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Abstract: Delivery drones have been attracting attention as a means of solving recent logistics issues,
and many companies are focusing on their practical applications. Many research studies on delivery
drones have been active for several decades. Among them, extended routing problems for drones
have been proposed based on the Traveling Salesman Problem (TSP), which is used, for example, in
truck vehicle routing problems. In parcel delivery by drones, additional constraints such as battery
capacity, payload, and weather conditions need to be considered. This study addresses the routing
problem for delivery drones. Most existing studies assume that the drone’s flight speed is constant
regardless of the load. On the other hand, some studies assume that the flight speed varies with the
load. This routing problem is called the Flight Speed-Aware Traveling Salesman Problem (FSTSP).
The complexity of the drone flight speed function in this problem makes it difficult to solve the routing
problem using general-purpose mathematical optimization solvers. In this study, the routing problem
is reduced to an integer programming problem by using linear and quadratic approximations of
the flight speed function. This enables us to solve the problem using general-purpose mathematical
optimization solvers. In experiments, we compared the existing and proposed methods in terms of
solving time and total flight time. The experimental results show that the proposed method with
multiple threads has a shorter solving time than the state-of-the-art method when the number of
customers is 17 or more. In terms of total flight time, the proposed methods deteriorate by an average
of 0.4% for integer quadratic programming and an average of 1.9% for integer cubic programming
compared to state-of-the-art methods. These experimental results show that the quadratic and cubic
approximations of the problem have almost no degradation of the solution.

Keywords: delivery drones; traveling salesman problem; flight speed-aware traveling salesman
problem; integer quadratic programming; integer cubic programming

1. Introduction

The number of parcel deliveries in logistics has been increasing every year. As a study
of logistics, Lu et al. proposed a new optimization algorithm based on the combination
of an ant colony system and gray wolf optimization to solve the fourth-party logistics
routing problem [1]. The coronavirus pandemic has further increased the number of parcel
deliveries via e-commerce, especially small parcel deliveries. As a result, there are three
major challenges in logistics: First, there is a labor shortage of drivers and other workers [2].
This problem is called the 2024 problem [3]. The second is traffic congestion caused by
trucks. As the number of parcel delivery services increases, the number of trucks will
inevitably increase. The third is the inefficiency of redelivery. Many people are unable to
pick up their packages when they are delivered, so the delivery company must visit the
customer again. As the number of parcels increases, the number of redelivery attempts
also increases.
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Delivery drones are attracting attention as a promising solution to these problems.
Compared to deliveries by truck, drones deliver packages while flying, thereby alleviating
traffic congestion. In addition, drones emit less CO2 since they are battery-powered.
Furthermore, the unmanned flight of drones can reduce the labor costs required for delivery.
Thus, delivery drones have many advantages.

However, because drones are battery-powered, they cannot fly for long periods of
time. Therefore, to efficiently deliver packages by drone, the route must be determined in
advance. There is a routing problem called TSP. TSP is the problem of finding the route
with the shortest total travel distance among the routes on which a drone starts from the
depot, visits every customer exactly once, and returns to the depot. Hoffman et al. defined
TSP, formulated it, and presented a comprehensive overview of TSP, including the various
mathematical models and algorithms developed to solve it [4].

In drone delivery, the drone’s flight speed is greatly affected by the load; therefore,
a delivery plan that takes changes in flight speed into account is necessary. Funabashi
et al. proposed drone delivery planning (FSTSP), the authors have defined their problem
as FSVRP, but it is actually FSTSP since they assumed a single drone routing). that takes
into account changes in flight speed due to load and finds a route that minimizes the total
flight time required for delivery [5]. Their proposed FSTSP is not linearized and cannot be
solved by a mathematical optimization solver because it contains trigonometric functions.
In this paper, based on the fact that the problem can be easily extended, we propose integer
quadratic programming and integer cubic programming for FSTSP to make it solvable by
a general-purpose mathematical programming solver. In the experiments, the proposed
method is compared with the conventional method in terms of solving time and total
flight time.

The structure of this paper is as follows: Section 2 describes the literature review.
Section 3 describes the Traveling Salesman Problem (TSP). Section 4 describes FSTSP.
Section 5 describes an IQP approach and an ICP approach to the FSTSP. Section 6 describes
the experimental method and the results of the evaluation experiments. Section 7 describes
the overall summary and future work.

2. Literature Reviews

Research on package delivery has been active for several decades. There is research that
focuses on the problem of truck-drone hybrid delivery routing, taking into consideration
the dependency between the payload and the energy of the drone as well as the existence
of No-Fly zones [6]. This paper proposes a hybrid metaheuristic algorithm that aims to
find the most efficient delivery route while considering these constraints. Other studies on
algorithms include: Wen et al. proposed a new optimization algorithm based on colony
search and global optimization to solve complex optimization problems [7]. Lu et al.
presented a bilevel optimization algorithm based on the whale optimization algorithm to
schedule information technology projects considering outsourcing and risk management [8].
Yan et al. developed a hybrid metaheuristic algorithm to solve the multi-objective location-
routing problem in the early post-disaster stage [9].

Research on drones for delivery has also been active. Drone delivery planning is one
of the most important problems in realizing package delivery by drones [10,11]. Masone
et al. described a method for routing drones in a manner that involves multiple visits to
certain locations while considering the launch and landing locations of the drone [12]. The
authors presented an iterative approach to solving this problem that combines both discrete
and continuous improvements. We will describe drone delivery planning.

The Traveling Salesman Problem (TSP) has been proposed as a route planning problem.
However, it is difficult to apply TSP to the drone route planning problem because additional
constraints such as battery capacity, package weight, and weather conditions need to be
considered for package delivery by drones. Drones in general are battery-powered, making
it difficult to fly for long periods of time. Therefore, it is necessary to obtain efficient paths
from aspects such as distance, energy, and time during routing.
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The drone needs to minimize its flight distance. In addition, the maximum payload
capacity of drones is relatively small compared to that of trucks, trains, and other vehicles.
Based on these considerations, Poikonen et al. proposed a path-planning problem to
minimize the time required for drone delivery [13]. In this problem, the flight speed is
assumed to be constant in advance, and it is assumed that the flight speed does not change
during delivery.

The drone needs to minimize energy consumption. To develop a more accurate energy
consumption model, D’Andrea developed an energy consumption model for stable flight
based on the lift-drag ratio [14]. This model is characterized by the presence of two types:
one with headwinds and the other without consideration of headwinds. Stolaroff et al.
developed an energy consumption model that takes into account the forces to which the
drone is subjected due to parasitic and induced drag [15], and Kirchstein developed an
energy consumption model for takeoff, level flight, and delivery with landing [16]. A
feature of the model is the inclusion of downwash coefficients. Tseng developed the model
based on horizontal and vertical speeds and accelerations, payload, mass, and wind speed
data obtained from empirical experiments [17]. This model is a function of package weight
and airspeed. Carlos et al. used deep learning with Long Short-Term Memory (LSTM)
to improve accuracy over previous methods [18]. LSTM is a type of Recurrent Neural
Network (RNN) that can learn long-term dependencies.

The drone needs to minimize flight time. In drone delivery, the drone’s flight speed is
greatly affected by the load; therefore, a delivery plan that takes changes in flight speed into
account is necessary. There are also some studies that assume that the flight speed varies
with the load. Fontaine presented a solution to a common logistics problem: optimizing the
routes for delivery vehicles, specifically cargo bicycles [19]. The author takes into account
the fact that the travel time for a cargo bicycle may depend on the weight of the load it is
carrying. Qian et al. focused on optimizing the routing of vehicles in order to minimize
the fuel emissions produced by the vehicles [20]. The problem being addressed takes into
account not only the standard parameters in vehicle routing problems (such as the distance
between stops, the capacity of the vehicles, etc.) but also the effect of varying speeds on
the emissions produced by the vehicles. Rosati et al. focused on optimizing the routing
of unmanned aerial vehicles (UAVs) in an ad-hoc network by considering the speed of
the UAVs [21]. Funabashi et al. proposed a drone delivery planning (FSTSP) system that
takes into account changes in flight speed due to load and finds a route that minimizes
the total flight time required for delivery [5]. Their proposed FSTSP cannot be solved by a
mathematical optimization solver because it contains trigonometric functions. In this paper,
based on the fact that the problem can be easily extended, we propose integer quadratic
programming and integer cubic programming for FSTSP in order to make it solvable by
a general-purpose mathematical programming solver. In the experiments, the proposed
method is compared with the conventional method in terms of solving time and total
flight time.

3. Description of TSP

In recent years, delivery drones have been expected in many aspects, such as labor
costs, traffic congestion, and environmental conservation, and many companies are aiming
for practical use [22–25]. To deliver packages to multiple customers within a set time using
drones, it is necessary to determine delivery routes in advance.

There is a routing problem called TSP. TSP is the problem of finding the route with
the smallest total travel distance among the routes in which a drone starts from the depot,
visits every customer exactly once, and returns to the depot. Jünger et al. described the
various mathematical models and algorithms developed to solve TSP, including exact
algorithms, approximation algorithms, and heuristics [26]. TSP is known as one of the
NP-hard problems, and many heuristics, meta-heuristics, and exact algorithms have been
developed over the decades. The simplest yet most efficient heuristic algorithm is the
Nearest Neighborhood (NN) search algorithm. NN is an approach that selects the closest
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customers one by one until all customers have been visited. Algorithms for solving TSP
include dynamic programming developed by Bellman [27] and Held et al. [28].

Here, Figure 1 shows an example of the problem. A node written as “0” indicates
the depot, and the other three nodes indicate customers. The number inside the box
indicates the weight of the package requested by the customer, and the number on the edge
connecting each node indicates the distance between two points. Since the drone moves by
flying, it is assumed that there are no geographical restrictions and that it can always move
between arbitrary customers.
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Figure 1. An example problem.

The optimal route of TSP in this problem is shown in Figure 2a,b. The route indicated
by the arrow is the shortest route. In this route, the drone departs from the depot with a
load of 90 (= 10 + 60 + 20), unloads a load of 10 at customer 1, and travels to customer 2
with a load of 80 (= 60 + 20). After that, the drone unloads a load of 60 at customer 2 and
goes to customer 3 with a load of 20. The drone unloads a load of 20 at customer 3 and
returns to the depot with no load. The total distance with TSP is 164 (= 28 + 42 + 54 + 40),
and the total flight time is 36 (= 7 + 10 + 11 + 8). If the flight speed is constant, it can be said
that the shortest route is optimal in terms of both flight distance and flight time.
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Figure 2. Optimal routes of TSP. (a) Total flight distance and (b) total flight time.

Next, we describe the formulation of TSP. First, the N parcels to be delivered are given.
Without loss of generality, no more than one package is delivered to the same customer.
Therefore, the number of customers is also N. Packages are numbered from 1 to N, and
the customer to whom package i (1 ≤ i ≤ N) is to be delivered is called customer i. In this
paper, we assume that the drone can deliver all packages in one flight. When the drone
leaves the depot, it loads all the packages and departs. If the total weight of the package
exceeds the maximum payload of the drone, it is necessary to divide the package into
groups before delivery planning, but the method of dividing is not covered in this paper.

Let d(i1, i2) be the distance between customers i1 and i2. Furthermore, x(j) is the
decision variable of the routing problem, which denotes the visiting order at the j-th
customer. For example, x(j) = 3 indicates that the drone visits the j-th customer at the third
point. Since the start and end points of the route are the depot, this is defined as follows:

x(0) = x(N + 1) = 0 (1)

Figure 1. An example problem.

The optimal route of TSP in this problem is shown in Figure 2a,b. The route indicated
by the arrow is the shortest route. In this route, the drone departs from the depot with a
load of 90 (= 10 + 60 + 20), unloads a load of 10 at customer 1, and travels to customer 2
with a load of 80 (= 60 + 20). After that, the drone unloads a load of 60 at customer 2 and
goes to customer 3 with a load of 20. The drone unloads a load of 20 at customer 3 and
returns to the depot with no load. The total distance with TSP is 164 (= 28 + 42 + 54 + 40),
and the total flight time is 36 (= 7 + 10 + 11 + 8). If the flight speed is constant, it can be said
that the shortest route is optimal in terms of both flight distance and flight time.
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customers one by one until all customers have been visited. Algorithms for solving TSP
include dynamic programming developed by Bellman [27] and Held et al. [28].

Here, Figure 1 shows an example of the problem. A node written as “0” indicates
the depot, and the other three nodes indicate customers. The number inside the box
indicates the weight of the package requested by the customer, and the number on the edge
connecting each node indicates the distance between two points. Since the drone moves by
flying, it is assumed that there are no geographical restrictions and that it can always move
between arbitrary customers.
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Figure 1. An example problem.

The optimal route of TSP in this problem is shown in Figure 2a,b. The route indicated
by the arrow is the shortest route. In this route, the drone departs from the depot with a
load of 90 (= 10 + 60 + 20), unloads a load of 10 at customer 1, and travels to customer 2
with a load of 80 (= 60 + 20). After that, the drone unloads a load of 60 at customer 2 and
goes to customer 3 with a load of 20. The drone unloads a load of 20 at customer 3 and
returns to the depot with no load. The total distance with TSP is 164 (= 28 + 42 + 54 + 40),
and the total flight time is 36 (= 7 + 10 + 11 + 8). If the flight speed is constant, it can be said
that the shortest route is optimal in terms of both flight distance and flight time.
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Let d(i1, i2) be the distance between customers i1 and i2. Furthermore, x(j) is the
decision variable of the routing problem, which denotes the visiting order at the j-th
customer. For example, x(j) = 3 indicates that the drone visits the j-th customer at the third
point. Since the start and end points of the route are the depot, this is defined as follows:

x(0) = x(N + 1) = 0 (1)



Drones 2023, 7, 320 5 of 14

Since every customer must be visited only once, it is defined as follows:

1 ≤ x(j) ≤ N (1 ≤ j ≤ N) (2)

x(j1) 6= x(j2) (1 ≤ (j1, j2) ≤ N, j1 6= j2) (3)

Since general TSP seeks the route with the shortest total flight distance, the objective
function is defined as follows:

Min
N

∑
j=0

d(x(j), x(j + 1)) (4)

4. Description of FSTSP

As a derivative of TSP described in Section 2, there is a problem called the Flight
Speed-Aware Traveling Salesman Problem (FSTSP) [5]. In this problem, given a set of
packages to be delivered, the optimal flight path is found to depart from a delivery location,
deliver all packages to customers, and return to the delivery location. Here, we focus on the
problem of finding the flight path with the shortest flight time, taking into account changes
in flight speed due to load.

4.1. An Example

Figure 3a,b show the optimal paths of the FSTSP for the problem in Figure 1. The path
indicated by the arrows is the shortest path in time. In this path, the drone departs from the
depot with a load of 90 (= 10 + 60 + 20), unloads a load of 60 at customer 2, and travels to
customer 3 with a load of 30 (= 10 + 20). It then unloads a load of 20 at customer 3, travels
to customer 1 with a load of 10, unloads a load of 10 at customer 1, and returns to the depot
with a load of 0. At this time, the total distance flown by FSTSP is 168 (= 22 + 54 + 64 + 28).
However, the total flight time for FSTSP is 35 (= 5 + 11 + 13 + 6), which is shorter than the
36 (= 7 + 10 + 11 + 8) total flight time for the TSP optimal path. In general, the heavier
the load carried, the slower the drone flies, and the lighter the load, the faster the drone
flies. In Figure 2a, the drone first visits customer 1 and unloads a load of 10. The drone
then continues flying with a load of 80 (= 60 + 20). On the other hand, in Figure 3a, the
drone first visits customer 2 and unloads the heaviest load, 60. The drone then continues
flying with a load of 30 (= 10 + 20). This allows the drone to fly faster than the TSP during
subsequent deliveries because of the lighter weight of the onboard luggage. This example
shows that the optimal path for TSP is not always the same as the optimal path for FSTSP.

Drones 2023, 7, 0 5 of 13

Since every customer must be visited only once, it is defined as follows:

1 ≤ x(j) ≤ N (1 ≤ j ≤ N) (2)

x(j1) 6= x(j2) (1 ≤ (j1, j2) ≤ N, j1 6= j2) (3)

Since general TSP seeks the route with the shortest total flight distance, the objective
function is defined as follows:

Min
N

∑
j=0

d(x(j), x(j + 1)) (4)

4. Description of FSTSP

As a derivative of TSP described in Section 2, there is a problem called the Flight
Speed-Aware Traveling Salesman Problem (FSTSP) [5]. In this problem, given a set of
packages to be delivered, the optimal flight path is found to depart from a delivery location,
deliver all packages to customers, and return to the delivery location. Here, we focus on the
problem of finding the flight path with the shortest flight time, taking into account changes
in flight speed due to load.

4.1. An Example

Figure 3a,b show the optimal paths of the FSTSP for the problem in Figure 1. The path
indicated by the arrows is the shortest path in time. In this path, the drone departs from the
depot with a load of 90 (= 10 + 60 + 20), unloads a load of 60 at customer 2, and travels to
customer 3 with a load of 30 (= 10 + 20). It then unloads a load of 20 at customer 3, travels
to customer 1 with a load of 10, unloads a load of 10 at customer 1, and returns to the depot
with a load of 0. At this time, the total distance flown by FSTSP is 168 (= 22 + 54 + 64 + 28).
However, the total flight time for FSTSP is 35 (= 5 + 11 + 13 + 6), which is shorter than the
36 (= 7 + 10 + 11 + 8) total flight time for the TSP optimal path. In general, the heavier
the load carried, the slower the drone flies, and the lighter the load, the faster the drone
flies. In Figure 2a, the drone first visits customer 1 and unloads a load of 10. The drone
then continues flying with a load of 80 (= 60 + 20). On the other hand, in Figure 3a, the
drone first visits customer 2 and unloads the heaviest load, 60. The drone then continues
flying with a load of 30 (= 10 + 20). This allows the drone to fly faster than the TSP during
subsequent deliveries because of the lighter weight of the onboard luggage. This example
shows that the optimal path for TSP is not always the same as the optimal path for FSTSP.

Drones 2023, 7, x FOR PEER REVIEW 5 of 14 
 

customer. For example, x(j) = 3 indicates that the drone visits the j-th customer at the third 

point. Since the start and end points of the route are the depot, this is defined as follows: 

𝑥(0) = 𝑥(𝑁 + 1) = 0 (1) 

Since every customer must be visited only once, it is defined as follows: 

1 ≤ 𝑥(𝑗) ≤ 𝑁    (1 ≤ 𝑗 ≤ 𝑁) (2) 

𝑥(𝑗1) ≠ 𝑥(𝑗2)    (1 ≤ (𝑗1, 𝑗2) ≤ 𝑁, 𝑗1 ≠ 𝑗2) (3) 

Since general TSP seeks the route with the shortest total flight distance, the objective 

function is defined as follows: 

𝑀𝑖𝑛    ∑ 𝑑(𝑥(𝑗), 𝑥(𝑗 + 1))

𝑁

𝑗=0

 (4) 

4. Description of FSTSP 

As a derivative of TSP described in Section 2, there is a problem called the Flight 

Speed-Aware Traveling Salesman Problem (FSTSP) [5]. In this problem, given a set of 

packages to be delivered, the optimal flight path is found to depart from a delivery loca-

tion, deliver all packages to customers, and return to the delivery location. Here, we focus 

on the problem of finding the flight path with the shortest flight time, taking into account 

changes in flight speed due to load. 

4.1. An Example 

Figure 3a,b show the optimal paths of the FSTSP for the problem in Figure 1. The 

path indicated by the arrows is the shortest path in time. In this path, the drone departs 

from the depot with a load of 90 (= 10 + 60 + 20), unloads a load of 60 at customer 2, and 

travels to customer 3 with a load of 30 (= 10 + 20). It then unloads a load of 20 at customer 

3, travels to customer 1 with a load of 10, unloads a load of 10 at customer 1, and returns 

to the depot with a load of 0. At this time, the total distance flown by FSTSP is 168 (= 22 + 

54 + 64 + 28). However, the total flight time for FSTSP is 35 (= 5 + 11 + 13 + 6), which is 

shorter than the 36 (= 7 + 10 + 11 + 8) total flight time for the TSP optimal path. In general, 

the heavier the load carried, the slower the drone flies, and the lighter the load, the faster 

the drone flies. In Figure 2a, the drone first visits customer 1 and unloads a load of 10. The 

drone then continues flying with a load of 80 (= 60 + 20). On the other hand, in Figure 3a, 

the drone first visits customer 2 and unloads the heaviest load, 60. The drone then contin-

ues flying with a load of 30 (= 10 + 20). This allows the drone to fly faster than the TSP 

during subsequent deliveries because of the lighter weight of the onboard luggage. This 

example shows that the optimal path for TSP is not always the same as the optimal path 

for FSTSP. 

  
(a) (b) 

Figure 3. Optimal routes of FSTSP. (a) Total flight distance and (b) total flight time.  

10

Weight

Edge:
Distance

Depot

1

2

3

0 60

20

54

22

64

28

10

Weight

Edge:
Flight Time

Depot

1

2

3

0 60

20

11

5

13

6

Figure 3. Optimal routes of FSTSP. (a) Total flight distance and (b) total flight time.
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W(0) =
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∑
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4.2. FSTSP Formulation

Let w(i) be the weight of package i and W(j) be the total weight when the drone leaves
the j-th customer. When the drone begins its delivery, all packages are loaded, therefore
the following Equation holds.

W(0) =
N

∑
i=1

w(i) (5)
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When the drone visits the j-th (1 ≤ j ≤ N) point x(j), it unloads a load w(x(j)). Thus,
the total weight when it finishes visiting the point x(j) is defined as

W(j) = W(j− 1)− w(x(j)) (6)

Let t(i1, i2) be the flight time between points i1 and i2. The time taken by the drone to
fly from i1 to i2 is the distance between i1 and i2 divided by the drone’s flight speed v. The
drone’s flight speed is a function of the load variable, and the flight time between the j-th
and (j + 1)-th drone is defined as

t(x(j), x(j + 1)) =
d(x(j), x(j + 1))

v(W(j))
(7)

FSTSP is the problem of finding the path with the shortest total flight time. Therefore,
the objective function is defined as

Min T =
N

∑
j=0

d(x(j), x(j + 1))
v(W(j))

(8)

Here is a brief approximation of the effect of the weight of the parcel carried by the
drone on the flight speed v. The function of flight speed, v, within the problem definition
depends on the drone. v is assumed to be given, and the exact v is beyond the scope of
this paper.

Figure 4a shows a drone flying horizontally without a parcel, where P represents the
lift of the drone and Wd represents the weight of the drone itself. The horizontal component
Px of P is the force toward the destination and is equal to the aerodynamic drag k·v(0).
Therefore, the following Equation holds, where k is a coefficient specific to the drone.

Px = P sin(θ) = k·v(0) (9)

To prevent the drone from falling, the vertical component of P, Py, must be equal to
the gravity, Wd·g. When θ is the pitch angle and Py is equal to the gravity, the following
Equation holds.

Py = P cos(θ) = Wd·g (10)

Figure 4b shows the drone as it carries the load w. To avoid crashing, the pitch angle
θ′must be less than θ. Therefore, the following Equations hold for the lift forces Px′ and
Py′ of the drone.

P′x = P sin
(
θ′
)
= k·v(w) (11)

P′y = P cos
(
θ′
)
= (Wd + w)·g (12)

Therefore, the drone’s flight speed v(w), pitch angle θ, and θ′ can be defined by the
following Equations, respectively.

v(w) =
P
k

sin
(
θ′
)
=

sin(θ′)
sin(θ)

·v(0) (13)

θ = arccos
(

Wd·g
P

)
(14)

θ′ = arccos
(
(Wd + w)·g

P

)
(15)

The drone’s flight speed is calculated from Equations (13)–(15).

v(w) = k·P· sin
(

arccos
(
(Wd + w)·g

P

))
(16)
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purpose mathematical optimization solver. In this paper, we ascribe FSTSP to integer
quadratic programming and integer cubic programming problems. The significance of
using a mathematical optimization solver to solve the problem is that it facilitates the
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be easily extended by adding only one or two lines of code. Nuzhet et al. proposed a mixed-
integer linear programming approach to address the problem of task allocation for multiple
heterogeneous robots in an unknown environment, subject to predefined constraints [29].
The authors introduced several modifications to both the objective function and constraints
to illustrate the flexibility of the mixed-integer linear programming formulation.

5.1. Approximation Approach

From Equation (8), if 1/v can be expressed by a quadratic or cubic expression, FSTSP
becomes an integer quadratic programming problem or an integer cubic programming
problem. In other words, we want to approximate Equation (17) with a linear or quadratic
function.
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P

)))
(17)

Different drones have different values of k, P, and Wd. g is a constant. Wd is obvious.
k and P need to be determined. We will explain how to find them.

The range of w also varies from drone to drone. Within the range of w for each indi-
vidual drone, we can find an approximation of Equation (17). For a linear approximation,

1/v(w) = 1/
(
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(
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)))
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define Equation (18) and use the least-squares method to obtain the values of a and b. For
quadratic approximation,
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define Equation (19) and use the least-squares method to obtain the values of a, b and c.

5.2. Case of AR Drone 2.0

This section describes the flight speed approximation for AR Drone 2.0 [30]. First, how
to obtain k and P will be explained. P can be obtained from the force balance when the
maximum load capacity is loaded.

P = (Wd + wmax)·g (20)
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Here, Wd is 490 g and wmax is 250 g. The acceleration of gravity g is assumed to be
9.8 m/s2. Substituting these two values into the Equation (20), P is 7252 N. Furthermore, k
is the value obtained by dividing the velocity when the load is 0 by P sin(θ).

k =
v(0)

P sin(θ)
(21)

v(0) is 5 m/s. Furthermore, θ was derived using Equation (14). Substituting the values
of v(0), P, and θ into Equation (21), k is 0.00092. Regarding the weight w of the luggage,
AR Drone 2.0 is within the range of 0 5 w 5 200.

The black curve in Figure 5 represents the reciprocal of Equation (16). The vertical axis
of this figure represents the flight speed, and the horizontal axis represents the weight of
the payload. The green line in the figure is linearly approximated using the method of least
squares. The red curve in the figure is quadratically approximated using the method of least
squares. The R-squared value indicating the error from Equation (22) by approximation
was 0.9019, and the R-squared value indicating the error from Equation (23) was 0.9895.

1
v(w)

≈ 9× 10−4W(j) + 0.1736 (22)

1
v(w)

≈ 5× 10−6W(j)2 − 2× 10−4W(j) + 0.21 (23)

Finally, we redefine the objective function of Equation (8) in Section 2 by transforming it
into a quadratic or cubic approximation and solving it with a mathematical optimization solver.

Min T =
N

∑
j=0

d(x(j), x(j + 1))×
(

9× 10−4W(j) + 0.1736
)

(24)

Min T =
N

∑
j=0

d(x(j), x(j + 1))×
(

5× 10−6W(j)2 − 2× 10−4W(j) + 0.21
)

(25)

Using these Equations (1)–(6) and Equation (24) or Equation (25), it is possible to solve the
quadratic or cubic problem FSTSP with a general-purpose mathematical optimization solver.
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5.3. Case of SkyLift

This section describes the flight speed approximation for SkyLift [31]. First, how to
obtain k and P will be explained. P can be obtained from the force balance when the
maximum load capacity is loaded. Here, Wd is 55,000 g and wmax is 30,000 g. Substituting
these two values into Equation (20), P is 833,000 N. Furthermore, k is the value obtained
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This section describes the flight speed approximation for SkyLift [31]. First, how to
obtain k and P will be explained. P can be obtained from the force balance when the
maximum load capacity is loaded. Here, Wd is 55,000 g and wmax is 30,000 g. Substituting
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these two values into Equation (20), P is 833,000 N. Furthermore, k is the value obtained
by dividing the velocity when the load is 0 by P sin(θ). v(0) is 10. θ was derived using
Equation (14). Substituting the values of v(0), P, and θ into the Equation (21), k is 0.000015.
Regarding the weight w of the luggage, SkyLift is within the range of 0 5 w 5 27, 000.

The black curve in Figure 6 represents the reciprocal of Equation (16). The vertical axis
of this figure represents the flight speed, and the horizontal axis represents the weight of
the payload. The green line in the figure is linearly approximated using the method of least
squares. The red curve in the figure is quadratically approximated using the method of least
squares. The R-squared value indicating the error from Equation (26) by approximation
was 0.8214, and the R-squared value indicating the error from Equation (27) was 0.9647.

1
v(w)

≈ 5× 10−6W(j) + 0.0757 (26)

1
v(w)

≈ 5× 10−6W(j)2 − 2× 10−4W(j) + 0.21 (27)

As described in Section 5.2, we redefine the objective function of Equation (8) by
transforming it into a quadratic or cubic approximation and solving it with a mathematical
optimization solver.

Min T =
N

∑
j=0

d(x(j), x(j + 1))×
(

5× 10−6W(j) + 0.0757
)

(28)

Min T =
N

∑
j=0

d(x(j), x(j + 1))×
(

3× 10−10W(j)2 − 3× 10−6W(j) + 0.1126
)

(29)

Using these Equations (1)–(6) and Equation (28) or Equation (29), it is possible to solve
the quadratic or cubic problem FSTSP with a general-purpose mathematical optimiza-
tion solver.
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Equation (14). Substituting the values of v(0), P, and θ into the Equation (21), k is 0.000015.
Regarding the weight w of the luggage, SkyLift is within the range of 0 5 w 5 27, 000.

The black curve in Figure 6 represents the reciprocal of Equation (16). The vertical axis
of this figure represents the flight speed, and the horizontal axis represents the weight of
the payload. The green line in the figure is linearly approximated using the method of least
squares. The red curve in the figure is quadratically approximated using the method of least
squares. The R-squared value indicating the error from Equation (26) by approximation
was 0.8214, and the R-squared value indicating the error from Equation (27) was 0.9647.

1
v(w)

≈ 5× 10−6W(j) + 0.0757 (26)

1
v(w)

≈ 5× 10−6W(j)2 − 2× 10−4W(j) + 0.21 (27)

As described in Section 5.2, we redefine the objective function of Equation (8) by
transforming it into a quadratic or cubic approximation and solving it with a mathematical
optimization solver.

Min T =
N

∑
j=0

d(x(j), x(j + 1))×
(

5× 10−6W(j) + 0.0757
)

(28)

Min T =
N

∑
j=0

d(x(j), x(j + 1))×
(

3× 10−10W(j)2 − 3× 10−6W(j) + 0.1126
)

(29)

Using these Equations (1)–(6) and Equation (28) or Equation (29), it is possible to solve
the quadratic or cubic problem FSTSP with a general-purpose mathematical optimiza-
tion solver.
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6. Evaluation

In this section, we demonstrate the effectiveness of the proposed method through
experiments. In this paper, the proposed method and the algorithms to be compared are
implemented by Python and CPLEX, and the solution time and total flight time of each
algorithm are compared. The experiments are conducted on AMD Ryzen 7 PRO 4750G
(8 cores, 16 threads) with 64 GB of main memory. For the solution calculation, the existing
method uses Python 3.8.5, and the proposed method uses IBM ILOG CPLEX Optimization
Studio 20.1.
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In this section, we demonstrate the effectiveness of the proposed method through
experiments. In this paper, the proposed method and the algorithms to be compared are
implemented by Python and CPLEX, and the solution time and total flight time of each
algorithm are compared. The experiments are conducted on AMD Ryzen 7 PRO 4750G
(8 cores, 16 threads) with 64 GB of main memory. For the solution calculation, the existing
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method uses Python 3.8.5, and the proposed method uses IBM ILOG CPLEX Optimization
Studio 20.1.

6.1. Experimental Setups

This section describes the six methods used in the experiments. Each method is
described below.

• DP-FSTSP: This method solves FSTSP using dynamic programming [5].
• DP-TSP: This method solves TSP using dynamic programming.
• CPLEX-IQP-single: This method solves FSTSP based on an IQP approach by quadratic

approximation of the objective with CPLEX on a single thread.
• CPLEX-IQP-multi: This method solves FSTSP based on an IQP approach by quadratic

approximation of the objective with CPLEX on multiple threads.
• CPLEX-ICP-single: This method solves FSTSP based on an ICP approach by cubic

approximation of the objective with CPLEX on a single thread.
• CPLEX-ICP-multi: This method solves FSTSP based on an ICP approach by cubic

approximation of the objective with CPLEX on multiple threads.

In the experiments, we assumed two types of drones (e.g., AR Drone 2.0 and Skylift),
which are very different in size and maximum payload. Since two drones, AR Drone 2.0
and SkyLift, were used in this experiment, the name of the drone is given at the beginning
of the name of each proposed method, for example, ARDrone-CPLEX-IQP-single.

The runtime is limited to 3600 s in wall-clock time. In addition, benchmarks with five
to twenty customers were prepared. A total of 320 problems were prepared, 20 for each
number of customers, and the average of these was used as the experimental result. The
coordinates of each destination and the weight of the package requested by each destination
were set randomly. The total weight of the package was randomly set within the range not
exceeding the maximum payload capacity for each drone. For example, if 20 packages are
to be delivered, the weight of each package is randomly assigned so that the total weight of
the 20 packages does not exceed the maximum load capacity.

6.2. Experimental Results

Figure 7 shows a comparison of the runtimes of the six algorithms of AR Drone 2.0
using a logarithmic function. The vertical axis is runtime, and the horizontal axis is the
number of customers. In this experiment, DP-TSP is not used for comparison because we
focus on the solution time of the method that solves FSTSP. From the experimental results
with five to twelve customers, DP-FSTSP can find solutions faster than other methods. This
is because CPLEX incurs overheads such as problem generation and parallelization across
multiple threads. In addition, the proposed methods, CPLEX-IQP-single and CPLEX-IQP-
multi, have shorter solution times than DP-FSTSP in cases where the number of delivery
customers is 14 or more. Since CPLEX-IQP-multi is executed with multiple threads, the
solution is shorter than CPLEX-IQP-single, which is executed with a single thread when
the number of customers is 14 or more.

Figure 8 shows the total flight time results normalized by DP-FSTSP when using AR
Drone 2.0. The vertical axis is the result of total flight time normalized by DP-FSTSP, and the
horizontal axis is the number of customers. In the proposed method, whether the problem
is solved using a single thread or multiple threads does not affect the total flight time
results. ARDrone-CPLEX-IQP-single and ARDrone-CPLEX-IQP-multi are integrated into
ARDrone-CPLEX-IQP, and ARDrone-CPLEX-ICP-single and ARDrone-CPLEX-ICP-multi
are integrated into ARDrone-CPLEX-ICP. The experimental results show that DP-TSP has
a longer total flight time than other methods. This indicates that DP-TSP deals with the
problem of optimizing the flight distance, so it is difficult to obtain the optimal solution in
terms of flight time. This result shows that the minimization of the flight distance is not the
minimization of the flight time. In addition, the solutions of the four proposed algorithms,
ARDrone-CPLEX-IQP was only 0.28% worse on average than the solutions of DP-FSTSP.
ARDrone-CPLEX-ICP was only 1.26% worse on average than the solutions of DP-FSTSP.
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From this result, it can be said that the degradation of the solution is hardly seen even if
the problem is approximated.
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6.1. Experimental Setups

This section describes the six methods used in the experiments. Each method is
described below.

• DP-FSTSP: This method solves FSTSP using dynamic programming [5].
• DP-TSP: This method solves TSP using dynamic programming.
• CPLEX-IQP-single: This method solves FSTSP based on an IQP approach by quadratic

approximation of the objective with CPLEX on a single thread.
• CPLEX-IQP-multi: This method solves FSTSP based on an IQP approach by quadratic

approximation of the objective with CPLEX on multiple threads.
• CPLEX-ICP-single: This method solves FSTSP based on an ICP approach by cubic

approximation of the objective with CPLEX on a single thread.
• CPLEX-ICP-multi: This method solves FSTSP based on an ICP approach by cubic

approximation of the objective with CPLEX on multiple threads.

In the experiments, we assumed two types of drones (e.g., AR Drone 2.0 and Skylift),
which are very different in size and maximum payload. Since two drones, AR Drone 2.0
and SkyLift, were used in this experiment, the name of the drone is given at the beginning
of the name of each proposed method, for example, ARDrone-CPLEX-IQP-single.

The runtime is limited to 3600 s in wall-clock time. In addition, benchmarks with five
to twenty customers were prepared. A total of 320 problems were prepared, 20 for each
number of customers, and the average of these was used as the experimental result. The
coordinates of each destination and the weight of the package requested by each destination
were set randomly. The total weight of the package was randomly set within the range not
exceeding the maximum payload capacity for each drone. For example, if 20 packages are
to be delivered, the weight of each package is randomly assigned so that the total weight of
the 20 packages does not exceed the maximum load capacity.

6.2. Experimental Results

Figure 7 shows a comparison of the runtimes of the six algorithms of AR Drone 2.0
using a logarithmic function. The vertical axis is runtime, and the horizontal axis is the
number of customers. In this experiment, DP-TSP is not used for comparison because we
focus on the solution time of the method that solves FSTSP. From the experimental results
with five to twelve customers, DP-FSTSP can find solutions faster than other methods. This
is because CPLEX incurs overheads such as problem generation and parallelization across
multiple threads. In addition, the proposed methods, CPLEX-IQP-single and CPLEX-IQP-
multi, have shorter solution times than DP-FSTSP in cases where the number of delivery
customers is 14 or more. Since CPLEX-IQP-multi is executed with multiple threads, the
solution is shorter than CPLEX-IQP-single, which is executed with a single thread when
the number of customers is 14 or more.
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Figure 8 shows the total flight time results normalized by DP-FSTSP when using AR
Drone 2.0. The vertical axis is the result of total flight time normalized by DP-FSTSP, and the
horizontal axis is the number of customers. In the proposed method, whether the problem
is solved using a single thread or multiple threads does not affect the total flight time
results. ARDrone-CPLEX-IQP-single and ARDrone-CPLEX-IQP-multi are integrated into
ARDrone-CPLEX-IQP, and ARDrone-CPLEX-ICP-single and ARDrone-CPLEX-ICP-multi
are integrated into ARDrone-CPLEX-ICP. The experimental results show that DP-TSP has
a longer total flight time than other methods. This indicates that DP-TSP deals with the
problem of optimizing the flight distance, so it is difficult to obtain the optimal solution in
terms of flight time. This result shows that the minimization of the flight distance is not the
minimization of the flight time. In addition, the solutions of the four proposed algorithms,
ARDrone-CPLEX-IQP was only 0.28% worse on average than the solutions of DP-FSTSP.
ARDrone-CPLEX-ICP was only 1.26% worse on average than the solutions of DP-FSTSP.
From this result, it can be said that the degradation of the solution is hardly seen even if
the problem is approximated.
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Figure 9 shows a comparison of the runtimes of the six algorithms of SkyLift using a
logarithmic function. The vertical axis is runtime, and the horizontal axis is the number of
customers. In the case of the number of customer(s) 5, the method using a single thread can
find the solution faster than the method using multiple threads. The reason is that CPLEX
incurs overhead due to parallelization across multiple threads. Due to the multi-threaded
execution, SkyLift-CPLEX-IQP-multi and SkyLift-CPLEX-ICP-multi can achieve a shorter
runtime than SkyLift-CPLEX-IQP-single and SkyLift-CPLEX-ICP-single. These results
show that quadratic approximations can be solved faster than cubic approximations. Since
the runtime of SkyLift-CPLEX-ICP is about 1 min for up to the number of customer(s) 9,
we do not consider this to be a particular problem in practical use.
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Figure 8. Total flight time (AR Drone 2.0).

Figure 9 shows a comparison of the runtimes of the six algorithms of SkyLift using a
logarithmic function. The vertical axis is runtime, and the horizontal axis is the number of
customers. In the case of the number of customer(s) 5, the method using a single thread can
find the solution faster than the method using multiple threads. The reason is that CPLEX
incurs overhead due to parallelization across multiple threads. Due to the multi-threaded
execution, SkyLift-CPLEX-IQP-multi and SkyLift-CPLEX-ICP-multi can achieve a shorter
runtime than SkyLift-CPLEX-IQP-single and SkyLift-CPLEX-ICP-single. These results
show that quadratic approximations can be solved faster than cubic approximations. Since
the runtime of SkyLift-CPLEX-ICP is about 1 min for up to the number of customer(s) 9,
we do not consider this to be a particular problem in practical use.

Figure 10 shows the total flight time results normalized by DP-FSTSP when using
SkyLift. The vertical axis is the result of total flight time normalized by DP-FSTSP, and the
horizontal axis is the number of customers. In the proposed method, whether the problem
is solved using a single thread or multiple threads does not affect the results. SkyLift-
CPLEX-IQP-single and SkyLift-CPLEX-IQP-multi are integrated into SkyLift-CPLEX-IQP,
and SkyLift-CPLEX-ICP-single and SkyLift-CPLEX-ICP-multi are integrated into SkyLift-
CPLEX-ICP. SkyLift-CPLEX-IQP was only 0.53% worse on average than the solutions
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by DP-FSTSP. SkyLift-CPLEX-ICP was only 2.54% worse on average than the solutions
by DP-FSTSP.

Drones 2023, 7, 0 11 of 13

Figure 8 shows the total flight time results normalized by DP-FSTSP when using AR
Drone 2.0. The vertical axis is the result of total flight time normalized by DP-FSTSP, and the
horizontal axis is the number of customers. In the proposed method, whether the problem
is solved using a single thread or multiple threads does not affect the total flight time
results. ARDrone-CPLEX-IQP-single and ARDrone-CPLEX-IQP-multi are integrated into
ARDrone-CPLEX-IQP, and ARDrone-CPLEX-ICP-single and ARDrone-CPLEX-ICP-multi
are integrated into ARDrone-CPLEX-ICP. The experimental results show that DP-TSP has
a longer total flight time than other methods. This indicates that DP-TSP deals with the
problem of optimizing the flight distance, so it is difficult to obtain the optimal solution in
terms of flight time. This result shows that the minimization of the flight distance is not the
minimization of the flight time. In addition, the solutions of the four proposed algorithms,
ARDrone-CPLEX-IQP was only 0.28% worse on average than the solutions of DP-FSTSP.
ARDrone-CPLEX-ICP was only 1.26% worse on average than the solutions of DP-FSTSP.
From this result, it can be said that the degradation of the solution is hardly seen even if
the problem is approximated.
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Figure 8. Total flight time (AR Drone 2.0).

Figure 9 shows a comparison of the runtimes of the six algorithms of SkyLift using a
logarithmic function. The vertical axis is runtime, and the horizontal axis is the number of
customers. In the case of the number of customer(s) 5, the method using a single thread can
find the solution faster than the method using multiple threads. The reason is that CPLEX
incurs overhead due to parallelization across multiple threads. Due to the multi-threaded
execution, SkyLift-CPLEX-IQP-multi and SkyLift-CPLEX-ICP-multi can achieve a shorter
runtime than SkyLift-CPLEX-IQP-single and SkyLift-CPLEX-ICP-single. These results
show that quadratic approximations can be solved faster than cubic approximations. Since
the runtime of SkyLift-CPLEX-ICP is about 1 min for up to the number of customer(s) 9,
we do not consider this to be a particular problem in practical use.
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Figure 10 shows the total flight time results normalized by DP-FSTSP when using
SkyLift. The vertical axis is the result of total flight time normalized by DP-FSTSP, and the
horizontal axis is the number of customers. In the proposed method, whether the problem
is solved using a single thread or multiple threads does not affect the results. SkyLift-
CPLEX-IQP-single and SkyLift-CPLEX-IQP-multi are integrated into SkyLift-CPLEX-IQP,
and SkyLift-CPLEX-ICP-single and SkyLift-CPLEX-ICP-multi are integrated into SkyLift-
CPLEX-ICP. SkyLift-CPLEX-IQP was only 0.53% worse on average than the solutions
by DP-FSTSP. SkyLift-CPLEX-ICP was only 2.54% worse on average than the solutions
by DP-FSTSP.

Drones 2023, 7, x FOR PEER REVIEW 13 of 14 
 

DP-FSTSP. SkyLift-CPLEX-ICP was only 2.54% worse on average than the solutions by 

DP-FSTSP. 

 

Figure 10. Total flight time (SkyLift). 

7. Conclusions 

In this work, we have presented IQP-based and ICP-based approaches for delivering 

drone routing under load-dependent flight speeds. Experimental results show that the 

IQP approach is superior to the ICP approach in terms of the runtime and total flight time 

as the number of customers increases. However, if the number of customers is small, the 

ICP approach can obtain a better solution within one minute than the IQP approach. 

Therefore, we believe that the ICP approach is also valid in practical use. 

In future work, we will consider multiple deliveries to routing problems of a drone 

considering load-dependent flight speeds. 

In the experiments in this paper, we have limited the number of customers to a max-

imum of 20. In the future, when visiting more than 20 customers in a single trip is possible, 

we plan to develop more efficient approaches to delivering drone routing. 

Author Contributions: Conceptualization, M.N.; methodology, M.N.; software, M.N. and S.I.; vali-

dation, M.N.; formal analysis, M.N.; investigation, M.N.; resources, M.N.; data curation, M.N.; writ-

ing—original draft preparation, M.N.; writing—review and editing, H.N., X.K. and H.T.; visualiza-

tion, M.N.; supervision, H.N., X.K. and H.T.; project administration, H.T.; funding acquisition, H.T. 

All authors have read and agreed to the published version of the manuscript. 

Funding: This work is partly supported by JSPS Kakenhi (Grant Number 20H04160) and partly 

commissioned by NEDO (Project Number JPNP22006). 

Data Availability Statement: All data were presented in the main text. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Lu, F.; Feng, W.; Gao, M.; Bi, H.; Wang, S. The Fourth-Party Logistics Routing Problem Using Ant Colony System-Improved 

Grey Wolf Optimization. J. Adv. Transp. 2020, 2020, 1–15. https://doi.org/10.1155/2020/8831746. 

2. Reiko, S. Japan’s Logistics Crisis. 2021. Available online: https://www3.nhk.or.jp/nhkworld/en/news/backstories/1771/ (ac-

cessed on 11 November 2022). 

3. Takashima, K. Decarbonization in Japan’s Trucking Industry—A Turning Point for Labor and Environmental Solutions. 2022. 

Available online: https://www.mitsui.com/mgssi/en/report/detail/__icsFiles/afieldfile/2022/07/22/2205i_takashima_e.pdf (ac-

cessed on 11 November 2022). 

4. Hoffman, K.L.; Padberg, M.; Rinaldi, G. Traveling Salesman Problem. Encycl. Oper. Res. Manag. Sci. 2013, 1, 1573–1578. 

5. Funabashi, Y.; Taniguchi, I.; Tomiyama, H. Work-in-progress: Routing of Delivery Drones with Load-dependent Flight Speed. 

In Proceedings of the 2019 IEEE Real-Time Systems Symposium (RTSS), Hong Kong, China, 3–6 December 2019; pp. 520–523. 

6. Jeong, H.Y.; Song, B.D.; Lee, S. Truck-drone Hybrid Delivery Routing: Payload-energy Dependency and No-Fly Zones. Int. J. 

Prod. Econ. 2019, 214, 220–233. 

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
o
rm

al
iz

ed
 t

o
ta

l 
fl

ig
h
t 

ti
m

e

Number of customers

DP-FSTSP DP-TSP SkyLift-CPLEX-IQP SkyLift-CPLEX-ICP

1.11 1.12 1.12 1.09 1.07 1.05 1.09 1.05 1.12 1.07 1.06 1.11 1.09 1.07 1.11 1.05

1.06 1.14

Figure 10. Total flight time (SkyLift).

7. Conclusions

In this work, we have presented IQP-based and ICP-based approaches for delivering
drone routing under load-dependent flight speeds. Experimental results show that the IQP
approach is superior to the ICP approach in terms of the runtime and total flight time as
the number of customers increases. However, if the number of customers is small, the ICP
approach can obtain a better solution within one minute than the IQP approach. Therefore,
we believe that the ICP approach is also valid in practical use.

In future work, we will consider multiple deliveries to routing problems of a drone
considering load-dependent flight speeds.

In the experiments in this paper, we have limited the number of customers to a
maximum of 20. In the future, when visiting more than 20 customers in a single trip is
possible, we plan to develop more efficient approaches to delivering drone routing.
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7. Conclusions

In this work, we have presented IQP-based and ICP-based approaches for delivering
drone routing under load-dependent flight speeds. Experimental results show that the IQP
approach is superior to the ICP approach in terms of the runtime and total flight time as
the number of customers increases. However, if the number of customers is small, the ICP
approach can obtain a better solution within one minute than the IQP approach. Therefore,
we believe that the ICP approach is also valid in practical use.

In future work, we will consider multiple deliveries to routing problems of a drone
considering load-dependent flight speeds.

In the experiments in this paper, we have limited the number of customers to a
maximum of 20. In the future, when visiting more than 20 customers in a single trip is
possible, we plan to develop more efficient approaches to delivering drone routing.
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