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Abstract: Ducted-fan tail-sitter unmanned aerial vehicles (UAVs) provide versatility and unique
benefits, attracting significant attention in various applications. This study focuses on developing
a safe reinforcement learning method for back-transition control between level flight mode and
hover mode for ducted-fan tail-sitter UAVs. Our method enables transition control with a minimal
altitude change and transition time while adhering to the velocity constraint. We employ the Trust
Region Policy Optimization, Proximal Policy Optimization with Lagrangian, and Constrained Policy
Optimization (CPO) algorithms for controller training, showcasing the superiority of the CPO
algorithm and the necessity of the velocity constraint. The transition trajectory achieved using the
CPO algorithm closely resembles the optimal trajectory obtained via the well-known GPOPS-II
software with the SNOPT solver. Meanwhile, the CPO algorithm also exhibits strong robustness
under unknown perturbations of UAV model parameters and wind disturbance.

Keywords: safe reinforcement learning; ducted fan; transition control; unmanned aerial vehicle (UAV)

1. Introduction

In recent years, vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs)
have gained considerable attention due to their unique advantages. Distinct from traditional
fixed-wing UAVs, VTOL UAVs are capable of taking off and landing vertically, eliminating
the need for a runway [1]. Moreover, when compared to multi-rotor UAVs, they offer
several benefits, such as a larger payload capacity, higher cruise speed, and longer flight
ranges [2]. This is primarily attributed to their reliance on wings for lift production, as
opposed to the multiple rotors utilized by multi-rotor UAVs. Among the various VTOL
UAV configurations, such as tilt rotor, tail sitter, and vectored thrust, the ducted-fan tail-
sitter fixed-wing UAV stands out as a unique design. Notably, they eliminate the need for
additional moving parts to achieve VTOL capabilities, leading to a simplified mechanical
design that is both easier to maintain and less prone to mechanical failures [3]. Moreover,
the incorporation of a ducted fan enhances the propulsion efficiency, allowing the UAVs to
cover longer distances. The ducted fan also contributes to noise reduction, making these
UAVs particularly suitable for noise-sensitive environments [4].

Ducted-fan tail-sitter fixed-wing UAVs integrate the characteristics of both traditional
fixed-wing and multi-rotor UAVs, enabling them to perform level flight and hover opera-
tions. However, during the transition process, the UAV experiences aerodynamic instability
due to a stall occurring at the fixed wing [5]. As a result, the control strategies for transition
maneuvers between these two flight modes are of paramount importance, necessitating
extensive investigation and research. Generally, two prevalent methods to address this
issue can be found in the current literature [3].

The first approach conceptualizes the transition process as a trajectory optimization
problem. In [6], the direct collocation method was employed to obtain the optimal tran-
sition trajectory by Li et al. An optimization approach using the interior point method
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was proposed that focused on altitude changes during transition in [7]. The optimal feed-
forward control input for transition was computed via sequential quadratic programming
by Kubo and Suzuki [8]. Banazadeh devised a gradient-based algorithm based on the
classical Cauchy method to generate optimal transition trajectories [9]. Naldi and Mar-
coni [10] utilized mixed-integer nonlinear programming to tackle the minimum-time and
minimum-energy optimal transition problems.

The second approach is structured in two stages: the first stage entails devising the
desired trajectory during the transition, and the second stage involves designing a controller
to track the trajectory established in the first stage [3]. Jeong et al. proposed a continuous
ascent transition trajectory consisting of the angle of attack and flight path angle and
invoked dynamic inversion control for tracking [11]. Flores provided a desired velocity
trajectory and implemented a recurrent neural network-based controller for feedback
linearization [12]. Cheng and Pei established a transition corridor based on the constraint
of maintaining a fixed altitude [13]. They planned the desired velocity in the corridor and
utilized an adaptive controller [14].

Alternatively, reinforcement learning (RL) has emerged as a promising approach to
address various challenges in the domain of UAVs, owing to its ability to learn and adapt to
dynamic environments [15]. As a result, there has been growing interest in leveraging RL
algorithms to tackle the transition problem of VTOL UAVs. In [16], an RL-based controller
for hybrid UAVs was designed that can not only automatically complete the transition
but can also be adapted to different configurations. Xu [17] proposed a soft landing
control algorithm based on the RL method. Yuksek employed the deep deterministic policy
gradient algorithm to address the transition flight problem for tilt-rotor UAVs [18].

In this paper, we solve the back-transition task of ducted-fan tail-sitter fixed-wing
UAVs (i.e., from level flight mode to hover mode) using safe RL algorithms. While prior
work [16] mainly emphasizes the successful execution of transition maneuvers, our focus
is on minimizing altitude changes and the transition time, while adhering to velocity
constraints. Our method, compared to [18], integrates trajectory optimization and control
problems into an RL-based learning process, thereby reducing the complexity and compu-
tational effort. To the best of our knowledge, this is one of the first works in which the RL
methodology is utilized to solve the back-transition control problem of ducted-fan tail-sitter
UAVs.

The main contributions of our work are as follows.

1. We develop a mathematical model of ducted-fan fixed-wing UAV dynamics. Based
on this model, we create a training environment for ducted-fan UAVs in OpenAI
GYM [19] using the fourth-order Runge–Kutta method.

2. Taking into account the velocity constraint during the transition process, we train con-
trollers using Trust Region Policy Optimization (TRPO) with fixed penalty, Proximal
Policy Optimization with Lagrangian (PPOLag), and Constrained Policy Optimization
(CPO). We assess the performance of these algorithms and demonstrate the superiority
of the CPO algorithm.

3. Comparing the CPO algorithm with the optimal trajectory obtained via GPOPS-II [20],
we find that the performance of CPO closely approximates the optimal trajectory.
In addition, the CPO algorithm has robustness under unknown perturbations of
UAV model parameters and wind disturbance, which is lacking in the GPOPS-II
software.

This paper is organized as follows. In Section 2, a mathematical model of a ducted-
fan fixed-wing UAV is described. In Section 3, the general structure of the RL transition
controller is introduced, and the reward function, action, and observation are explained.
In Section 4, comparisons between CPO and other RL algorithms are reported. We also
compare the transition trajectory of CPO with GPOPS-II and verify the robustness of the
CPO algorithm. In Section 5, concluding remarks and future works are reported.
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2. Mathematical Modeling

In this section, we describe a three-degree-of-freedom (DOF) longitudinal model for
ducted-fan fixed-wing UAVs. The model is derived from the Newton and Euler theorems
and is simplified from the full 6-DOF dynamic model. This 3-DOF model is able to speed
up the process of assessing the impact of different reward functions and hyper-parameter
settings compared to the 6-DOF dynamic model [21]. It is equipped with four groups of
control vanes as the main control surfaces, each consisting of three movable vanes. In
addition, four groups of fixed vanes are situated above the main control surfaces, intended
to balance the anti-torque generated by the rotor, with each fixed group consisting of two
fixed vanes (see Figure 1). The four groups of control vanes are numbered 1, 2, 3, and 4
and are employed to change the attitude of the UAVs (see Figure 2). Each group of three
movable vanes, controlled by a single servo, deflects by the same angle. We use δ1, δ2, δ3,
and δ4 to represent the deflection of group numbers 1, 2, 3, and 4.

Figure 1. Ducted-fan UAV layout.

Figure 2. Control vanes.
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2.1. Three-DOF Dynamics

For the ducted-fan VTOL UAV, two right-handed coordinate systems are applied to
describe the states of the aircraft (see Figure 3). The inertial frame axes are denoted as
{ΓI :X I ,Y I ,ZI} and the body frame axes are denoted as {ΓB:XB,YB,ZB} with the origin located
at the center of mass. Throughout this section, the superscripts (.I) and (.B) are utilized
to specify whether a variable is formulated in the inertial or body frame. The position
of the aircraft in ΓI is described by ξ = [x, y, z]T and the velocity of the aircraft in ΓB is
defined as VB = [u, v, w]T . The Euler angle vector (i.e., roll, pitch, and yaw) is described by
Θ = [φ, θ, ψ]T and the angular velocity vector with respect to the body frame is denoted by
Ω = [p, q, r]T . It should be noted that based on the above-mentioned definition, the pitch
angle θ = 0◦ at the level flight condition, and the pitch angle θ = 90◦ at the landing and
hover conditions (see Figure 4). Thus, the longitudinal dynamics of the aircraft are derived
as follows:

Figure 3. Inertial frame and body frame.

Figure 4. Left: level flight; Right: hover mode.

u̇ = g sin θ + (D cos α− T − L sin α)/m− qw

ẇ = (Fcw + L cos α + D sin α + Fcs)/m + qu− g cos θ

ẋ = w cos θ − u sin θ

ż = u cos θ + w sin θ

θ̇ = q

q̇ =
(

Mpitch + Mcw + Mcs

)
/Iyy

(1)

where g is gravity acceleration; Iyy is the moment of inertia on the YB axis; α represents the
angle of attack. All the forces and moments are discussed below.
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2.2. Rotor

In this subsection, the rotor model is discussed based on basic momentum theory and
blade element theory [22]. Considering the airspeed along the XB axis, the configuration of
the blades, the airflow through the rotor, and the thrust of the rotor can be expressed as [23]

vb = u +
2
3

ωrr
(

3
4

Ktwist

)
(2)

T =
1
4
(vb − vi)ωrr2ρ∞a0bcr (3)

where VB = [u, v, w]T is the velocity in the body frame, ρ∞ is the air density, ωr represents
the angular velocity of the rotor, r is the radius of the rotor and Ktwist is the twist of the
blades, a0 is the rotor lift curve slope, b is the number of blades, cr is the chord of the rotor
blade, and the induced velocity vi and the far-field velocity v f can be expressed as

v f =

√
(u− vi)

2 + w2 + v2 (4)

vi = T/2ρ∞πr2v f (5)

The expressions for T and vi can be solved iteratively through Equations (2)–(5) using
the Newton–Raphson method.

2.3. Aerodynamics Model

The aerodynamic forces and moments include the lift L, the drag D, and the pitching
moment Mpitch. They are primarily dependent on the fuselage, duct, and mostly on the
wings. The angle of attack has a significant impact on the aerodynamic model, which can
be expressed as follows:

α =



0 if w = 0

−sgn(w)
π

2
if u = 0

arctan(
w
u
) if u < 0

arctan(
w
u
) + π if u > 0

(6)

The ducted-fan UAV can be regarded as an entire lifting body, including the fuselage,
wings, and duct [15]. This simplification introduces some inaccuracies in the aerodynamic
data. To address these discrepancies, it is essential to incorporate compensation for the
disturbances within the aerodynamic data. In order to account for the modeling errors, the
lift and drag coefficients are multiplied by a perturbation factor, sampled from a uniform
distribution ranging between 0.8 and 1.2.

During the transition mode, high angle of attack conditions can induce wing stall
phenomena, leading to a significant reduction in lift. Traditional linear aerodynamic coeffi-
cient models are insufficient in accurately capturing the complexities of the aerodynamic
behavior. As demonstrated in [24], an advanced aerodynamic model that integrates both
the linear lift model and the effects of wing stall can be formulated as follows:

CL(α) = (1− σ(α))
[
CL0 + CLα α

]
+ σ(α)[CLmax sin α cos α] (7)

CD(α) = CDp +

(
CL0 + CLα α

)2

πeAR
(8)
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where

σ(α) =
1 + e−M(α−α0) + eM(α+α0)(

1 + e−M(α−α0)
)(

1 + eM(α+α0)
) (9)

CLα =
πAR

1 +
√

1 + (AR/2)2
(10)

The lift and drag coefficients are shown in Figure 5. The pitching moment coefficients
will be expressed by the linear model as

Cm(α) = Cm0 + Cmα α (11)

Thus, the lift L, drag D, and pitching moment Mpitch can be written as

L =
1
2

ρ∞V2SCL(α)

D =
1
2

ρ∞V2SCD(α)

Mpitch =
1
2

ρ∞V2SCm(α)

(12)

V is the air speed of the UAV and S is the wing area.

Figure 5. Lift and drag coefficient.

2.4. Momentum Drag

Due to the existence of crosswinds, the duct must generate a force to align the incoming
airflow with its orientation. This results in a reaction force known as momentum drag.
Moreover, crosswinds lead to the formation of a region with higher velocity over the near
edge of the duct, as the air surrounding it is pulled into the duct by the rotor. This increased
lift on the edge produces a moment that causes the vehicle to turn away from the crosswind,
referred to as the momentum moment [22]. The formulas for the momentum drag and
moment can be represented as follows:

Fcw = −viρ∞πr2w (13)

Mcw = Cductρ∞r|r|w (14)

where w is the velocity of the Z-axis in the body frame, and vi is determined by Equation (5).
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2.5. Control Vanes

Each control vane can be modeled as an airfoil. In [3,14,15], the lift slope coefficient of
vane is assumed to be constant. However, our Computational Fluid Dynamics simulations
have shown that the lift coefficient of the vane remains virtually unchanged when subjected
to a large angle of attack. Thus, based on the simple model in [25], the lift slope coefficient
Clcs of the vane can be expressed as

Clcs =

{
0.0625 if |α| ≤ 16◦

0 if |α| > 16◦
(15)

The dynamic pressure qcs on each vane can be expressed as

qcs =
1
2

ρ∞(u− vi)
2 (16)

where u is the velocity of the X-axis in the body frame. Based on the control allocation
method [15], the equivalent vane deflection of pitch (Y-axis) is given as follows:

δy = δ2 − δ4 (17)

The drag forces of vanes can be neglected [15], and the vane’s angle of attack only
depends on the vane’s deflection [3]. Thus, the force and moment generated by the control
vanes are as follows:

Fcs = qcsScsClcsδy (18)

Mcs = qcsScsClcsleδy (19)

where Scs represents the vane area and le is the arm of pitch moment.

3. Approach
3.1. Problem Formulation

In this section, we provide a mathematical expression for the UAV back-transition
problem. In the back-transition process, the most straightforward strategy is that the UAV
climbs at a large pitch angle while converting the kinetic energy into potential energy [26]
(see Figure 6a). Although this approach offers a short transition time, it results in substantial
altitude loss. In this paper, our desired trajectory, referred to as a “neat transition”, aims to
complete the transition as quickly as possible with minimal altitude loss [13] (see Figure 6b).
To achieve this transition, we introduce an additional constraint on the Z-axis velocity,
expressed as

‖vz‖ < 1

Thus, we pay attention to the altitude loss and transition time after the transition has
been completed. The RL problem is defined as follows.

RL UAV Back-Transition Problem:
Minimize:

1. Terminal Velocity Error: ‖v‖ at t = t f

2. Terminal Attitude Error: ‖θ − π/2‖ at t = t f

3. Terminal Angular Velocity Error: ‖ω‖ at t = t f

4. Terminal Time: t f

5. Height loss:
∥∥∥zt f − zt0

∥∥∥
Subject to:

1. Angular Velocity Constraint: pitch angle velocity rate q < 180◦

2. Control Constraints:
∣∣δy
∣∣ < 30◦ and ωrmin < ωr < ωrmax

3. Neat Transition Constraint: ‖vz‖ < 1 m/s
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4. Equations of Motion (set by the environment)

To primarily optimize the terminal altitude loss and transition time, we opt to provide
error margins for the terminal velocity, terminal angle, and terminal angular velocity. When
the error falls within these margins, the transition is deemed successful. The terminal error
range can be expressed as follows:

‖vt f ‖ ≤ 1 m/s∥∥∥θt f − π/2
∥∥∥ ≤ 0.08 rad

‖ωt f ‖ ≤ 0.08 rad/s

(a) Continuous ascent trajectory

(b) Neat transition trajectory

Figure 6. Different transition trajectories.

3.2. Algorithm

To address the neat transition constraint, traditional RL methods typically apply
a fixed penalty through the reward function. However, if the penalty is too small, the
agent may learn unsafe behavior, while an excessively severe penalty might result in the
agent’s inability to learn anything. In contrast, safe reinforcement learning algorithms
employ the Lagrangian approach to tackle constraints, automatically balancing the weights
between rewards and penalties. This ensures that the entire transition process adheres
to the constraints while exploring the optimal transition performance. Among safe RL
algorithms, we introduce the Constrained Policy Optimization (CPO) algorithm to solve
the ducted-fan UAV back-transition problem [27].

3.2.1. Constrained Markov Decision Process (CMDP)

A Markov decision process (MDP) is a tuple, (S, A, P, γ, R), where S is the set of states,
A is the set of actions, and R : S× A× S→ R is the reward function. P : S× A× S→ [0, 1]
is the transition probability function (where P(s′ | s, a) is the probability of transitioning
to state s′ under the previous state s and the action a). γ ∈ [0, 1] is the discount factor for
future rewards, which represents a trade-off between immediate and future rewards. π
refers to a policy, which is a function that maps a state to an action. π(a|s) denotes the
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probability of selecting action a in state s. A trajectory τ is a set of MDP tuples in one
episode during which an agent interacts with the environment under policy π.

A constrained Markov decision process (CMDP) is an MDP subjected to some con-
straints. A set C1, . . . , Cm (with each one as Ci : S × A × S → R) is referred to as cost
functions, similar to the reward function [28]. The limits d1, . . . , dm represent the thresholds
of the cost functions. For the policy gradient algorithm, value functions, action-value
functions, and advantage functions are defined as Vπ , Qπ , and Aπ .

Qπ(st, at) = Eπ

[
∞

∑
k=0

γkRt+k

]

Vπ(st) = Eπ

[
∞

∑
k=0

γkRt+k

]
Aπ(s, a) = Qπ(s, a)−Vπ(s)

(20)

Similarly, we can replace reward R in the above equation with cost C to acquire Vπ
C ,

Qπ
C , and Aπ

C .
In a CMDP, the actor–critic framework consists of three parts: the actor, the critic, and

the cost critic. The actor is responsible for selecting actions based on the current state of
the agent, while the critic and cost critic estimate the expected discounted reward and cost
based on the current state. Typically, these three parts are usually approximated by neural
networks (NN). In the case of CMDP, let J(π) denote the expected discounted reward:

J(π) = E
τ∼π

[
∞

∑
t=0

γtRt

]
(21)

Similarly, the cumulative cost can be described as

JCi (π) = E
τ∼π

[
∞

∑
t=0

γtCi(st, at, st+1)

]
(22)

Thus, the set of feasible policies is

ΠC
.
=
{

π ∈ Π : ∀i, JCi (π) ≤ di
}

(23)

The objective in a CMDP is to find a policy that maximizes J(π) in ΠC:

π∗ = arg max
π∈ΠC

J(π) (24)

3.2.2. Constrained Policy Optimization

CPO adheres to the monotonic improvement theory proposed by Trust Region Pol-
icy Optimization (TRPO) [29]. By constraining the difference between the old and new
strategies to a small step size, it becomes possible to approximate the lower bound of the
objective function and the upper bound of the cost objective function between the old and
new policies, resulting in the following expression [27]:

J
(
π′
)
− J(π) ≈ Eτ∼π

[
∞

∑
t=0

Aπ(st, at)
π′(at|st)

π(at|st)

]
(25)

JCi

(
π′
)
− JCi (π) ≈ Eτ∼π

[
∞

∑
t=0

Aπ
Ci
(st, at)

π′(at|st)

π(at|st)

]
(26)
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Due to the approximation of the difference and the requirement in importance sam-
pling that the two strategy distributions must not be too far apart, a constraint is added on
the average Kullback–Leibler (KL) divergence between the old and new policies:

D̄KL
(
π‖π′

)
≤ δ (27)

where δ is a step size. By employing the minorization-maximization (MM) algorithm,
policy boosting can be guaranteed through maximizing an approximate lower bound on the
difference between the old and new policies (often called the alternative objective function).
Similarly, if the sum of the upper bound of the difference between the cost function of the
old and the new strategy and the cost function of the old strategy satisfies the constraint,
then the cost objective function of the new policy can also satisfy the constraint. As a result,
this optimization problem can be expressed as

max
θ

E(st ,at)∼π

[
πθ(at | st)

π(at | st)
Âπ(st, at)

]

s.t. JCi (π) +E(st ,at)∼π

[
πθ(at | st)

π(at | st)
Âπ

Ci
(st, at)

]
≤ di ∀i (28)

D̄KL

(
π‖πθ

)
≤ δ

where θ is the parameter of the policy network and Â is the advantage value function
estimated by generalized advantage estimation [30]. Since the KL divergence limits the
difference in the policy distribution to a small step size, the objective and constraint
functions in the above equation can be expanded in the first order, while the KL divergence
constraint is expanded in the second order. Let the gradient of the objective function be g,
the gradient of constraint i be bi, the Hessian of KL divergence be H, and c be defined as
JCi (π)− di. Thus, the approximate problem is

θk+1 = arg max
θ

gT(θ − θk)

s.t. ci + bT
i (θ − θk) ≤ 0 i = 1, . . . , m

1
2
(θ − θk)

T H(θ − θk) ≤ δ

(29)

Due to the computational complexity of the Hessian matrix, CPO uses a Fisher infor-
mation matrix to approximate H, which makes the problem above a convex optimization
problem [27]. To solve this convex optimization problem, we denote the Lagrangian multi-
pliers λ and ν. Then, when the original problem has a feasible solution, a dual to (29) can
be expressed as

max
λ≥0
ν≥0

−1
2λ

(
gT H−1g− 2νTbT H−1g + νTbT H−1bν

)
+ νTc− λδ (30)

If λ∗ and ν∗ are the optimal solution to the dual problem, the policy can be updated as
follows:

θk+1 = θk +
1

λ∗
H−1(g− bν∗) (31)

When there is no feasible solution to the original problem, CPO will execute the
recovery method, which will change the search direction. The recovery method is as
follows:

θk+1 = θk −
√

2δ

bT H−1b
H−1b (32)
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Inspired by TRPO, the line search method is used to adjust the step size of the update
to avoid any error caused by the approximation.

3.2.3. Implementation Details

In this section, we give the corresponding design of the state space, action space, and
reward function in RL. The state and action spaces are described as

s =
(

sin θ, cos θ, vx, vz, q, tle f t, Ivx , Ivz , Iθ , z
)T
∈ R10,

a =
(
δy, ωr

)T ∈ R2.
(33)

where δy represents the vane deflection of pitch, ωr is the angular velocity of the rotor, θ is
the pitch angle, vx and vz are the velocity of the X-axis and Z-axis in the inertial frame, q is
the angular velocity of the pitch angle, tle f t is the remaining time during one episode (the
maximum time for an episode is 10 s), and z is the height. Ivx , Ivz , Iθ is the integral error of
vx, vz, θ, which can be expressed as

eθ = θ − π/2, evx = vx, evz = vz (34)

In = η In−1 + en (35)

where η is the integral coefficient, and the integration of the error is approximated by such
an incremental approach as Equation (35). The design of the reward function is a key factor
affecting the performance of the reinforcement learning algorithm. The reward function R
and the cost function C are given by the following:

Φ(st) = k1

√
v2

x + v2
z + k2|θ − π/2| (36)

R = κ + (Φ(st+1)−Φ(st))× (0.5)t/10 − χI(s)− β(q > π)− ξ(|z| > 2)− τ (37)

C = 1 if ‖vz‖ ≥ 1 else 0 (38)

where the various terms are described as follows.

1. κ is a bonus reward for successful transition, where the terminal velocity, pitch angle,
and angular velocity are all within specified limits. In addition, different amounts of
bonuses are also given based on the loss of height when a successful transition state is
reached. We use ZT to represent the terminal height loss.

κ =


1000 if ZT ≤ 0.125 m

100− 100× log2 ZT if ZT ≤ 1 m
100− 90× log2 ZT if ZT ≤ 2 m

10 else

(39)

2. Φ(st+1)−Φ(st) is in the form of reward shaping. The aim of reward shaping is to
accelerate the learning process, where k1 and k2 denote the weights of the speed and
angle rewards. The term (0.5)t/10, which is gradually decaying over time, is designed
to reduce the transition time.

3. χ is constant and I(s) =
∥∥0.02× I2

vx + I2
θ + I2

vz

∥∥, β is a penalty for an angle exceeding
the limit, and ξ is a penalty when the UAV loses more than two meters in altitude. τ
is a fixed time penalty.

The cost limit d is set at 5. The terminal condition of an episode is either meeting the
termination condition specified in Section 3.1 or reaching the maximum time of 10 s.
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4. Simulation and Results

In this section, we present the experimental results. In our experiments, the controller
update and sensor data download frequency was set as 50 HZ. For our experiments, the
initial flight mode was set to level flight, with the initial angle of attack sampled from a
uniform distribution ranging between 6◦ and 15◦. The initial pitch angle was set equal to
the angle of attack, the initial height was set at 50 m, and the corresponding horizontal
velocity could be determined using the following equation:

vlevel = −
√

mg
1
2 CL(α)ρ∞S

(40)

4.1. Comparing CPO and TRPO with Fixed Penalty

To demonstrate the superiority of safe reinforcement learning compared to other
conventional reinforcement learning algorithms with a fixed penalty, we conducted three
different sets of experiments, which were named CPO, TRPO with penalty 1, and TRPO
with penalty 5. The experimental results are shown in Figure 7.
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Figure 7. Comparison of learning curve.

During training, we took into account the randomization of the initial state and the
perturbation of the aerodynamic coefficients. However, in evaluating the transition perfor-
mance of CPO and TRPO with penalty, we have not considered these factors. Three sets of
experiments with the same initial state (angle of attack at 6◦) for the sake of comparison are
shown in Figure 8, where the arrows represent the terminal state.

In Figures 7 and 8, we can observe that the trajectory corresponding to TRPO with
penalty 1 converges to a locally optimal continuous ascending path, resulting in a fast tran-
sition time but significant altitude loss. In contrast, the trajectory corresponding to TRPO
with penalty 5 consistently satisfies the constraints, but its terminal angle and speed exceed
the predefined range, ultimately failing to complete the task. The CPO algorithm, however,
effectively meets the constraints while accomplishing the transition with a minimal altitude
loss of 0.1 m, which complies with the requirements of a neat transition.
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4.2. Comparing CPO and PPOLag

In the domain of safe reinforcement learning, numerous algorithms can address
constraint-related issues. For the sake of code development convenience, we have chosen
to compare the CPO algorithm with Proximal Policy Optimization with Lagrangian, also
called PPOLag (see Figure 9).
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Figure 9. CPO vs. PPOLag.

PPOLag is a variant of the Proximal Policy Optimization (PPO) algorithm, which
employs a Lagrangian relaxation approach to handle constraints. Constraints are integrated
into the objective function using a penalty term that is computed with the help of the
Lagrange multiplier. The Lagrange multiplier is updated during the training process based
on the discrepancy between the current constraint value and its cost limit, which serves as
a weighting factor to balance the trade-off between the reward function and the constraints.

PPOLag is a simpler algorithm in principle and easier to implement. However, as
shown in Figure 9b, this method may cause oscillations near the cost limit of the constraint,
leading to poor performance of the agent (as shown in Figure 9a). Consequently, although
PPOLag can complete the transition, its performance is inferior to that of CPO. The best-
trained model with PPOLag (at an angle of attack of 6°) has a terminal height loss of 1.2 m
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and a transition time of 7.84 s, but CPO has a terminal height loss of 0.1 m and a transition
time of 6.94 s.

4.3. Comparison with GPOPS-II

According to the problem formulation in Section 3.1, this problem can also be con-
sidered as an optimal control problem. As a result, we choose to employ GPOPS-II when
computing the optimal trajectory. In this case, the control variables for GPOPS-II are the
same as in our approach—namely, the angular velocity of the rotor and elevator deflec-
tion. The experimental results without perturbations at an initial angle of attack 10◦ are
compared in Figures 10 and 11. The cost function of GPOPS-II is the following:

J = 0.5t f + 0.2
∣∣∣Zt f

∣∣∣ (41)

where t f is the transition time and Zt f is the terminal height loss.
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The height loss of GPOPS-II is 0.01 m with a transition time of 5.21 s, while the
height loss of CPO is 0.103 m with a transition time of 5.62 s. As can be seen from the
figures, the performance of the CPO algorithm closely approximates that of GPOPS-II.
However, GPOPS-II has two main drawbacks. Firstly, as a model-based approach, it
provides only optimal feed-forward control input, which is an ideal solution. When the
dynamics model of the UAV changes, it requires re-solving based on the altered model. In
contrast, the CPO algorithm is highly robust and can still perform the transition task with
high performance despite certain modeling errors and wind disturbance, as discussed later
in Sections 4.4 and 4.5. Secondly, as micro-controllers onboard aerial robots generally only
have limited computational power, the optimization of GPOPS-II can be only executed
offline. However, RL algorithms such as CPO can solve the transition problem online after
a policy model has been trained, which saves a great deal of computational resources.

4.4. Robustness Validation

During the training process, the randomness of the UAV is only determined by the
randomness of the initial state and aerodynamic parameters. Therefore, in order to assess
the robustness of the system, we chose to randomize various factors, including the mass,
moment of inertia, and aerodynamic parameters of lift and drag (with a larger range), by
employing a uniform distribution. Furthermore, we took sensor noise into account because
measurement errors in the height can potentially lead to a significant decline in the system’s
performance, especially for terminal height loss. To validate the robustness of sensor noise,
Gaussian noise was introduced into the height measurements. It is important to note that
we did not consider these perturbations during training, meaning that the UAV had not
been exposed to them before.

To enable a fair comparison, we only randomized the initial state and tested each
perturbation individually. Specifically, we conducted 500 experiments for each perturbation,
while maintaining the same transition success condition as in Section 3.1. We report the
average performance of the UAV across all experiments (see Table 1). At the same time,
the trajectories under each disturbance group (50 in total) are also provided. We chose to
use the pitch angle and velocity of the UAV during the transition process to draw 2D plane
curves (see Figures 12–15), where the different color simply indicates that these trajectories
are different. Through the figures, we can find that the UAV can still complete the transition
task with excellent performance despite the change in UAV model parameters. At the same
time, we can observe that even when the UAV does not transition successfully, its terminal
velocity and pitch angle mostly remain close to our desired range.

Table 1. Experimental results under different perturbations.

Perturbation Type Parameter Range Success Rate Transition
Time

Terminal
Height Loss

Terminal
Velocity

Terminal
Pitch Angle

Mass 21% 94% 6.30 s 0.27 m 1.01 m/s 95.09°

Lift and Drag 40% 97.0% 6.09 s 0.109 m 0.966 m/s 93.76°

Inertia 40% 100% 6.02 s 0.072 m 0.80 m/s 93.42°

Sensor Noise |µ| ≤ 0.2, 0.005 ≤ σ ≤ 0.05 100% 6.54 s 0.133 m 0.95 m/s 93.05°
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4.5. Transition under Wind Disturbance

In this section, we aim to verify the wind disturbance rejection ability of our method.
In RL-based robotic control design, the sim-to-real gap is a challenging problem because
there are inevitable mismatches between the simulator setting and real-world setting in
the UAV control problem. This is not only due to the unknown perturbations of the UAV
parameters but also the presence of adversarial disturbances such as wind in the real world.
To account for wind disturbance, we introduce two different wind scenarios: constant-
magnitude wind (ranging from −5 m/s to 5 m/s) and sinusoidal wind (with an amplitude
of 5 m/s and time periods of 2 s, 3 s, 4 s, and 5 s), both along the horizontal direction, which
is the X I axis. Furthermore, the dynamics of ducted-fan fixed-wing UAVs in the presence
of wind are described in detail in [3,14]. Therefore, we recreate the dynamic equations of
the UAV using their modeling of wind.

To address the wind disturbance, we employ domain randomization [31] and retrain
the RL agent under three different conditions: the two wind scenarios mentioned above
and a no-wind scenario. Domain randomization is an approach used to overcome the
sim-to-real gap by randomizing the simulator environment during the training of the RL
control policy. By adapting the domain randomization approach, we aim to retrain a UAV
controller that is robust against wind disturbance.

The trajectory comparison among the constant-magnitude wind (5 m/s), sinusoidal
wind (time period 2 s), and no-wind conditions is shown in Figure 16, where the arrows
represent the terminal state and all initialized from the angle of attack 6◦.

From Figures 8 and 16, we can see that compared to the controller trained with-
out domain randomization, the terminal height loss of the drone retrained with domain
randomization remains nearly the same, while the time taken increases by 1.52 s. This
phenomenon can be intuitively understood as follows: the RL algorithm selects actions
with the highest expected returns under various wind disturbance scenarios, rather than
actions that can achieve high returns in windless environments, but may fail to complete
the task in windy conditions. Thus, a certain degree of performance loss is reasonable.

In order to better evaluate the resistance of our method to wind disturbances, we
applied the UAV in 100 experiments under three conditions and from different initial states,
in addition to considering the perturbation of the aerodynamic coefficients during the
transition (a uniform distribution ranging between 0.8 and 1.2). The experimental results
are shown in Figure 17 (success rate 90%), where the different color simply indicates that
these trajectories are different.

In Figure 17, we observe that in most cases, the UAV is able to withstand wind
disturbances and complete the transition task. However, for those trajectories that do not
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satisfy the terminal constraint in Section 3.1, we find that the trajectories generally terminate
with an attitude close to vertical hover (90◦) and a small velocity. This suggests that the
UAV is less resistant to interference in the hovering state. In conventional approaches,
a common method is to switch to the hover controller when the UAV transitions from
level flight to near-hover. Wind disturbance can be resisted by switching between the two
controllers and enhancing the hover controller’s ability to handle wind disturbance. In
RL, resistance to wind disturbance in hovering should be treated as a separate task, and
the problem should be addressed using multi-task RL or meta-learning, which will be the
focus of our future work.
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5. Conclusions

In this study, we have successfully developed a safe reinforcement learning-based
approach for neat transition control during the back-transition process of ducted-fan
fixed-wing UAVs. By constructing a three-degree-of-freedom longitudinal model and
implementing the CPO algorithm, our method effectively addresses the challenges of
integrating trajectory optimization and control methods. By comparison, we found that
the introduction of a velocity constraint leads to better performance compared to adding
a penalty to the reward. Furthermore, we also found that our method closely resembles
GPOPS-II’s performance without the need for prior knowledge. Additionally, we confirmed
the robustness of the CPO algorithm and found that even when the transition was not
successful, the terminal conditions remained close to our desired terminal range. Future
research directions include enabling the UAV to complete multi-tasks (i.e., from hover to
level flight, hover under wind disturbance, and level flight), ensuring robustness against
wind disturbance, and validating the approach in the real world.
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Nomenclature

Symbol Description Units
x, y, z position of UAV m
u, v, w velocity in the body frame m/s
φ, θ, ψ roll, pitch, and yaw angle rad
p, q, r angular velocity rad/s
g gravity acceleration m/s2

α angle of attack rad
m mass kg
Iyy moment of inertia kg · m2

L, D, T aerodynamic lift, drag, and thrust N
Fcw, Fcs momentum drag and control vane force N
Mpitch, Mcw, Mcs pitch, momentum, and control vane moment N · m
ρ∞ air density Kg/m3

ωr angular velocity of the rotor rad/s
r radius of the rotor m
Ktwist twist of blades
a0 rotor lift curve slope
b number of blades
cr chord of the rotor blade m
vb, vi, v f airflow through rotor, induced velocity, and

far-field velocity
m/s

CL, CD, Cm lift, drag, and pitch moment coefficient
V air speed m/s
Clcs lift slope coefficient of vane
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qcs dynamic pressure kg/m · s2

Scs vane area m2

le arm of pitch moment m
s state space
R reward function
C cost function
a action space
P transition probability
γ discount factor
Vπ value function
Aπ advantage value function
J(π) expected discounted reward
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