pre-defined strategic
4D trajectory.

2.1. Strategic Trajectory Planning Methods

Primarily dealing with potential conflicts, strategic trajectory planning methods gen-
erate a trajectory before takeoff. With the development of technology, strategic trajectory
planning is gradually transitioning from a 3D trajectory planning to a 4D one.

(1) Three-dimensional trajectory planning
Graph search algorithms, such as the original A* algorithm, can only perform static

path planning or locally avoid collisions with moving targets by integrating with other
methods. However, as traffic densities increase, these algorithms may not ensure computa-
tional efficiency. With the minimum collision risk and fuel consumption as the objective
function, Chen et al. [10] used the A* algorithm to plan two-dimensional trajectories for
drones; in this scenario, the cost function can be adjusted based on practical demands.
Maini and Sujit [11] proposed a two-stage algorithm that satisfies the accessible path and
dynamic constraints of drones simultaneously. This algorithm improves upon Dijkstra’s
algorithm by performing a backward search and using the path obtained during the first
search as a prior result to speed up the search in the second stage. Abhishek et al. [12]
proposed two mixed algorithms from a variant of the particle-swarm optimized algorithm.
They optimized the particle-swarm algorithm to a harmonic search and genetic algorithm
separately, reducing the traverse time and improving algorithm performance. In addi-
tion, the potential energy algorithm [13], geometry-based optimization methods [14], and
sampling-based methods [15] are also often used for 3D trajectory planning.

(2) Four-dimensional trajectory planning
As a 3D trajectory lacks the ability of a “controlled time of arrival”, an air traffic

management system based on a 3D trajectory suffers from low operational reliability and
inefficient air traffic management. On this basis, the International Civil Aviation Organiza-
tion (ICAO) proposed the Global Air Traffic Control Operation Concept (Doc9854) [16] in 2005
which clearly states that the precise control of the time domain of both manned and UAV is
necessary to achieve a 4D trajectory flight. Following this concept, experts and scholars
introduced the time dimension to flight trajectory planning and proposed a series of 4D
flight trajectory planning methods that could effectively improve the utilization efficiency
of airspace [17] and avoid the waste of airspace. Gardi et al. [18] proposed a functional
development method of 4D trajectory planning, negotiation, and verification (4-PNV) based
on a multi-target 4DT optimized algorithm. They also constructed a model applicable to
aircraft dynamics, engine thrust, fuel consumption, and pollutant emissions, which was
realized and evaluated in the multi-target 4DT optimized algorithm. Qian et al. [19] put
forward a multi-aircraft collaborative 4D trajectory planning method that can be performed
online. Chaimatanan et al. [20] proposed a hybrid-metaheuristic optimization algorithm for
strategic 4D aircraft trajectories with the goal to minimize the interactions among aircraft
trajectories in a given day.
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In terms of application, FAA and Eurocontrol [21] have continuously tried to im-
plement air traffic management based on 4D trajectories. The SESAR Horizon project
organized by Eurocontrol has viewed trajectory management and 4DT [22] as its develop-
ment focus, aiming to realize safer, smoother, and more energy-efficient flights through
more accurate trajectory management. This paper focuses on the tactical conflict resolution
problems that arise during the actual flight after takeoff while following a pre-defined
strategic trajectory.

2.2. Strategies of Tactical Conflict Resolution

In the field of conflict resolution during flight, researchers usually use the geometric
relationship between drones to achieve collision avoidance. Park et al. [23] used a simple
geometry method to construct a model for the collision avoidance process where all aircraft
share information through ADS-B. With this model, they viewed drones as mass points and
judged conflict situations by calculating the closest points between two aircraft. Then, these
aircraft could change their flight trajectories with the relative motion vectors calculated.
Strobel et al. [24] proposed a geometry method that constructs a threat zone based on the
acceleration, deceleration, and turning abilities of a non-cooperative target. Any drone
that enters the threat zone within a certain time can calculate its avoidance angle based
on the properties of the non-cooperative target to avoid this zone. Marchidan et al. [25]
put forward a collision avoidance method based on guidance vectors that form smooth
guidance vector fields around barriers using the kinematic decomposition of drones and
calculates the normal motion components of drones relative to barrier boundaries. Then,
they used the flow lines of these vector fields as the paths for drones to avoid collisions at
uniform velocities; the effectiveness of this method was verified through simulation.

However, to cope with large numbers of drones, the implementation of U-space/UTM
and operations in urban environments will only be possible with high levels of automation
and the use of disruptive technologies such as Artificial Intelligence and the learning-based
method [26,27]. Viewing the collision avoidance of vertical takeoff and landing of drones
in cities with non-cooperative targets as a Markov decision process, Yang and Wei [28]
constructed a model which they solved online with the Monte Carlo Tree Search (MCTS)
algorithm. Chen et al. [29] used the object detection algorithm and deep reinforcement
learning to realize the indoor autonomous flight of a miniature drone. The study assumed
that an indoor drone has a wireless connection with a server with the training observation
data on reinforcement learning. During the flight, the drone can learn obstacle avoidance
strategies online and make decisions by using the information obtained from the server.
However, this method does not take into account communication failure and the presence
of dynamic obstacles. Cetin et al. [30] considered a joint state input containing images
and scalars of drones in a suburban scenario built with AirSim and Unreal Engine and
used DQN to achieve autonomous obstacle avoidance. However, it can only be used in
relatively low-traffic-density environments. Wan et al. [31] improved the original DDPG
(Deep Deterministic Policy Gradient) algorithm and proposed a Robust DDPG algorithm
based on delayed learning, adversarial attack, and the hybrid exploration technique. With
this improved algorithm, the dual-channel (traverse angle and velocity) control of drones
in a dynamic environment was achieved, improving the training convergence and mission
success rates. Recently, ACAS-X was also achieved through machine learning in recent
standards delivered by RTCA SC-147 under the ACAS suite. [27,32]

However, the methods mentioned above have not considered the time dimension, and
therefore cannot integrate well with 4D trajectories at the strategic level. For example, an
aircraft executing one of the above conflict resolution strategies at the tactical level may not
reach the next waypoint on time as pre-defined by the strategic trajectory. In such a case,
secondary conflicts between aircraft are likely to occur and may even trigger a “domino
effect” [8]. Therefore, while performing the tactical conflict resolution, we should take into
account the time constraint of 4D trajectories at the strategic level at the same time so that
aircraft can reach their next 4D flight waypoint on time.
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3. Preliminaries
3.1. Problem Description

Following the standard specification for UTM and USS interoperability [33], in an
urban low-altitude delivery mission scenario, the UAS service supplier (USS) needs to
plan the 4D strategic trajectory for the drone before takeoff, which can be represented
as a series of 4D waypoints. After takeoff, the drone must follow these waypoints and
arrive at each one on time. The primary problem concerned in this paper is the tactical
conflict resolution problem caused by non-cooperative targets after takeoff, which must be
resolved under the temporal constraints of the strategic 4D trajectory. To accomplish this,
two objectives should be met: 1. the drone should be able to safely avoid collision with any
non-cooperative targets or static obstacles, and 2. the drone should arrive at the next 4D
waypoint at the specific time pre-defined in the strategic path planning step, in order to
minimize secondary conflicts. The overall schematic diagram of an urban logistics drone
operation is shown in Figure 1.
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Figure 1. Schematic diagram of urban logistics drone operation [34].

Moreover, as there is no clear collision avoidance standard for drones at present,
we have assumed a reasonable collision judgment standard in the above scenario based
on the existing standard. Currently, the collision avoidance system TCAS [35], used in
civil aviation, mainly divides the airspace around an aircraft into “Traffic Advisory, TA”,
and “Resolution Advisory, RA”, as shown in Figure 2. In the field of UAS, most of the
literature and regulations emphasize the responsibilities of drone collision avoidance [36]
or define the desired collision avoidance state of UTM [37], but do not elaborate on specific
standards. In this paper, based on the performance of some actual logistics drones [38–40],
we assume that a collision occurs between the drone and non-cooperative targets if the
distance between them is less than 10 m.
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3.2. Model Construction

Let X be the state space. Then denote x0 ∈ X and x f ∈ X as the previous 4D waypoint
and the next 4D waypoint, respectively. Assume that there are n1 static obstacles and n2
non-cooperative targets. Let X1

i=1,...,n1
∈ X and X2

i=1,...,n2
∈ X be the center of the ith static

obstacle and non-cooperative target, respectively. Then, the tactical conflict resolution
problem can be described as follows:

minJ(u) = J1 + J2 (1)

s.t.
xk+1 = f (xk, uk, k) (2)

S =
{

xt0 = x0, xt f = x f

}
, (3)

where f (·) is the state equation, whose specific explanation can be found in Equation (5);
xt0 represents the initial state of the drone at the time of departure; xt f represents the final
state of the drone at the time of mission completion; and J1 and J2 are the hazard cost
function and the temporal difference cost function, respectively, which can be calculated as J1 =

t f

∑
t=t0

n1
∑

i=0
R1(xt, X1

i ) +
t f

∑
t=t0

n2
∑

i=0
R2(xt, X2

i )

J2 = (t f − t′)2
, (4)

where t f represents the estimated time of arrival of the drone at the next waypoint in the
present situation; t′ represents the specific time of arrival pre-defined in the 4D trajectory
planning;R1 represents the risk of the drone colliding with a static obstacle X1

i at time t;
and R2 represents the risk of the drone colliding with the non-cooperative target X2

i at
time t. As can be seen from the above formula, J2 is a function that evaluates the difference
between the estimated time of arrival of the drone at the next 4D waypoint and the specified
time, with a smaller value indicating a smaller difference.

During the cruise stage, civil aviation drones generally fly in a fixed altitude layer [41].
Thus, in this study, we only consider the tactical conflict resolution of drones avoiding
collisions with non-cooperative targets within the same altitude layer; that is, no changes
in vertical altitude are considered. If a drone needs to avoid a collision, it can change its
heading and speed by adjusting the speed of each rotor. Thus, the discrete state equation of
the drone xk+1 = f (xk, uk, k) can be described as follows:

vk+1 = vk + akT
xk+1 = xk + vkT cos θk
yk+1 = yk + vkT sin θk
θk+1 = θk + ωkT

, (5)

where vk ∈ [0.1, 10] m/s represents the flight speed of the drone at time k; ak ∈ [−3,+3 ] m/s2

represents the acceleration of the drone at time k; θk represents the yaw angle of the drone
relative to the x-axis at time k; ωk ∈ [−π/30,π/30] rad/s represents the yaw angular
velocity of the drone; and xk and yk are the drone’s horizontal and vertical coordinates in
the Cartesian coordinate system at time k, respectively.

By combining Equations (1)–(3) and (5), the problem studied in this paper can be
defined as a discrete-time optimal control problem (DOCP), which involves determining
a series of control factors ak :

[
t0, t f

]
→ [−3,+3] and ωk :

[
t0, t f

]
→ [−π/30,π/30] that

minimize the performance indicator J(u) while satisfying the objective set S and state
equation f (·) at the same time.
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4. Review of Typical Methods
4.1. Markov Decision Process and Reinforcement Learning

A Markov decision process (MDP) is a memory-less random control process in discrete
time. Ronald A. Howard first improved the theoretical basis of the Markov decision process.
Since then, MDP has been widely used in the fields of industrial automation, robotics, and
artificial intelligence. A Markov decision process can be defined as a four-tuple (S, A, P, R),
where S is a set of state sets and A is a set of action sets. The number of elements in these
two sets can be finite or infinite; however, in general scenarios, the state and action sets
with infinite numbers of elements are typically simplified to finite state and action sets.
P is a probability density function, Pa(st, s′) = P

(
s(t+1) = s′

∣∣∣st = s, at = a
)

, providing the
probability of state st( st ∈ S) at time t, transferring to state st+1(st+1 ∈ S) at time t + 1 under
action at(at ∈ A). Finally, R is a reward function, Ra(st, st+1), providing the reward value
obtained after state st is transferred to state st+1 under the action at. The action a at any
moment is provided by the strategy function π(a|s) = P(A = a|S = s) for a given state s.
The optimization goal of MDP is to determine the optimal strategy function π∗ through
some method, thus achieving the maximum reward expectation of the system.

Reinforcement learning is an interactive learning method based on MDP. The related
concept of reinforcement learning was first proposed by Minsky [42], and then refined by
Bellman, Watkins, and others. The mechanism of reinforcement learning is similar to that
of human reward and punishment, guiding learning through behavioral judgment.

Based on MDP, reinforcement learning introduces the concepts of agent and environ-
ment, where the subject carrying out an action is referred to as an agent, and the entity that
interacts with the agent is called the environment. Figure 3 shows a basic block diagram of
reinforcement learning.
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Specifically, in each interaction between the agent and environment, and following the
pre-designed rules, the agent perceives a state of the environment, then selects and executes
an action based on that state. After the agent completes an action, the environment will
return a reward based on the new state achieved, indicating the quality of the action selected
by the agent. Then, the agent determines the action plan that achieves the maximum reward
by performing numerous explorations (i.e., trials and errors) in the environment.

4.2. Introduction of the D3QN Algorithm
4.2.1. Deep Q-Networks

The Deep Q-Network (DQN) is a deep reinforcement learning algorithm proposed by
the DeepMind team [43]. By replacing the Q-table with a neural network, DQN resolves
the “Curse of Dimensionality” problem encountered by the Q-learning algorithm when
considering a continuous state space. In order to achieve a maximum accumulated reward
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in a task, the agent selects actions based on the states in the environment with the following
optimal action–value function Q∗(s, a):

Q∗(s, a) = max
π

E [rt + γrt+1 + γ2rt+2 + · · ·|st = s, at = a, π], (6)

where the γ represents the attenuation factor and rt refers to the reward at time step t that
an agent can obtain after taking action a in the state s by the optimal strategy π = P(a|s) .

Additionally, the experience replay method, as well as the target network, ensure
the convergence of the model and the stability of training. The experience replay usually
stores the experience sample (st, at, rt, st+1) of the agent at each time step t in the experience
pool D. During the learning process, experience samples (s, a, r, s′) ∼ U(D) are randomly
selected for network updating. After introducing the target network, the update loss
function for the ith iteration Li(wi) is as follows:

Li(wi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′; wt)−Q(s, a; we)

)2
]

, (7)

where we and wt represent the parameters of the main and target networks, respectively,
and max

a′
is the maximum value. After each step C, the parameters of the main network are

updated, along with those of the target network.

4.2.2. Double DQN

In DQN, actions are selected and evaluated using the same networks, potentially
leading to over-estimation, which is detrimental to model learning. To solve the over-
estimation problem, Van Hasselt H. et al. [44] proposed a Double DQN algorithm, in which
two structurally identical neural networks are used as the current and target networks. The
current network is responsible for selecting actions, while the target network calculates
error targets. By separating the action selection from value estimation, the algorithm
mitigates the over-estimation of Q-values that can occur in the DQN algorithm when
selecting the maximum Q-value for action execution, which could adversely affect the
original network. The objective function used in Double Q-learning is:

Qt ≡ rt+1 + γQ(St+1, argmax
a

Q(St+1, a; we); wt) (Double Q-learning), (8)

where the parameter we is used for action selection and the parameter wt is used for
action evaluation.

4.2.3. Dueling DQN

For faster and better training results, Wang et al. [45] introduced a new neural network
architecture that decouples the value function V*(st) and advantage function A*(st, at) in
DQN while sharing a common feature learning module. This function can evaluate the
quality of each action while predicting the value function, allowing the state value function
to be learned more frequently and accurately. The formula for each network output of
Dueling DQN is as follows, where w represents the network parameters:

Q(s, a; w, α, β) = V(s; w, β) +

(
A(s, a; w, α)− 1

|A|∑a′
A(s, a′; w, α)

)
. (9)

The optimal value function of the Dueling DQN algorithm is as follows:

Qt = rt+1 + γmaxαQ(st+1, a; wt), (10)
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where wt represents the parameters of TargetNet. With the TargetNet, all action values in
the state can be obtained, following which a target value can be calculated based on the
optimal action value.

4.2.4. Dueling Double DQN

The Dueling Double DQN (D3QN) algorithm was created by incorporating the ideas of
the Double DQN algorithm into the Dueling DQN algorithm. The only difference between
the D3QN algorithm and the Dueling DQN algorithm is how the target value is calculated.
Applying the target network and evaluation network in Equation (11) (Dueling) separately,
we can obtain the optimal value function of the D3QN algorithm as follows:

Qt = rt+1 + γQ(st+1, argmaxaQ(st+1, a; we); wt), (11)

where we represents the parameters of MainNet and wt represents the parameters of
TargetNet. In this way, the action corresponding to the optimal action value under the
state can be obtained with the MainNet, while the obtained action’s value under the
state can be calculated to find the target value using the TargetNet, thus mitigating the
over-estimation problem.

5. Method
5.1. Environment Construction for the Problem

The maneuvering of a drone in flight to avoid collisions with non-cooperative targets
can be viewed as a sequential decision optimization problem, which can be represented as
a series of MDP. In this paper, the tactical conflict resolution problem under the temporal
constraints of a strategic 4D trajectory is solved using the Dueling Double DQN algorithm
with a novel state space description and an ETA-based reward. The integrated framework
of this solution is depicted in Figure 4.
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5.1.1. State Space

The state space is a subset of the agent’s observations of the environment, and we
assume that the drone under control can accurately perceive its surrounding environment,
including non-cooperative targets. Unlike the commonly researched consumer-grade
drones, logistics drones require a higher level of safety standards and must comply with
specific unmanned aircraft operational regulations [46]. Based on a literature review
conducted earlier, existing methods have limitations regarding the number of targets they
can avoid simultaneously, such that the success rate of these methods is heavily influenced
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by the number of non-cooperative targets. Therefore, they have not yet met the standards
mentioned above. To improve the probability of success rates, the novel concept of risk
sectors is introduced in this paper to reconstruct the state space, allowing for the position
and distance of a non-cooperative target to be expressed simultaneously.

To achieve collision avoidance with an indefinite quantity of non-cooperative targets
simultaneously using the deep reinforcement learning method, we first divide the detection
range into N sectors and consider only the nearest non-cooperative target in each sector,
as shown in Figure 5. If there are multiple threatening non-cooperative targets in a sector,
their directions relative to the aircraft are limited to that sector, which can be assumed to
be the same. Therefore, the non-cooperative target closest to the aircraft can describe the
threat of the non-cooperative targets in that sector clearly, so, considering only the nearest
non-cooperative target in each sector is reasonable.
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The main purpose of this method is the reconstruction of the state space based on
sectors, which provides implicit directional information for the neural networks while also
reducing and fixing the dimension of the state space. This allows the relative distance,
relative angle, and other threat information of non-cooperative targets in the same sector
to be described using only the one-dimensional information of the relative distance to the
nearest threatening target in that sector.

For instance, in Figure 5, there are nine non-cooperative targets within the detection
range. With traditional methods, describing them requires at least two-dimensional in-
formation, including the relative angle and relative distance, resulting in a state space
dimension of 18. In contrast, our method divides the detection space into nine sectors
and uses the relative distance to the nearest threatening target in each sector as the state
space, resulting in a fixed state space dimension of nine. As a result, this state space is
much smaller than that in traditional methods and is not affected by the number of non-
cooperative targets within the detection range, thus increasing the convergence ability and
speed of neural network training.

In this paper, it is assumed that the detection range of a drone is a circle with the
drone’s geometric center as its center and a radius of 100 m, and that the drone can obtain
the information for all non-cooperative targets within this range. Specifically, considering
the pre-defined four-dimensional waypoint constraints at the strategic level, the state space
S at time k in this paper consists of three parts expressed as:

Sk = [S1
k , S2

k , S3
k ] (12)

where S1
k , S2

k , and S3
k , respectively, represent the status information of the drone itself, the

pre-defined strategic trajectory temporal information, and the threat status information of
the nearest target in each sector. In addition, θk and vk denote the heading angle and the



Drones 2023, 7, 334 11 of 26

velocity of the drone at time k, respectively. If the drone is currently between waypoint n
and waypoint n + 1, we use teta to denote the estimated time of arrival (ETA) when the
drone arrives at waypoint n + 1, tnow to denote the current coordinated universal time,
and tn+1

n to represent the temporal difference between the pre-defined time of arrival
at waypoints n and n + 1 in the pre-determined 4D trajectory. If d1 and d2 denote the
distance between the current position of the drone and waypoint n + 1 and the distance
between waypoints n and n + 1, respectively, as shown in Figure 6, then, S1

k and S2
k can be

expressed as
S1

k = [θk, vk] (13)

S2
k = [pd

k , ψk, pt
k], (14)

where pd
k = d1/d2 represents the normalized remaining distance between the current

position of the drone and waypoint n + 1, ψk represents the angle required for the drone
to turn counterclockwise to face waypoint n + 1 at time k, and pt

k = (teta − tnow)/tn+1
n

represents the normalized remaining time for the drone to reach waypoint n + 1.
The elements in S3

k represent the normalized relative distances between the current
position of the drone and the non-cooperative targets. The position of the closest non-
cooperative target in the nth sector is denoted by Dn, and the state space is filled with a 1 if
there is no threatening target in a certain sector. Then, S3

k can be represented as

S3
k = [D1, D2, D3, . . . , Dn]. (15)
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5.1.2. Action Space

The algorithm selects an action for each subsequent state, starting from the initial
moment. In each action, the drone’s yaw angle, acceleration, or both are controlled based
on certain values. Based on the performance of some actual logistics drones [38–40], the
action space consists of the left and right yaw and level flight, with yaw angle velocities in
the range of [−π/30, 0,+π/30] rad/s and accelerations in the range of [−3, 0,+3] m/s2.
Meanwhile, the final speed of the drone is limited to the range of 0.1–10 m/s. Once a new
state is reached, the algorithm selects an appropriate yaw angle velocity and acceleration,
based on the current state, in order to control the drone and maintain the current action
until a new action is selected or the final state is reached. The discretized action space is
described in Table 1.

Table 1. Action Space.
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5.1.3. Reward Function

The reward value is the only feedback a drone can receive from the environment
and is used to evaluate the goodness or poorness of a selected action under the current
state. For the problem described in Section 3, two objectives should be considered: 1. the
drone should be able to safely avoid collision with any non-cooperative target or static
obstacle, and 2. the drone should arrive at the next 4D waypoint at a specific time to
minimize secondary conflicts. To accomplish these objectives, a collision avoidance reward
and an ETA-based reward are introduced. Specifically, the collision avoidance reward R1
was designed to assess the safety performance of the drone at the current moment first.
Meanwhile, the correlation between strategic-level trajectory planning and tactical-level
conflict resolution is considered for the first time by introducing the estimated time of
arrival. In this way, an ETA-based temporal reward was designed to provide non-sparse
rewards for drones whose estimated time of arrival is not within the specified time window.
Finally, a mixture of sparse and non-sparse rewards was designed to encourage drones to
reach their next waypoint in a timely manner. The details of these rewards are discussed in
the following.

(1) Collision avoidance reward R1
The comprehensive collision avoidance reward value R1, which can be obtained in

each time step, is calculated as follows:

R1 = R1
u + R2

u, (16)

where R1
u = r1

u + r2
u is a non-sparse reward, designed to cope with the avoidance of non-

cooperative targets (if any) within the drone detection range. Then, r1
u is defined as follows:

r1
u =

{
c1 , i f Di

k − Di
k−1 ≥ 0

−c1, i f Di
k − Di

k−1 < 0
, (17)

where the reward c1 or penalty −c1 is based on the relative motion trends of the drone and
non-cooperative targets in each sector; Di

k and Di
k−1 represent the distance between the

drone and the closest non-cooperative target in sector i at time k and k− 1, respectively; and
r2

u is the penalty, which is based on the normalized distance of the closest non-cooperative
target in each sector:

r2
u = −(1−

Di
k

100
)αr1, (18)

where αr1 represents the danger penalty coefficient.
Meanwhile, R2

u is set to penalize collisions and can be denoted as

R2
u =

{
−c2 , ∃sj Di

k ∈
{sj Di

k, sj Di
k < c3

}
−2c2, ∃Di

k ∈
{

Di
k, Di

k < c3
} , (19)

where c2 is the collision penalty value to stimulate drones to avoid non-cooperative targets
and static obstacles, c3 is a collision threshold, and sj Di

k represents the distance between the
drone and static obstacle sj.

(2) Temporal Reward R2
To meet the temporal constraints of the strategic 4D trajectory, by introducing the ETA

of the next waypoint, an ETA-based temporal reward R2 is proposed in this paper which
can be represented as

R2 = re + rl , (20)

where re and rl are the early arrival penalty and late arrival penalty, respectively, and are
defined as follows:

re =

{
−
(

pt
k − pd

k)α
1
r2 − trα2

r2

0
, tr > 0
, tr < 0

, (21)
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rl =

{ (
pt

k − pd
k)α

3
r2+trα4

r2

0
, tr < 0
, tr > 0

, (22)

where tr represents the time difference of arrival at the next waypoint between the pre-
defined 4D trajectory and the current situation, defined as follows:

tr = tn+1 − teta, (23)

where teta can be calculated as
teta = tnow +

d1

V
. (24)

In the above equation, V is the weighted velocity, which changes as the current
state changes:

V =

{
V = αv(Va + Vmin)
V = αv(Va + Vmax)

,
,
pt

k > pd
k + dt

pt
k + d < pd

k
, (25)

where pt
k and pd

k denote the normalized remaining time and the normalized remaining
distance, respectively; and dt is the time window threshold.

As defined above, when the normalized remaining time pt
k for the drone to reach the

next waypoint is greater than the sum of the time window threshold dt and the normalized
remaining distance pd

k , the drone exhibits an early arrival tendency. At this time, if the
drone cannot arrive at the next waypoint on time while flying at the slowest speed (Vmin),
an “early arrival” will inevitably occur and an early arrival penalty re should be added
to the drone. Vice versa, if the sum of the time window threshold dt and normalized
remaining time pt

k for the drone to reach the next waypoint is less than the normalized
remaining distance pd

k , the drone exhibits a late arrival tendency. At this time, if the drone
cannot arrive at the next waypoint on time while flying at the fastest speed (Vmax), a “late
arrival” will inevitably occur and a late arrival penalty rl should be added to the drone.

(3) Mission reward R3
The final reward R3 is set to stimulate the drone to reach the geographic coordinates

of the next 4D waypoint and can be expressed as follows:

R3 = R1
g + R2

g, (26)

where R1
g = k0

3 is a sparse reward, which is added when the geographic coordinates of the
next 4D trajectory point are reached. Meanwhile, R2

g = r1
3 + r2

3 is a safety-first non-sparse
mission reward that can be divided into two parts: the line-of-sight reward r1

3 and the
destination distance reward r2

3. In this regard, r1
3 is set to adjust the heading angle to fly to

the next 4D waypoint, and can be represented as

r1
3 =



c4 , ψk ∈
[
0, π

18
]
∪
[ 35

18 π, 2π
]

and m = 0

c5 , ψk ∈
(

π
18 , 2

18 π
]
∪
[

34
18 π, 35

18 π
)

and m = 0

0 ,
(
ψk ∈

( 9
18 π, 27

18 π
)

and m = 0
)

or m > 0

−c6, ψk ∈
( 2

18 π, 9
18 π

]
∪
[

27
18 π, 34

18 π
)

and m = 0

, (27)

where m represents the number of non-cooperative targets within the detection range, c4
and c5 are the corresponding reward values, c6 is the penalty value for the situation that
the next 4D trajectory point is in the opposite direction, and r2

3 is set to guide the drone to
fly toward the next 4D waypoint, which can be represented as

r2
3 =


α1

r3

(
dk−1

1 − dk
1

)
, m = 0

α2
r3

(
Dk−1

min − Dk
min

)
, m > 0 and Dk−1

min ≥ Dk
min

−c7 , m > 0 and Dk−1
min < Dk

min

, (28)
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where dk−1
1 and dk

1 are the distance between the drone and the next waypoint at time k− 1
and k, respectively; Dk−1

min and Dk
min are the minimum distances between the drone and the

nearest non-cooperative target within detection range at times k− 1 and k, respectively; c7
is the corresponding penalty value; and α1

r3 and α2
r3 are the reward coefficients.

Following the rewards set above, on the one hand, if any non-cooperative target is
detected within the detection range, the drone will be guided to avoid any collision first, in
order to ensure that safety is maintained, and then to the next 4D waypoint. On the other
hand, if no target is detected within the detection range, the drone will be guided to the
next 4D waypoint immediately.

As a result, by adding the rewards mentioned in Equations (16), (20) and (26), the
final comprehensive reward that the drone can achieve after executing each action can be
calculated R = R1 + R2 + R3.

5.2. Algorithm

In practice, the greedy search strategy, delayed learning strategy, and multi-step
learning have been introduced in the baseline D3QN algorithm to improve its robustness
and results. According to the above developments, the D3QN with a reconstructed state
space and a novel ETA-based reward is described in Algorithm 1. Lines 6–9 in the code
are used to randomly select an action based on the greedy search strategy. In Line 12, a
new state st+1 is observed from the environment after the drone has executed the optimal
action at. Then, in Lines 13–15, the collision avoidance reward R1, final temporal reward
R2, and comprehensive mission reward R3 are obtained by Equations (20), (26) and (35),
respectively. Es Line 18 represents the status of the episode (i.e., ended or not). In Line 18,
the experience fragments (st, at, rt, st+1, Es) of the agent are stored in the experience pool.
Finally, in Line 21, the Q-value is updated by using Equation (20).

Algorithm 1 Pseudocode of D3QN in this paper

1 Create a training environment
2 Initialize the network parameters and experience pool
3 for episode = 1 to M do
4 Initializing the Environment S
5 for t = 1 to T do
6 if random > ε then
7 pick an action at random
8 else
9 action at = maxaQ(st+1, a; we)
10 end
11 execute the action at
12 get st+1 = env.Observation(st, at)
13 get R1 = env.reward_1(st, at)
14 get R2 = env.reward_2(st, at)
15 get R3 = env.reward_3(st, at)
16 rt = R1 + R2 + R3
17 Es = env.step(st, at)
18 store fragments (st, at, rt, st+1, Es) in the experience pool
19 if the current round is a training round then
20 randomly extract fragments (st, at, rt, st+1, Es) from the experience pool
21 update the Q-value

Q(st, at)← Q(st, at) + α(Rt+1 + γQ(St+1, argmax
a

Q(St+1, a; we); wt)−Q(s, a; we))

22 end
23 if the current round is the updated target network round then
24 copy the parameters θ of the current network to the target network
25 end
26 if Es is ended then
27 break
28 end
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6. Simulation
6.1. Platform
6.1.1. Simulation Scene Setting

In this section, we consider a two-dimensional plane environment to demonstrate
the superiority of our proposed method. Following the altitude division mentioned in
the previous section, for the experimental scenario, we selected a true altitude of 120 m
as the cruising altitude of the drone, and only the horizontal movement of the drone
was considered at this altitude layer. The airspace includes the drone, non-cooperative
targets, target points, and five static obstacles. The positions and sizes of the obstacles
were randomly generated and independent of each other. The training airspace was a
2 km × 2 km area, gridded according to pixel points, where each pixel represents a square
area of 2 m in length and width (as shown in Figure 7).
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Figure 7. Simulation scenario.

Following the standard specification for UTM and USS interoperability, the A* al-
gorithm was used in the strategic trajectory planning phase to obtain a series of pre-
determined 4D waypoints. Specifically, every 100 m along the path, a path point was
selected. The time dimension simulation was conducted based on the distance between
path points, planned cruising speed, and buffer time, in order to estimate the expected time
to reach the next path point. The buffer time was determined according to the distance of
the entire route and the elasticity time coefficient. The planned path, consisting of a series
of 4D waypoints, is shown in Figure 8.

Drones 2023, 7, x FOR PEER REVIEW 18 of 29 
 

 
Figure 8. Pre-planned 4D trajectory. 

6.1.2. Reinforcement Learning Setting 
The training process and structure of a deep reinforcement learning algorithm are 

largely influenced by the hyper-parameter settings. In order to remove the influence of 
the hyper-parameter settings on the training results, uniform settings were applied to the 
common parameters used by the algorithm. Following [47–49], the specific parameters of 
D3QN are listed in Table 2 below.  

Table 2. Settings of hyper-parameters. 

Parameter Value 
Learning rate 0.00005 

Discount factor 0.99 
buffer_size 1,000,000 
batch_size 256 

Multi-step update 5 
Update delay of current network 10 steps 
Update delay of target network Upon completion of each round 
Total number of training rounds 5000 

Loss function MSE 

All the guidelines and tests discussed in this paper were completed in a Win10 sys-
tem with unified software and hardware environment information. The CPU was an In-
tel(R) Xeon(R) W-2133, the motherboard was an Intel 440BX Desktop Reference Platform, 
and the GPU was an NVIDIA GeForce RTX 2080 Ti. 

During the training process, the loss function and reward values per round are im-
portant indicators that reflect the convergence and performance of a deep reinforcement 
learning algorithm. In this study, the basic conflict resolution ability of the drone was pre-
trained in a scenario with 40 non-cooperative targets in a 1 square kilometer area. The loss 
error values are shown in Figure 9. 

Figure 8. Pre-planned 4D trajectory.



Drones 2023, 7, 334 16 of 26

6.1.2. Reinforcement Learning Setting

The training process and structure of a deep reinforcement learning algorithm are
largely influenced by the hyper-parameter settings. In order to remove the influence of
the hyper-parameter settings on the training results, uniform settings were applied to the
common parameters used by the algorithm. Following [47–49], the specific parameters of
D3QN are listed in Table 2 below.

Table 2. Settings of hyper-parameters.

Parameter Value

Learning rate 0.00005
Discount factor 0.99

buffer_size 1,000,000
batch_size 256

Multi-step update 5
Update delay of current network 10 steps
Update delay of target network Upon completion of each round
Total number of training rounds 5000

Loss function MSE

All the guidelines and tests discussed in this paper were completed in a Win10 system
with unified software and hardware environment information. The CPU was an Intel(R)
Xeon(R) W-2133, the motherboard was an Intel 440BX Desktop Reference Platform, and the
GPU was an NVIDIA GeForce RTX 2080 Ti.

During the training process, the loss function and reward values per round are im-
portant indicators that reflect the convergence and performance of a deep reinforcement
learning algorithm. In this study, the basic conflict resolution ability of the drone was
pre-trained in a scenario with 40 non-cooperative targets in a 1 square kilometer area. The
loss error values are shown in Figure 9.

Drones 2023, 7, x FOR PEER REVIEW 19 of 29 
 

 
Figure 9. Loss error values. 

The figure shows that, as the number of training iterations increased, the loss error 
gradually decreased and stabilized, indicating that the algorithm had converged and 
learned a fixed strategy. The reward values for 5000 rounds of the algorithm are shown in 
Figure 10. 

 
Figure 10. Reward values. 

The figure shows that the average reward value of the drone constantly increased in 
the first 0–1500 iterations, indicating that the drone was continuously learning and opti-
mizing its strategy. From 1500 to 5000 iterations, it can be observed that the average re-
ward value gradually stabilized and approached the maximum value, indicating that a 
stable conflict resolution strategy had been formed. 

6.2. Test 1: Comparison Analysis of Sector Improvement 
6.2.1. Task Setting 

The main objective of this experiment was to verify whether the method proposed in 
this paper for reconstructing the state space using the risk sector concept can improve the 
tactical conflict resolution success rate of an unmanned aerial vehicle (UAV). Based on the 
logistic UAV operating density obtained in Phase Two of NASA’s UTM Pilot Program 
(UPP), which is 14.57 UAVs per square kilometer [3], we set the number of non-coopera-
tive targets in the above experimental scenario to 15 per square kilometer. In UAV conflict 

Figure 9. Loss error values.

The figure shows that, as the number of training iterations increased, the loss error
gradually decreased and stabilized, indicating that the algorithm had converged and
learned a fixed strategy. The reward values for 5000 rounds of the algorithm are shown in
Figure 10.

The figure shows that the average reward value of the drone constantly increased
in the first 0–1500 iterations, indicating that the drone was continuously learning and
optimizing its strategy. From 1500 to 5000 iterations, it can be observed that the average
reward value gradually stabilized and approached the maximum value, indicating that a
stable conflict resolution strategy had been formed.
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6.2. Test 1: Comparison Analysis of Sector Improvement
6.2.1. Task Setting

The main objective of this experiment was to verify whether the method proposed
in this paper for reconstructing the state space using the risk sector concept can improve
the tactical conflict resolution success rate of an unmanned aerial vehicle (UAV). Based on
the logistic UAV operating density obtained in Phase Two of NASA’s UTM Pilot Program
(UPP), which is 14.57 UAVs per square kilometer [3], we set the number of non-cooperative
targets in the above experimental scenario to 15 per square kilometer. In UAV conflict
resolution using reinforcement learning, the state space usually consists of information
such as distance, position, and velocity [50]. Therefore, for this experiment, we set up
two state spaces for training and testing. The state space of experimental group 1, which
consists of both the onboard information and the risk sectors constructed in Section 5.1.1,
can be expressed as:

[θ k, vk, pd
k , ψk, pt

k, D1, . . . , D9

]
. (29)

Experimental group 2 followed a commonly used method for the construction of the
state space, where the first part was the same as that of experimental group 1, which records
the information of the host aircraft. The second part records the normalized distance and
bearing information of the nine closest non-cooperative targets and obstacles, which can be
expressed as:

[θ k, vk, pd
k , ψk, pt

k, dist1, ψ1, D2, ψ2 . . . , D9, ψ9

]
, (30)

where ψi, i = 1, 2, 3 . . . , 9 represents the angle (in degrees) at which the unmanned aerial
vehicle’s heading should be rotated counterclockwise to face the ith nearest non-cooperative
target or obstacle.

6.2.2. Simulation Results

After training both experimental groups, the strategy for tactical conflict resolution
with the highest success rate of flight missions was selected for each group and tested
10,000 times under the same parameters; the “Success rate of flight missions” indicates the
probability of the drone successfully flying from the starting point to the end point while
avoiding non-cooperative targets. This metric does not consider whether the drone arrives
at the end point on time or not. Based on the test results shown in Figure 11, it can be seen
that the reconstructed state space significantly increased the success rate of flight missions,
with an improvement of 40.59% compared to the general solution.
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Figure 11. Success rates of flight missions with and without “risk sector”.

6.3. Test 2: Ablation Study of the ETA-Based Temporal Rewards
6.3.1. Task Setting

To demonstrate the effectiveness of our ETA-based temporal rewards proposed in
Section 5, in the next experiment, we mainly trained and tested different temporal reward
strategies in the scenario described earlier, using 15 non-cooperative targets per square
kilometer. Four different reward settings for the early arrival penalty re and late arrival
penalty rl were considered, including: (1) without re and rl ; (2) with re; (3) with rl ; and
(4) with re and rl .

6.3.2. Simulation Results

After training under the four reward settings, the conflict resolution strategy with
the highest success rate was selected for 10,000 tests under the same parameters. From
Figure 12 and Table 3, it can be seen that, after adding the late penalty rl to the drone, there
was no significant change in early arrival compared to the reference group, but the duration
of being late was reduced by 62%. After adding the early penalty re to the group, although
the duration of early arrival was reduced by 75.02%, the duration of being late increased
by 17.84%. With the combined penalty (i.e., re and rl), the early and late arrival situations
of the drones were both improved, with the duration of early arrival reduced by 72.94%
and the duration of being late reduced by 57.94%, resulting in significant performance
improvement. The reason why the effect of re was more significant than that of rl may be
that the subject of this study is a quadrotor that can perform a low-speed flight, while its
maximum speed is limited. It is worth mentioning that the “on time rate” is influenced by
the time window, i.e., only the drone reaching the 4D waypoint within the time window
can be considered on time.
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Table 3. Detailed testing results under different strategies.

without re and rl with rl with re with re and rl

Success rate of flight missions (%) 99.58 99.16 99.64 99.11

Early to waypoint (s) 53 55.442 13.24 14.343

Late to waypoint (s) 55.673 21.153 65.605 23.417

On-time rate (%)
with time window {−10 s, 10 s} 3.15 1.20 6.38 16.34

On-time rate (%)
with time window {−15 s, 15 s} 4.45 1.50 10.20 24.82

On-time rate (%)
with time window {−20 s, 20 s} 5.35 1.86 14.54 38.16

On-time rate (%)
with time window {−25 s, 25 s} 6.29 2.15 19.50 64.56

On-time rate (%)
with time window {−30s, 30 s} 7.35 2.33 25.09 84.55

Furthermore, it is worth mentioning that, according to the experimental results given
in Table 3, even after adding different temporal rewards to the conflict resolution strategy,
the proposed approach can still maintain a very high success rate, with all being above 99%.

6.4. Test 3: Exploring the Maximum Density in the Scenario
6.4.1. Task Setting

The main purpose of this experiment was to verify whether the conflict resolution
strategy proposed in this paper can achieve an equivalent level of safety flight capability as
specified in the literature [51,52]; that is, “an accident rate lower than 0.2 per 10,000 flight
hours”. For verifying this, under the condition of the same number of accidents per
10,000 h as TCASII, we found the maximum non-cooperative density of our method, which
is 3.3 times higher than the original TCASII standard.

In this experiment, each pixel point was set to 20 m and the simulated scenario was
expanded to 400 square kilometers. A total of 24 sets of non-cooperative target densities
were set for 100,000 simulation tests, with 180,000 flight hours for each set.

6.4.2. Simulation Results

The experimental results shown in Figure 13 indicate that, in the scenario with a
density of 0.2 aircraft per square kilometer, no collision accidents occurred during the
180,000 h of flight when using the strategy proposed in this paper. By observing the
experimental data, it can be concluded that the density of non-cooperative targets in the
airspace is linearly related to the number of accidents per 10,000 flight hours. After fitting
the experimental data, it was calculated that when the accident rate per 10,000 flight hours is
0.2, as described above, the density of non-cooperative targets in the airspace is 0.89 aircraft
per square kilometer which is 3.3 times higher than the TCAS II standard. It is worth
mentioning that the blue line in Figure 13 is obtained by using the least square method and
the expression is: y = 0.95x− 0.063.

6.5. Test 4: Case Study
6.5.1. Task Setting

All of the cases detailed above demonstrate the superiority of our method from a
macro perspective, such as its success rate. In this case study, we used a specific local
scenario to illustrate the effectiveness of our method. Specifically, we compared the paths
between two waypoints generated with and without our ETA-based temporal reward R2.
In this scenario, as shown in Figure 14, two drones U1 and U2 moved forward along the
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pre-planned 4D trajectories P1 and P2, respectively, and arrived at the waypoint G at time
t2 and t3, t3 respectively. Obviously, there was no conflict between the two aircraft in the
strategy path planning phase. However, after adding the non-cooperative targets into the
scenario described above, the drones may fail to reach their next trajectory points on time
while executing their tactical conflict resolution strategies, leading to secondary conflict. In
the simulation, the non-cooperative target density was set to 15 per square kilometer, and
we assumed that U2 can follow the pre-planned 4D trajectory P2 perfectly.
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6.5.2. Simulation Results

The actual flight trajectories generated by drones U1 and U2 with and without our
ETA-based temporal reward R2 are shown in Figures 15 and 16, respectively.
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According to the results, it can be seen that, when U1 adopted the conflict resolution
method without R2, it was unable to reach the next path point G at the pre-defined time t2
due to executing the tactical conflict resolution strategies. When U1 reached the waypoint
G, it was already close to time t3, meaning that there would be a secondary conflict with U2
at the waypoint G. Conversely, in the same scenario with non-cooperative targets, when
U1 adopted the conflict resolution method with R2, it could still reach G at the specified
time t2 after performing the collision avoidance maneuver with non-cooperative targets,
thus avoiding any conflict with U2.

Therefore, the 4D tactical conflict resolution method proposed in this paper based on
the ETA can consider the safety avoidance of non-cooperative targets while taking into
account the temporal constraints in the strategic 4D trajectory, reducing the occurrence of
secondary conflicts caused by the execution of conflict resolution strategies.
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6.6. Test 5: Robustness to Uncertainty
6.6.1. Task Setting

The main purpose of this experiment is to verify whether the conflict resolution
strategy proposed in this paper can effectively resolve conflicts and ensure flight safety
under different levels of noise interference.

In this experiment, the perception of non-cooperative targets in the aforementioned
scenario was tested by adding Gaussian noise to the positional information on the non-
cooperative targets, with the number of non-cooperative targets set to 15 per square kilometer.

6.6.2. Simulation Results

As shown in Table 4, the method proposed in this paper can still maintain a rela-
tively high success rate of flight missions under three different levels of noise interference,
indicating that the proposed method remains effective in the face of positional errors.

Table 4. Success rates of flight missions and calculation times under different noise scenarios.

Average Magnitude of Error Variance Success Rate of Flight Missions (%) Average Calculation Time (s)

1 0.25 99.5% 0.001003

5 0.25 99.34% 0.001074

10 0.25 98.92% 0.000998

In addition, to show the efficiency of our method, the average calculation time of our
method was also tested in the above scenarios. The result is listed in Table 4, and it is clearly
seen that our method is sufficiently efficient.

6.7. Test 6: Ablation Study
6.7.1. Task Setting

The main purpose of this experiment is to verify whether the method proposed in this
paper can maintain good performance in scenarios of different scales.

In this experiment, the perception of non-cooperative targets in the aforementioned
scenario was tested by setting the length that each pixel can represent while keeping the
number of non-cooperative targets at 15 per square kilometer.

6.7.2. Simulation Results

According to Figure 17, it can be observed that the method proposed in this paper can
still maintain a high success rate of flight missions as the length of each pixel represents
increases. The slight decrease in the success rate of flight missions is possibly due to the
heterogeneous distribution, which can cause a more extreme case with an increased number
of non-cooperative targets, leading to the failure of conflict resolution.
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7. Conclusions

While the tactical conflict resolution problem is fundamental in air logistics transporta-
tion, it is not an exaggeration to say that existing methods have not yet met the standard
requirements for success rates in multi-target and high-density collision avoidance scenar-
ios. In this paper, by introducing the risk sector concept and reconstructing the state space,
our method achieved a 40.59% improvement in success rate compared with an existing
method. Moreover, as existing methods do not consider the temporal constraints at the
strategic level, a novel ETA-based temporal reward setting was designed. The combination
of these contributions allowed our tactical conflict resolution method to generate a feasible
collision-free path to the next waypoint while ensuring a specific arrival time under the
temporal constraints of a pre-defined 4D trajectory. In future work, we aim to extend our
method to tackle more practical scenarios, such as environments with cooperative targets.
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Abbreviations

Symbols Definition
ETA Estimated Time of Arrival
ICAO International Civil Aviation Organization
4DT 4D Trajectory
4-PNV 4D Trajectory Planning, Negotiation, and Verification
MCTS Monte Carlo Tree Search
DQN Deep Q Network
DDPG Deep Deterministic Policy Gradient
USS UAS Service Supplier
xt0 the initial state of the drone
xt f the final state of the drone
J1 the hazard cost function
J2 the temporal difference cost function
t f the estimated time of arrival of the droneat the next waypoint under present situation
t′ the specific time of arrival
R1 the risk of the drone colliding with the static obstacle X1

i
X1

i the static obstacle
R2 the risk of the drone colliding with the non-cooperative target X2

i
X2

i the non-cooperative target
vk the flight speed of the drone at the moment k
ak the acceleration of the drone at the moment k
R3 mission reward
ωk the yaw angular velocity
xk horizontal coordinates
yk vertical coordinates
Dk

min the minimum distance between the drone and the nearest non-cooperation target
Sk the agent’s state space S at time k
S1

k the status information of the drone itself
S2

k 4D trajectory temporal information
S3

k the threatening status information
R1 collision avoidance reward
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R1
u subitem of R1

r1
u subitem of R1

u
c1 constant reward
r2

u subitem of R1
u

R2
u penalize on collision, subitem of R1

c2 constant reward
c3 collision threshold
Vmin the slowest speed
R2 an ETA-based temporal reward
re the early arrival penalty
rl the late arrival penalty
tr the arrival time difference
V the weighted velocity that changes as the current state changes
pt

k the normalized remaining time
pd

k the normalized remaining distance
dt the time window threshold
sj Di

k the distance between the drone and any static obstacles sj.
Vmax the fastest speed
Dn the position of the closest non-cooperative target in n-th sector
R1

g subitem of R3
R2

g subitem of R3
r1

3 the line-of-sight reward
r2

3 the destination distance reward
MDP Markov Decision Process
dk

1 the distance between the drone and the next waypoint at time k
α1

r3 the reward coefficients
α2

r3 the reward coefficients
θk the yaw angle
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