
Citation: Saeed, Z.; Yousaf, M.H.;

Ahmed, R.; Velastin, S.A.; Viriri, S.

On-Board Small-Scale Object

Detection for Unmanned Aerial

Vehicles (UAVs). Drones 2023, 7, 310.

https://doi.org/10.3390/

drones7050310

Academic Editors: Quanmin Zhu

and Zain Anwar Ali

Received: 22 March 2023

Revised: 29 April 2023

Accepted: 30 April 2023

Published: 6 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

On-Board Small-Scale Object Detection for Unmanned Aerial
Vehicles (UAVs)
Zubair Saeed 1, Muhammad Haroon Yousaf 1,2,* , Rehan Ahmed 3, Sergio A. Velastin 4,5 and Serestina Viriri 6,*

1 Swarm Robotics Lab (SRL), National Center of Robotics and Automation (NCRA), University of Engineering
and Technology (UET), Taxila 47080, Pakistan; zubairsaeed602@gmail.com

2 Department of Computer Engineering, University of Engineering and Technology (UET),
Taxila 47080, Pakistan

3 School of Electrical Engineering and Computer Science, National University of Sciences and Technology,
Islamabad 24090, Pakistan

4 School of Electronic Engineering and Computer Science, Queen Mary University of London,
London E1 4NS, UK

5 Department of Computer Science and Engineering, University Carlos III Madrid, 28911 Leganés, Spain
6 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,

Durban 4041, South Africa
* Correspondence: haroon.yousaf@uettaxila.edu.pk (M.H.Y.); viriris@ukzn.ac.za (S.V.)

Abstract: Object detection is a critical task that becomes difficult when dealing with onboard detection
using aerial images and computer vision technique. The main challenges with aerial images are small
target sizes, low resolution, occlusion, attitude, and scale variations, which affect the performance of
many object detectors. The accuracy of the detection and the efficiency of the inference are always
trade-offs. We modified the architecture of CenterNet and used different CNN-based backbones
of ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, Res2Net50, Res2Net101, DLA-34, and
hourglass14. A comparison of the modified CenterNet with nine CNN-based backbones is conducted
and validated using three challenging datasets, i.e., VisDrone, Stanford Drone dataset (SSD), and
AU-AIR. We also implemented well-known off-the-shelf object detectors, i.e., YoloV1 to YoloV7,
SSD-MobileNet-V2, and Faster RCNN. The proposed approach and state-of-the-art object detectors
are optimized and then implemented on cross-edge platforms, i.e., NVIDIA Jetson Xavier, NVIDIA
Jetson Nano, and Neuro Compute Stick 2 (NCS2). A detailed comparison of performance between
edge platforms is provided. Our modified CenterNet combination with hourglass as a backbone
achieved 91.62%, 75.61%, and 34.82% mAP using the validation sets of AU-AIR, SSD, and VisDrone
datasets, respectively. An FPS of 40.02 was achieved using the ResNet18 backbone. We also compared
our approach with the latest cutting-edge research and found promising results for both discrete
GPU and edge platforms.

Keywords: object detection; computer vision; modified CenterNet; VisDrone; SSD; AU-AIR; object
detectors; Jetson Xavier; Jetson Nano; NCS2

1. Introduction

For many applications, such as surveillance and monitoring work, it is important to
recognize objects in aerial images and to classify them. Benchmark datasets, such as Pascal
VOC 2007, are very different because images from these datasets often only include one
or a few objects that take up a large area of the image, whereas UAV-based images may
contain a variety of objects that are small and distributed randomly. Detection from an
aerial perspective is a challenging subject where researchers are still facing problems. When
the drone reaches a specific height, it may obtain a wider field of vision and record more
objects in one go. Viewing objects from a certain height affects their visibility as well as
their size. For example, the size of a car is much clearer when we observe it physically, but
if we observe it from a certain height, the size and visibility of it will change more as the

Drones 2023, 7, 310. https://doi.org/10.3390/drones7050310 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7050310
https://doi.org/10.3390/drones7050310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-8255-1145
https://orcid.org/0000-0001-6775-7137
https://orcid.org/0000-0002-2850-8645
https://doi.org/10.3390/drones7050310
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7050310?type=check_update&version=1


Drones 2023, 7, 310 2 of 16

viewpoint changes with height. Imagery captured by a UAV has larger scale attributes,
and a traditional deep learning CNN-based object identification technique performs a
size-reducing operation on the input image. It further reduces the information accessible
for small objects and increases the complexity of detection [1]. Small-object recognition
with high altitude and broad field of vision must be solved to enhance effectiveness.

For almost a decade, deep neural networks have dominated computer vision research
and development on a variety of difficult tasks, i.e., semantic segmentation, object recogni-
tion with tracking, and image classification. Well-known state-of-the-art (SOTA) techniques
such as RCNN, YOLO, and their derivatives have exhibited good accuracy on a variety
of challenging datasets [2]. The scientific community has been more interested in aerial
object detection as a result of rising interest and the generation of databases of drone-based
images. However, the aforementioned methods that are SOTA object detection algorithms
for general object detection datasets are less effective for more challenging situations such
as those of aerial object datasets such as VisDrone, SSD, and AU-AIR.

Furthermore, processing resources are often limited, making existing time-consuming
approaches that are beneficial for object detection, such as image pyramids, ineffective [3]. A
coarse-to-fine pipeline is commonly employed with a coarse detector to identify large-scale
instances and sub-areas that comprise densely distributed little ones, and a fine detector is
subsequently applied to those areas to locate examples of small sizes. These algorithms offer
promising results, but the coarse detector sub-regions can be rather rough, with a significant
amount of background present, resulting in wasted calculations. Furthermore, because
they divide the input image into many sub-images, they must process each sub-region
individually, resulting in multiple inferences for each image. As a result, the disadvantages
show that there is space for improved efficiency. To solve the aforementioned issues, we
have provided an improved technique for object detection using three challenging datasets
and implemented on cross-edge platforms after optimization.

The contributions of our research are presented later in detail, and they can be sum-
marized as follows:

1. We altered the architecture of CenterNet and used nine different CNN-based back-
bones. Our modified CenterNet with hourglass104 as a backbone achieved the highest
mAP, whereas ResNet18 obtained the highest FPS.

2. We implemented SOTA object detectors, i.e., YOLOV1 to YOLOV7, SSD-MobileNetV2,
and Faster RCNN, and provided a comparison with the modified CenterNet.

3. We validated our methodology on three challenging datasets, namely VisDrone, SSD,
and AU-AIR, and we were able to provide promising findings compared to the latest
cutting-edge research and well-known object detectors.

4. We optimized object detectors and implemented them on edge platforms, i.e., Jetson
Nano, Xavier, and NCS2. We found the best inference time using the modified
CenterNet, and this research is an extended version of our previous work [4].

2. Related Work

One-stage and two-stage object detectors have been used in deep learning-based object
detection models, and they have their own pros and cons. One-stage object detectors are
efficient but usually have lower accuracy. Arunnehru L. et al. [5] proposed an improved
YOLOv2 for accurate target detection in aerial vehicles by fine-tuning the network using
a different self-collected dataset, changing the input size of the detector during each ten
rounds of training and modifying the filter rules of the candidate box. These enhancements
were created so that any aerial image of a UAV may be positioned in real time in the
target region; the projection relationship can change the UAV’s latitude and longitude
automatically. YOLOv4 for aerial image identification was used in [6] that replaced the
element-wise add operation with a concatenation operation in hybrid dilated convolution
attention and solved the gridding problem using translational dilated convolution. The
improved model was trained using the DOTA dataset, which contains objects ranging in size
from 10 to 300 pixels. The approach performs well on DOTA, but it falls short of the present



Drones 2023, 7, 310 3 of 16

method in some scenarios for large-scale objects. Oghaz D. et al. [7] improved the efficiency
of small object detection in their approach. The authors used feature augmentation modules
such as super-resolution, deconvolution, and feature fusion. This was accomplished using
SSD as the baseline network and smaller item detection on aerial data. These modules are
intended to enhance the prediction layer’s feature representation of small objects. Three
datasets were used to evaluate the efficiency, including two aerial image datasets, with high
accuracy but low FPS concentration that were mostly composed of small objects. A densely
linked network was used by densely connected convolutional networks (DenseNet), where
every layer was connected to another layer in a feed-forward method. An expansion layer
and a squeeze layer made up the fire module from which SqueezeNet was built. The fire
units were used as the core component of SqueezeNet, significantly reducing the number
of parameters.

Several two-stage techniques for object detection and faster R-CNN rely on horizontal
bounding boxes to precisely identify oriented items from UAV images. The final classifica-
tion accuracy and localization accuracy become inconsistent as a result. There has been a
lot of focus on this problem. For example, Xia et al. [8] created DOTA, which is a large-scale
object detection benchmark dataset with oriented annotations as well. The majority of the
available proposal-based object detection frameworks [9] form the foundation for many
oriented object detectors. Setting rotated anchors [10], such as rotated RPN [11], in which
the anchors with various angles, scales, and aspect ratios are placed on each position, is a
logical alternative for oriented objects. Ding et al. presented the ROI transformer, which
generates rotational ROIs from horizontal ROIs using RPN [9]. The detection accuracy of
orientated objects is significantly increased in this way. However, fully linked layers and an
ROI alignment procedure learning rotated ROIs resulted in the network becoming heavy
and complex. Yang et al. [12] created an orientated object detection method based on the
Faster RCNN, which is a general CNN-based object identification framework. Xu et al. [13]
presented a label-oriented object format known as gliding vertexes, which acquired four
vertex gliding offsets on the regression branch of the Faster R-CNN head. It has the ability
to identify oriented objects.

Shams et al. [14] investigated the performance of single-board computer systems using
CNN algorithms on the NVIDIA Jetson Nano, TX2, and R Pi. Suzen et al. [15] assessed
the performance of the three frameworks, Caffe, TensorFlow, and apache, across a variety
of hardware platforms to better understand the performance impact of the deep learning
framework on various resources and to make recommendations for future hardware devel-
opments. Baller et al. [16] compared and analyzed how various deep learning frameworks
perform on the Asus Tinker Edge R, R Pi, Coral Dev Board, and Jetson Nano in terms of
inference time and power consumption. Verma et al. [17] introduced new ideas regarding
optimization technology for the edge computing deep learning framework and proposed a
thorough performance analysis across a range of hardware platforms. After optimization,
the Jetson Nano-enhanced inference time for the MobileNetV2 neural network increased
by 29.3%.

In the remaining part of this paper, we discuss the research methodology in Section 3,
the experimental results with detailed discussion in Section 4, and the conclusion with
possible future directions in Section 5.

3. Methodology

It is difficult to find small objects from an aerial perspective. Dealing with open-
challenge datasets such as VisDrone, SSD, and AU-AIR makes it more difficult. Several
cutting-edge detection models have problems performing well because of small object sizes,
occlusion, unclear scenes, low resolution, and noisy background. Therefore, there is a need
for a robust and accurate detection model that can accurately detect small size objects in an
adequate time as well. In the proposed approach, we used three challenging datasets with
default annotations. Then, we converted annotations according to the required format and
split them into training, validation, and testing sets. Multiple deep-learning algorithms



Drones 2023, 7, 310 4 of 16

and a modified CenterNet with nine different CNN-based backbones for small-scale object
detection were used to check their performance using discrete GPUs as shown in Figure 1.
The trained models were optimized and implemented in different edge platforms, i.e.,
NCS2, Jetson Nano, and Jetson Xavier for onboard object detection. The bold arrows
indicate the next phases of the overall methodology.

VisDrone

Stanford

AU-AIR
Annotation
Conversion

Deep Learning Based Object
Detectors

Performance
Evaluation

Training, Testing
and Validation

Loss
Visual Evaluation

Trained Weights

OpenVino

TensorRT

Neuro Compute
Stick 
(NCS)

Jetson Nano

Jetson Xavier
NX

Object
Detection

Object
Detection

Object
Detection

DATASET PREPRATION OBJECT DETECTORS OPTIMIZATION EDGE IMPLEMENTATION

Figure 1. Block diagram as a broader view of our proposed approach.

3.1. Datasets

We used three challenging datasets, i.e., AU-AIR, SDD, and VisDrone, for the val-
idation of modified CenterNet with different CNN-based backbones and SOTA object
detectors. Figure 2 shows the complexity of three challenging datasets. We show car
instances of cloudy weather of day, night, and the morning views of SDD, VisDrone, and
AU-AIR datasets, respectively.

(a) (b) (c)

Figure 2. Samples of car instances from (a) Stanford Drone dataset, (b) VisDrone, and (c) AU-
AIR datasets.

The VisDrone benchmark dataset [18] consists of 265,228 frames, which were captured
by different UAV-based cameras and cover different types of situations. The dataset has a
wide range of distances to objects, urban and rural environments, and eight different types
of objects, such as pedestrian, person, car, van, bus, truck, motor, bicycle, awning-tricycle,
and tricycle having dense, sparse, and crowded scenes. Bounding boxes for more than
2.6 million objects were manually annotated. This dataset was collected and annotated
by a lab team named “machine learning and data mining” situated at a university in
China. The Stanford Drone dataset (SDD) [19] is made up of over 100 height-view scenes
with 20,000 targets taking part in different activities at the Stanford University campus.
This benchmark dataset includes interactions between pedestrians, bikers, skateboarders,



Drones 2023, 7, 310 5 of 16

cars, and carts that followed social norms, with instances of around 11,200 pedestrians,
64 bicycles, 1300 hundred cars, 300 skateboarders, 2 carts, and 100 buses. AU-AIR was the
first multi-modal dataset for UAV images [20] for small-scale objects. The dataset includes
two hours of raw video captured from an aerial device having 32,823 labeled frames and
eight objects for traffic surveillance purposes. The object instances include cars, vans,
trucks, humans, trailers, bicycles, buses, and motorbikes. The dataset was initially used for
traffic surveillance but can also be used for other purposes, i.e., tracking of automobiles,
military, etc.

We prepared annotations of the datasets according to the required format. Annotations
from the VisDrone dataset were distributed in the darknet (in.txt) format. Prior to convert-
ing them to COCO JSON, we changed them into Pascal VOC (in.xml) format. Annotations
for the SDD dataset were also available in the darknet format, and we changed them into
JSON format. Luckily, annotations for the AU-AIR dataset were already in COCO JSON
and did not require conversion.

A modified CenterNet with nine different convolutional neural network-based back-
bones was used to extract important features. We trained them on the three datasets and
then optimized them for Jetson Nano, Jetson Xavier NX, and Neuro Compute Stick (NCS2).
We used tensorRT to optimize models for Jetson Nano and Xavier, while OpenVino was
used to optimize models for NCS2. The broad view of CenterNet is shown in Figure 3.
The CNN-based backbones acquire essential distinguished features and pass them to the
modified CenterNet to detect objects from each dataset.

Embed 
& Offset

Offset

INPUT BACKBONE MODIFIED CENTERNET

Cascade Corner
Pooling

Center Pooling

Corner Heatmap

Center Heatmap

Figure 3. Modified CenterNet with convolutional neural network-based backbones.

3.2. CNN-Based Backbones

There were nine convolutional neural network-based backbones used with modified
CenterNet. The generic architectures of residual neural network (ResNet), deep layer
aggregation (DLA), and hourglass are illustrated in Figure 4.

A residual network (ResNet) [21] is an open-gated or gateless variation of the High-
wayNet [22], the first exceedingly deep feedforward neural network that is practically
feasible with hundreds of layers far deeper than preceding neural networks. By using
a significant weight matrix for their gates, it can also be used to directly learn the skip
weights. It is based on skip connections between layers. The majority of ResNet models
are built using batch normalization between nonlinear double-layer or triple-layer skips
(ReLU). ResNet’s generic block diagram is displayed in Figure 4a. We used ResNet18,
ResNet34, ResNet50, ResNet101, ResNet152, Res2Net50, and Res2Net101 as the backbone
with the modified CenterNet. We have seen that backbone with deeper layers achieved
better accuracy during comparison.

A particular kind of convolutional encoder–decoder network is the hourglass net-
work [23]. Convolutional layers are used to decompose and reconstruct inputs by decon-
structing the image into a feature matrix. They take input in the form of images and extract
features from them, as shown in Figure 4b. We used the last 104 layers of an hourglass to
extract important features and pass them to the modified CenterNet.

The DLA (Deep Layer Aggregation) models are PyTorch implementations that are
pre-trained on the ImageNet dataset. Their design uses repetition and grouping to reduce
complexity. Blocks made up of layers are then divided into stages according to the feature
resolution. The aggregation between the blocks and phases is the main priority, whereas the



Drones 2023, 7, 310 6 of 16

DLA connects between stages, while HDA establishes connections both within and between
stages. A generic DLA architecture is shown in Figure 4c with its essential components. We
used DLA with 34 layers as a backbone with the CenterNet to extract features [24].

Figure 4. Generic architectures of convolutional neural network-based backbones used with a
modified CenterNet: (a) ResNet; (b) Hourglass; (c) DLA.

3.3. Modified CenterNet

The traditional NMS (Non-Maximum Suppression) algorithm is replaced at the post-
processing stage of the CenterNet [25] anchorless object detection architecture by a feasible
method that works well with CNN flow, which is a significant advantage of the design.
It is based on the concept that box predictions can be sorted based on the location of
their centers instead of overlapping with the object. Each item is represented by a central
keypoint and two corners. In particular, we incorporate a CornerNet-based heatmap for
the center keypoints and estimate the offsets of the center keypoints. Instead of using a
pair of key points to identify objects, our method uses a triplet. By doing this, it retains a
one-stage detector while inheriting the ability of RoI pooling. The recommended approach
takes into consideration the essential data at the lowest feasible cost. We implemented
center pooling and cascade corner pooling to establish visual patterns inside the objects
for keypoint detection. The size of the bounding box (bbox) core region contributes to the
detection outcomes.

A comparatively large center area is produced by the scale-aware central region and
vice versa for a large central portion. Let brx and bry represent i′s bottom-right corner, ulx
and uly represent i′s top-left corner, culx and culy represent j′s top-left corner, and cbrx
and cbry represent j′s bottom-right corner, as illustrated in Figure 5 where the other area



Drones 2023, 7, 310 7 of 16

represents the anticipated bounding boxes, and the yellow covered areas represent the
scalable center regions. The relationship then needs to be matched by:

culx = (s+1)ulx+(s−1)brx
2n

culy =
(s+1)uly+(s−1)bry

2s
cbrx = (s−1)ulx+(s+1)brx

2s

cbry =
(s−1)uly+(s+1)bry

2s

(1)

ulx, uly

blx, bly

culx, culy

cblx, cbly

ulx, uly

blx, bly

culx, culy

cblx, cbly

(a) (b)

s 
= 

3

s 
= 

5
Figure 5. The central region when (a) s = 3 and (b) s = 5.

The odd number s, which is a central region, determines the scale. For the bounding
box scales in our experimental research, we chose s values of 3 and 5. In order to identify
the matching class instances, the center heatmap presents features estimation over the deep
features from several downsampled CNN backbone frameworks. In order to determine the
bbox center,

Ôm,n,t = exp
(
−(m− p̂m)

2 + (n− p̂n)
2/2σ2

p

)
(2)

When Ôm,n,t has a value of 1, it indicates the center of a candidate key point; otherwise,
it serves as the background, where the actual key points are m and n. p̂m and p̂n represent
the predicted values of downsampled keypoints, where p̂ stands for the object size-adaptive
standard deviation, and t stands for the total number of classes.

The dimension head estimates the bbox’s coordinates. The L1 norm can be used to
estimate the size of the bbox for a class c and candidate object k with the coordinates
xmin, xmax, ymin, ymax:

L1norm(x, y) = (xmax − xmin, ymax − ymin) (3)

The offset and embedding offset are computed to lower the discretization error that
arises due to downsampling the input. However, the center coordinates are calculated and
applied to an input sample with higher dimensionality.

To enhance performance and to locate the impaired area with the related class, Center-
Net proposes an end-to-end learning method that makes use of multi-task loss techniques.
The proposed approach does this by applying a multi-task loss L to each sampled head:

LC-Net = Lmap + λdim Ldim + λo f f Lo f f (4)

λdim and λo f f are constants with values of 0.1 and 1, respectively, whereas other
parameters are as follows:

Lmap = − 1
n ∑

i,j,c


(

1− Ôi,j,c

)α
log
(

Ôi,j,c

)
if Ôi,j,c = 1(

1−Oi,j,c
)β
(

Ôi,j,c

)α
log
(

1− Ôi,j,c

) (5)

where n stands for the total keypoints. The center of the projected keypoint is represented
by Ôi,j,c, whereas the center of the actual candidate keypoint is determined by Ôi,j,c. For



Drones 2023, 7, 310 8 of 16

each of our studies, the heatmap loss hyperparameters are α and β with values of 2 and 4,
respectively.

Ldim =
1
n

n

∑
k=1

∣∣∣b̂k − bk

∣∣∣ (6)

Lo f f =
1
n ∑

p

∣∣∣F̂p̂ − (p/Rp − p̂)
∣∣∣ (7)

where p stands for the actual value, p̂ stands for the key point that was downsampled
during prediction, R stands for the output stride, and F̂ stands for the projected offset
value. In a similar way to this, bk stands for the actual dimensions of bboxes obtained from
ground facts, p̂k for predicted bbox coordinates, and n for the total number of samples. The
suspected images and the bbox are therefore input to the trained model. CenterNet uses
this input to determine the class instance center points, offsets for the x and y coordinates,
the dimension of the bboxes, and the related class.

3.4. AI-on-the-Edge Implementation

Table 1 shows the specification of the systems used during the experimentation. The
discrete GPU has many cores, whereas NCS2 has only 16 cores. These cores and FLOPS
ultimately determine the overall performance of detection models. The detailed comparison
of results achieved using these GPU-based platforms is discussed in the next section as
well. After evaluating the performance of the models on a discrete GPU, we evaluated
inference time and performance using edge platforms, i.e., NCS, Jetson Nano, and Xavier.

Table 1. Specification of systems used during experimentation.

Parameters Jetson Xavier NX Jetson Nano NCS2 P5000

Type Embedded GPU Embedded GPU Embedded GPU Discrete GPU
Architecture Volta Maxwell Movidius Pascal
Cuda Cores 384 128 16 2560

Memory 8 GB 4 GB 500 MB 16 GB
FLOPS 472 GFLOPS 472 GFLOPS 150 GFLOPS 8.9 TFLOPS
Power 10 W 5 W 2 W 180 W

Cost (USD) 400 100 90 2500

3.4.1. Neuro Compute Stick

Intel offers a toolbox called Open Visual Inference and Neural Network Optimization
(OpenVino) to help deep learning models perform inference more quickly. It helps pro-
grammers in producing reliable and affordable computer vision applications. We installed
all the dependencies required to optimize models in a separate virtual environment using a
computer system without GPU. OpenVino allows for deep learning inference at the edge
and supports diverse computer vision accelerator execution. We fed the pre-trained model
into the model optimizer of OpenVino, and it transformed it into its .xml and .bin files as
intermediate representations. The models are executed with the acceleration capabilities of
the NCS2 using the inference engine of OpenVino as shown in Figure 6a. It controls the
libraries needed for the code to work efficiently across many platforms. Since we used three
datasets, we used the same resolution during optimization to keep the detection accuracy
of the optimized model high, compromising detection speed (FPS).

3.4.2. Jetson Nano

TensorRT provides application programming interfaces (APIs) and parsers to import
trained models from all primary deep learning frameworks and then creates efficient run-
time engines that can be deployed in data centers as well as in automotive and embedded
contexts. All the required packages and libraries were installed in a separate virtual environ-
ment. The trained models are fed into the tensortRT engine, which freezes the model and



Drones 2023, 7, 310 9 of 16

then optimizes and inferences the optimized model as shown in Figure 6b. We optimized
the models for each dataset with the same resolution so that the detection accuracy would
not be compromised.

Trained Model Run OpenVino
Model Optimizer Inference Engine

.xml .bin

User
Application

OpenVino

IR

Trained Model Freeze
Inference Graph

Create TensorRT
Optimized Graph Run TRT Graph

User
Application

TensorRT

(a)

(b)

Figure 6. AI-Edge optimization and implementation: (a) OpenVino for NCS2 and (b) TensorRT for
Jetson Nano and Xavier.

3.4.3. Jetson Xavier

We evaluated the performance of detectors at Jetson Xavier as well. The initialization
procedure was the same as Nano and was followed according to Nvidia’s official website.
We created a separate virtual environment where all the required dependencies were
installed. We optimized each model using TensorRT and evaluated their performance. A
detailed comparison is shown in the next section.

4. Experimentation and Results Discussion
4.1. Experimental Setup

With an Intel(R) Core(TM) i5-9400, 16 GB RAM, and a CPU clocked at 2.90 GHz
employing P5000 GPU capabilities, we trained and validated our approach. The Anaconda
virtual environment was created where all the required libraries and packages were in-
stalled, i.e., PyTorch, Caffe, Darknet, Python3.8, Cuda, TensorRT, Pycocotools for windows,
NumPy, Numba, etc. The modified CenterNet, YoloV5, YoloV6, YoloV7, and Faster RCNN
were implemented using PyTorch. YoloV1 to YoloV4 were implemented using Darknet
and SSD-MobilenetV2 using the Caffe framework. The batch size during training was
two images for VisDrone, four images for AU-AIR, and one image for the SSD dataset
against every deep learning model. We kept the default parameters of state-of-the-art
object detectors, i.e., Yolo family, SSD-MobileNetV2, and Mask-RCNN, and the input size
of the datasets during training and validation was kept according to the original size
of the images. The modified CenterNet was trained and validated using the following
parameters: 100 epochs, a stochastic gradient descent (SGD) for convergence, a learning
rate of 0.15625 × 10−4, a minimum IOU of 0.3, a momentum of 0.95, and a weight decay
of 0.0005.

The local system was used as a host device with NCS, and the installation of OpenVino
for model optimization was followed by the instructions provided on the official website.
Each model was optimized using FP16, which provides the best optimization. However,
it slightly decreased the overall accuracy. We used the latest Jetpack 5.0 for Jetson Nano



Drones 2023, 7, 310 10 of 16

and Xavier and optimized each model using FP16. On each edge platform, we created a
separate virtual environment and installed all the required libraries and packages on it. We
needed to swap memory during experimentation in all edge platforms. TensorRT was used
to optimize the models on Jetson Xavier and Nano, and OpenVino for NCS2.

4.2. Evaluation Protocol

Mean average precision (mAP) is the key parameter for analyzing the accuracy of any
detection system, and frames per second are essential for evaluating the time performance
of any deep learning model. The efficiency of the detection models was compared using
these two metrics. Three distinct IoU thresholds, namely 0.50:0.05:0.95, 0.75, and 0.5, were
used to attain the mAP. The multiple IoU threshold of 0.50:0.05:0.95 has a geometric overlap
between prediction and ground truth values for all categories and a 0.05 step size. This
accumulated number is known as the mean AP (or mAP).

4.3. Results Discussion

We achieved results on a system having a discrete P5000 GPU and edge devices, i.e.,
NCS, Jetson Nano, and Xavier. The details of the results for the three challenging datasets
are discussed below:

4.3.1. Discrete GPU-Based Detection

The standard mean AP via the validation set using GPU with respect to three datasets
is shown in Table 2. It was observed that the modified CenterNet with hourglass-104 as a
backbone achieved the highest mAP against each dataset, while Resnet18 had the lowest
mAP. The highest mAP of 91.62%, 75.62%, and 34.82% are reported for AU-AIR, SDD, and
VisDrone, respectively. We obtained 40.02 FPS with Resnet18 and 7.21 FPS with Res2net101.
Other mAP and FPS for each backbone with respective datasets are shown in Table 2.

Table 2. mAP and FPS achieved for each dataset using the modified CenterNet and different CNN
backbones with Val-Dev.

Backbones mAP FPSAU-AIR SDD VisDrone

resnet18 70.38 43.38 19.05 40.02
resnet34 72.51 50.51 22.01 32.32
resnet50 77.52 52.52 24.03 30.19
DLA-34 80.31 64.31 25.90 28.91

resnet101 82.03 69.03 25.12 17.12
resnet152 86.37 71.37 28.17 16.07
res2net50 88.93 72.43 28.51 15.73
res2net101 90.52 74.52 34.43 7.21

hourglass-104 91.62 75.62 34.82 7.19

4.3.2. AI-on-the-Edge Based Detection

We optimized the models and compared the results on different edge platforms, i.e.,
NCS, Jetson Nano, and Xavier. It was observed that Res2net101 achieved the highest mAP
against the respective dataset, whereas the highest FPS was achieved using ResNet18 as
a backbone with modified CenterNet. We obtained 90.15%, 73.29%, and 33.12% mAP
against AU-AIR, SDD, and VisDrone, respectively, on Jetson Xavier using Res2Net101
as a backbone. On Jetson Nano, we obtained 90.12% and 33.12% mAP against AU-AIR
and VisDrone with res2net101 as a backbone, but 72.42% mAP for the SDD dataset and
hourglass as a backbone. We found 90.21%, 73.89%, and 33.22% mAP for AU-AIR, SDD,
and VisDrone, respectively, with Res2Net101 as a backbone. The results achieved using
three datasets and different CNN backbones with respective edge platforms are shown
in Table 3. It was observed that ResNet18 as a backbone with modified CenterNet had
the highest FPS. Because these edge platforms have less computation power, the FPS was



Drones 2023, 7, 310 11 of 16

observed to be lower than the FPS achieved on discrete GPUs. Moreover, the acceptable FPS
for a drone would be at least 25–30 according to its speed. Since the limited resource of the
edge platforms makes drones not applicable to our detector, however, we may introduce
the lightweight deep learning model by compromising the detection accuracy. We can also
use more GPUs in each edge platform (i.e., Jetson Xavier, nano, and NCS2) to improve the
detection speed or FPS for our approach.

Table 3. mAP and FPS achieved after optimization on edge platforms against three datasets via
Val-Dev.

Model Backbones Jetson Xavier Jetson Nano NCS
AU-AIR SDD VisDrone FPS AU-AIR SDD VisDrone FPS AU-AIR SDD VisDrone FPS

CenterNet ResNet18 70.02 42.83 18.22 7.54 70.02 42.83 18.22 4.50 70.21 42.93 18.32 4.34
CenterNet ResNet34 72.26 49.59 21.01 7.34 72.26 49.59 21.01 4.31 72.46 49.99 21.81 4.14
CenterNet ResNet50 77.22 51.55 23.28 6.94 77.22 51.55 23.28 3.92 77.32 51.95 23.98 3.9
CenterNet DLA-43 80.11 64.32 24.92 6.01 80.11 64.32 24.92 3.03 80.21 64.09 24.12 3.31
CenterNet ResNet101 81.69 68.25 24.35 5.93 81.69 68.25 24.35 2.94 81.89 68.75 24.95 3.01
CenterNet ResNet152 85.78 70.31 27.17 5.54 85.78 70.31 27.17 2.54 85.98 71.01 27.47 2.54
CenterNet Res2Net50 88 71.32 27.29 4.41 88 71.32 27.29 2.45 88.03 71.72 27.69 2.41
CenterNet Res2Net101 90.15 73.29 33.12 3.43 90.12 73.29 33.12 2.46 90.21 73.89 33.22 1.43
CenterNet hourglass104 89.98 73.20 33.08 3.41 90.04 73.19 33.05 2.41 90.18 73.79 33.19 1.4

YoloV6 Efficientrep 87.93 72.02 31.01 3.94 89.06 69.91 32.69 3.89 89.05 72.72 32.86 2.34
YoloV7 RepConN 88.01 72.53 31.85 3.03 89.18 72.42 33.09 2.34 90.09 73.02 33.21 2.31

4.4. Ablation Study

Table 4 shows the comparison of the modified CenterNet versus SOTA detection
models against the IoU threshold of 0.5 and 0.75, respectively. We implemented all versions
of YOLO, SSD, and Mask-RCNN and validated them on the three challenging datasets. It
was observed that the modified CenterNet with Res2net101 and hourglass-104 as backbones
performed better as compared to other detection algorithms. After the modified CenterNet,
YoloV7 achieved better results for the three datasets. In comparison, the modified CenterNet
performs 1.27% and 2.0% better against AU-AIR, 4.88% and 9.37% against SDD, and 4.3%
and 2.2% for the VisDrone dataset, for IoU thresholds of 0.5 and 0.75, respectively.

Table 4. Comparison of mAP achieved between state-of-the-art detection models vs. modified
CenterNet for three datasets.

Model Backbone AU-AIR SDD VisDrone FPSmAP@0.5 mAP@0.75 mAP@0.5 mAP@0.75 mAP@0.5 mAP@0.75

CenterNet ResNet18 72.93 69.63 59.93 41.63 40.63 21.76 40.02
CenterNet ResNet34 61.91 71.43 61.91 47.43 50.65 24.43 32.32
CenterNet ResNet50 79.33 76.92 66.33 49.92 52.78 25.91 30.19
CenterNet DLA-43 83.02 79.82 70.42 61.82 53.04 27.76 28.91
CenterNet ResNet101 85.32 80.13 74.32 66.01 54.90 29.03 17.12
CenterNet ResNet152 88.72 84.31 79.72 69.31 55.56 29.67 16.07
CenterNet Res2Net50 90.04 85.49 80.04 70.49 56.43 30.14 15.73
CenterNet Res2Net101 91.31 90.03 84.31 72.43 57.41 31.65 7.21
CenterNet hourglass-104 92.20 89.40 84.20 74.40 57.25 35.55 7.19

YoloV1 CNN 60.32 43.98 50.42 39.18 32.41 12.72 17.53
YoloV2 Darknet-19 66.32 50.38 55.32 41.38 34.21 13.22 16.32
YoloV3 Darknet-53 70.32 62.51 58.09 49.51 41.02 18.01 15.23
YoloV4 CSP-Darknet-53 73.03 67.52 68.03 52.52 42.21 20.28 12.62
YoloV5 FPN 80.42 76.92 71.43 60.43 44.32 28.92 12.17
YoloV6 Efficientrep 88.51 81.14 75.61 63.51 50.35 31.45 11.98
YoloV7 RepConN 90.93 88.03 79.43 65.03 53.11 33.35 11.32

SSD MobileNetV2 72.82 68.37 74.98 43.38 43.32 20.17 32.12
Faster-RCNN RPN 83.91 76.78 69.3 49.51 47.37 23.65 11.29

The modified CenterNet using hourglass-104 as a backbone achieved the best results.
Therefore, Table 5 shows the class-wise average precision (AP) of each class of the three
datasets. The bus class has the highest 94.21% AP in AU-AIR, the cart call has 57.79% AP
in SSD, and the car class has 57.79% AP in the VisDrone dataset. Other classes and their
achieved AP are also shown in the table.



Drones 2023, 7, 310 12 of 16

Table 5. Class-wise AP of modified CenterNet using Hourglass-104 as backbones for their respective
dataset.

Class AP
VU-AIR SSD VisDrone

Pedestrian - 32.62 32.62
Person/Human 90.43 - 16.23

Bicycle 80.82 - 11.43
Car 88.64 44.57 57.79
Van 91.43 - 44.57

Truck 89.31 - 35.99
Tricycle - - 35.81
Awn.. - - 33.19
Bus 94.21 35.99 54.68

Motor/Bike/Motorbike 79.67 16.23 27.19
Skateboarder - 11.43 -

Cart - 57.79 -
Trailer 90.53 - -

4.5. Qualitative Analysis

We compared the results achieved from the SOTA detection models (YoloV7 as a one-
stage detector and Faster-RCNN as a two-stage detector) versus the modified CenterNet
with ResNet18 and hourglass-104 as backbones. Figure 7 shows three rows of detection
results against detection models and their respective datasets. Since the datasets were
complex in nature, we took simple images (having no occlusion and visibility issues) and
inferenced them via trained Mask-RCNN, YoloV7, and modified CenterNet to obtain a
qualitative comparison. Second, these datasets have car, pedestrian, and motor instances in
common; therefore, we performed an inference with these examples. Row 1 contains car
and motor instances, and the best detection confidence was discovered using a modified
CenterNet–Hourglass104. The white car had confidence scores of 0.8 via both Faster RCNN
and YoloV7, whereas the modified CenterNet detected it with better confidence scores of 0.9.
Similarly, other cars and one motor had better confidence scores using modified CenterNet–
Hourglass104 than CenterNet–ResNet18. Row 2 shows the detection results for the SSD
dataset. It was observed that the modified CenterNet detected pedestrians with better
confidence scores than Mask-RCNN and YoloV7. Row 3 shows only car instances, and it is
observed that the modified CenterNet detects red, black, and white cars with 1.0, 0.9, and
1.0 confidence scores, respectively, which are better than the Mask RCNN and YoloV7. It
was also observed that the modified CenterNet with ResNet18 detected white cars with
0.9 confidence, which is less than the detection confidence via CenterNet–Hourglass104.

Figure 7. Qualitative comparison of SOTA detection algorithms vs our approach.



Drones 2023, 7, 310 13 of 16

4.6. Comparison of SOTA Vs Our Proposed Approach

We compared our results with cutting-edge techniques in peer-reviewed publications.
Table 6 depicts the comparison of mAP achieved using other deep learning methodologies
for small-scale object detection versus our approach. Junfeng et al. used the VistrongerDet
deep learning model and then validated it using the VisDrone dataset and achieved 31.85%
mAP. However, our approach achieved 34.85% mAP, which is 3.0% greater than theirs.
Similarly, Ammar et al. used YOLOV4 and achieved 74.81% mAP, but our approach is
0.81% better than those using the SSD dataset. We also compared our approach acquired by
validating on the AU-AIR dataset. Bozean et al. achieved 91.2% mAP using the CADNet
object detection model, but our approach performs 0.42% better than theirs. In a nutshell,
our approach (validated with the three challenging datasets) performs better than the latest
techniques.

Table 7 illustrates the comparison of frames per second (FPS) obtained using different
GPU-based platforms. We compared the FPS achieved using the deep learning approach
and found that our approach has better FPS for all the edge devices. Ref. [26] has eight FPS
at Jetson Xavier, which is 0.46% less than ours.

Table 6. Quantitative analysis of SOTA vs. our approach.

Method Dataset mAP

Improved RetinaNet [27] VisDrone 29.4
DPNet-Ensemble [28] VisDrone 29.62

RetinaNet [29] VisDrone 31.8
VistrongerDet [30] VisDrone 33.85

Modified CenterNet–Hourglass-104 VisDrone 34.85

YOLO-V2 [31] SSD 68.0
Deep Learning [7] SSD 68.71

PeleeNet+DMS [32] SSD 74.44
YOLO-V4 [33] SSD 74.81

Modified CenterNet–Hourglass-104 SSD 75.62

YOLO-V4 [33] AU-AIR 67.35
Multimodal CNN and LSTM [34] AU-AIR 71.84

Visual Saliency [35] AU-AIR 81.3
CADNet with Encoder/Decode [36] AU-AIR 91.2

Modified CenterNet–Hourglass-104 AU-AIR 91.62

Table 7. Quantitative analysis of SOTA vs. our approach with respect to FPS.

Method Discrete GPU Xavier Nano NCS

Faster RCNN [37] 7.60 - - -
DSSD513 [38] 5.50 - - -
YOLOV2 [26] 11.3 2.9 - 1.8

SSD MobileNet [26] 14.09 8 - 5.5
LiteReconfig [39] 12 1.5 - -

EfficientNet-b2 [40] 15 3.19 3.03 -

Modified CenterNet–ResNet18 40.02 7.54 4.50 4.34
Modified CenterNet–ResNet34 32.32 7.34 4.31 4.14
Modified CenterNet–ResNet50 30.19 6.94 3.92 3.9
Modified CenterNet–DLA-43 28.91 6.01 3.03 3.31

Modified CenterNet–ResNet101 17.12 5.93 2.94 3.01
Modified CenterNet–ResNet152 16.07 5.54 2.54 2.54
Modified CenterNet–Res2Net50 15.73 4.41 2.45 2.41

Modified CenterNet–Res2Net101 7.21 3.43 2.46 1.43
Modified CenterNet–Hourglass104 7.19 3.34 2.34 2.34



Drones 2023, 7, 310 14 of 16

5. Conclusions

We modified CenterNet and provided a comparison with nine different CNN-based
backbones. We implemented SOTA detection models and validated them using three open
challenge datasets, i.e., VisDrone, SSD, and AU-AIR datasets, and provided a comparison
with modified CenterNet. Results showed that the modified CenterNet with hourglass104
as a backbone achieved the best mAP, whereas CenterNet with ResNet18 obtained the best
FPS compared to SOTA detection algorithms and techniques found in the cutting-edge
latest research. We optimized the models and implemented them after optimization on
edge platforms, i.e., Jetson Xavier, Jetson Nano, and NCS2, and found better performance.
Our modified CenterNet with hourglass as a backbone achieved 91.62%, 75.61%, and
34.82% mAP via AU-AIR, SSD, and VisDrone datasets, respectively; however, 40.02 FPS
was achieved using the backbone of ResNet18. We also compared our approach with
the latest cutting-edge research and found promising results for both discrete GPU and
edge platforms. As for future work, we plan to modify other SOTA-detection models and
implement them on edge devices after optimization. We can explore other optimization
techniques to speed up the inference time for better detection.

Author Contributions: Conceptualization, Z.S. and M.H.Y.; Methodology, Z.S. and M.H.Y.; Soft-
ware, Z.S.; Validation, Z.S., R.A. and S.A.V.; Formal Analysis, Z.S., R.A. and M.H.Y.; Investigation,
Z.S.; Resources, M.H.Y.; Data Curation, Z.S. and R.A.; Writing—Original Draft Preparation, Z.S.;
Writing—Review & Editing, M.H.Y., R.A., S.A.V. and S.V.; Visualization, S.V.; Supervision, M.H.Y.,
R.A., S.A.V. and S.V.; Project Administration, M.H.Y.; Funding Acquisition, M.H.Y. and S.V. All
authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the Higher Education Commission of Pakistan funding for this
project through a grant titled “Establishment of National Centre of Robotics and Automation” under
Grant No. DF-1009-31 for this research work.

Data Availability Statement: The datasets are publicly available and accessible i.e., VisDrone http:
//aiskyeye.com/download/, Stanford Drone Dataset (SDD) https://cvgl.stanford.edu/projects/
uav_data/ and AU-AIR https://bozcani.github.io/auairdataset, accessed on 1 March 2023.

Acknowledgments: We acknowledge the National Centre of Robotics and Automation (NCRA)
Pakistan and University of KwaZulu-Natal for their consistent support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abbas, S.M.; Singh, S.N. Region-based object detection and classification using faster R-CNN. In Proceedings of the 2018 4th

International Conference on Computational Intelligence Communication Technology (CICT), Ghaziabad, India, 9–10 February
2018; IEEE: Piscataway, NJ, USA, 2018. [CrossRef]

2. Chen, Y.; Zhu, X.; Li, Y.; Wei, Y.; Ye, L. Enhanced semantic feature pyramid network for small object detection. Signal Process.
Image Commun. 2023, 113, 116919. [CrossRef]

3. Jung, H.-K.; Choi, G.-S. Improved YOLOv5: Efficient Object Detection Using Drone Images under Various Conditions. Appl. Sci.
2022, 12, 7255. [CrossRef]

4. Saeed, Z.; Awan, M.N.M.; Yousaf, M.H. A Robust Approach for Small-Scale Object Detection From Aerial-View. In Proceedings of
the 2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, Australia, 30
November–2 December 2022; pp. 1–7. [CrossRef]

5. Jawaharlalnehru, A.; Sambandham, T.; Sekar, V.; Ravikumar, D.; Loganathan, V.; Kannadasan, R.; Khan, A.A.; Wechtaisong, C.;
Haq, M.A.; Alhussen, A.; et al. Target Object Detection from Unmanned Aerial Vehicle (UAV) Images Based on Improved YOLO
Algorithm. Electronics 2022, 11, 2343. [CrossRef]

6. Wang, K.; Wei, Z. YOLO V4 with hybrid dilated convolution attention module for object detection in the aerial dataset. Int.
Remote. Sens. 2022, 43, 1323–1344. [CrossRef]

7. Maktab Dar Oghaz, M.; Razaak, M.; Remagnino, P. Enhanced Single Shot Small Object Detector for Aerial Imagery Using
Super-Resolution, Feature Fusion and Deconvolution. Sensors 2022, 22, 4339. [CrossRef] [PubMed]

8. Xia, G.-S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A large-scale dataset for object
detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 3974–3983.

http://aiskyeye.com/download/
http://aiskyeye.com/download/
https://cvgl.stanford.edu/projects/uav_data/
https://cvgl.stanford.edu/projects/uav_data/
https://bozcani.github.io/auairdataset
http://doi.org/10.1109/CIACT.2018.8480413
http://dx.doi.org/10.1016/j.image.2023.116919
http://dx.doi.org/10.3390/app12147255
http://dx.doi.org/10.1109/DICTA56598.2022.10034601
http://dx.doi.org/10.3390/electronics11152343
http://dx.doi.org/10.1080/01431161.2022.2038396
http://dx.doi.org/10.3390/s22124339
http://www.ncbi.nlm.nih.gov/pubmed/35746125


Drones 2023, 7, 310 15 of 16

9. Ding, J.; Xue, N.; Long, Y.; Xia, G.; Lu, Q. Learning roi transformer for oriented object detection in aerial images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2849–2858.
[CrossRef]

10. Liu, Z.; Wang, H.; Weng, L.; Yang, Y. Ship rotated bounding box space for ship extraction from high-resolution optical satellite
images with complex backgrounds. IEEE Geosci. Remote. Sens. Lett. 2016, 13, 1074–1078. [CrossRef]

11. Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.; Xue, X. Arbitrary-oriented scene text detection via rotation proposals.
IEEE Trans. Multimed. 2018, 20, 3111–3122. [CrossRef]

12. Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. SCRDet: Towards more robust detection for small, cluttered
and rotated objects. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27
October–2 November 2019; pp. 8232–8241.

13. Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.; Bai, X. Gliding vertex on the horizontal bounding box for multi-oriented
object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1452–1459. [CrossRef] [PubMed]

14. Shams, S.; Platania, R.; Lee, K.; Park, S.J. Evaluation of deep learning frameworks over different HPC architectures. In Proceedings
of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017;
pp. 1389–1396.

15. Süzen, A.A.; Duman, B.; S, en, B. Benchmark analysis of jetson tx2, jetson nano and raspberry pi using deep-cnn. In Proceedings of
the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara,
Turkey, 26–28 June 2020; pp. 1–5.

16. Baller, S.P.; Jindal, A.; Chadha, M.; Gerndt, M. DeepEdgeBench: Benchmarking Deep Neural Networks on Edge Devices. In
Proceedings of the 2021 IEEE International Conference on Cloud Engineering (IC2E), San Francisco, CA, USA, 4–8 October 2021;
pp. 20–30.

17. Verma, G.; Gupta, Y.; Malik, A.M.; Chapman, B. Performance evaluation of deep learning compilers for edge inference. In
Proceedings of the 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Portland, OR,
USA, 17–21 June 2021; pp. 858–865. [CrossRef]

18. Cao, Y.; He, Z.; Wang, L.; Wang, W.; Yuan, Y.; Zhang, D.; Zhang, J.; Zhu, P.; Gool, L.V.; Han, J.; et al. VisDrone-DET2021: The
vision meets drone object detection challenge results. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, Montreal, BC, Canada, 11–17 October 2021.

19. Robicquet, A.; Sadeghian, A.; Alahi, A.; Savarese, S. Learning Social Etiquette: Human Trajectory Prediction In Crowded Scenes.
In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016.

20. Bozcan, I.; Kayacan, E. Au-air: A multi-modal unmanned aerial vehicle dataset for low altitude traffic surveillance. In Proceedings
of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE:
Piscataway, NJ, USA, 2020. [CrossRef]

21. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [CrossRef]

22. Joseph, R.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017. [CrossRef]

23. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [CrossRef]

24. Yu, F.; Wang, D.; Shelhamer, E.; Darrell, T. Deep layer aggregation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2403–2412. [CrossRef]

25. Hei, L.; Deng, J. Cornernet: Detecting objects as paired key- points. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018. [CrossRef]

26. Hossain, S.; Lee, D.-J. Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot
with GPU-based embedded devices. Sensors 2019, 19, 3371. [CrossRef] [PubMed]

27. Li, C.; Yang, T.; Zhu, S.; Chen, C.; Guan, S. Density map guided object detection in aerial images. proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops. arXiv 2020, arXiv:2004.05520.

28. Samyal, A.S.; Akshatha, K.R.; Hans, S.; Karunakar, A.K.; Satish Shenoy, B. Analysis and adaptation of yolov4 for object detection
in aerial images. arXiv 2022, arXiv:2203.10194.

29. Raza, M.A.; Naeem, H.B.; Yasin, A.; Yousaf, M.H. Birdview retina-net: Small-scale object detector for unmanned aerial vehicles.
In Proceedings of the 2021 16th International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 22–23 December
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [CrossRef]

30. Wan, J.; Zhang, B.; Zhao, Y.; Du, Y.; Tong, Z. VistrongerDet: Stronger Visual Information for Object Detection in VisDrone Images.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021.

31. Tang, T.; Deng, Z.; Zhou, S.; Lei, L.; Zou, H. Fast vehicle detection in uav images. In Proceedings of the 2017 International
Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 18–21 May 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 1–5. [CrossRef]

32. Jing, Z.; Xi, L.; Meng, W.; Liheng, Y.; Li, Z. Coarse-to-fine object detection in unmanned aerial vehicle imagery using lightweight
convolutional neural network and deep motion saliency. Neurocomputing 2020, 398, 555–565. [CrossRef]

http://dx.doi.org/10.48550/arXiv.1812.00155
http://dx.doi.org/10.1109/LGRS.2016.2565705
http://dx.doi.org/10.1109/TMM.2018.2818020
http://dx.doi.org/10.1109/TPAMI.2020.2974745
http://www.ncbi.nlm.nih.gov/pubmed/32086194
http://dx.doi.org/10.1109/IPDPSW52791.2021.00128
http://dx.doi.org/10.48550/arXiv.2001.11737
http://dx.doi.org/10.48550/arXiv.1506.02640
http://dx.doi.org/10.48550/arXiv.1612.08242
http://dx.doi.org/10.48550/arXiv.1411.4038
http://dx.doi.org/10.48550/arXiv.1707.06484
http://dx.doi.org/10.48550/arXiv.1808.01244
http://dx.doi.org/10.3390/s19153371
http://www.ncbi.nlm.nih.gov/pubmed/31370336
http://dx.doi.org/10.1109/ICET54505.2021.9689830
http://dx.doi.org/10.1109/RSIP.2017.7958795
http://dx.doi.org/10.1016/j.neucom.2019.03.102


Drones 2023, 7, 310 16 of 16

33. Ammar, A.; Koubaa, A.; Ahmed, M.; Saad, A.; Benjdira, B. Vehicle detection from aerial images using deep learning: A
comparative study. Electronics 2021, 10, 820. [CrossRef]

34. He, M.; Hohil, M.; LaPeruta, T.; Nashed, K.; Lawrence, V.; Yao, Y.-D. Performance evaluation of multimodal deep learning: Object
identification using uav dataset. In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III; SPIE:
Bellingham, WA, USA, 2021; Volume 11746, pp. 602–608.

35. Gupta, H.; Verma, O.P. Monitoring and surveillance of urban road traffic using low altitude drone images: A deep learning
approach. Multimed. Tools Appl. 2022, 81, 19683–19703. [CrossRef]

36. Bozcan, I.; Kayacan, E. Context-dependent anomaly detection for low altitude traffic surveillance. In Proceedings of the 2021
IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ,
USA, 2021; pp. 224–230. [CrossRef]

37. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.
[CrossRef]

38. Fu, C.-Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659.
39. Xu, R.; Lee, J.; Wang, P.; Bagchi, S.; Li, Y.; Chaterji, S. LiteReconfig: Cost and content aware reconfiguration of video object

detection systems for mobile GPUs. In Proceedings of the Seventeenth European Conference on Computer Systems, Rennes,
France, 5–8 April 2022. [CrossRef]

40. Tergel, M.-O.; Shenoy, R. Energy and Cost Consider- ations for GPU Accelerated AI Inference Workloads. In Proceedings of
the 2021 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, MA, USA, 8–10 October 2021; IEEE:
Piscataway, NJ, USA, 2021. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics10070820
http://dx.doi.org/10.1007/s11042-021-11146-x
http://dx.doi.org/10.48550/arXiv.2104.06781
http://dx.doi.org/10.48550/arXiv.1506.01497
http://dx.doi.org/10.1145/3492321.3519577
http://dx.doi.org/10.1109/URTC54388.2021.9701614

	Introduction
	Related Work
	Methodology
	Datasets
	CNN-Based Backbones
	Modified CenterNet
	AI-on-the-Edge Implementation
	Neuro Compute Stick
	Jetson Nano
	Jetson Xavier


	Experimentation and Results Discussion
	Experimental Setup
	Evaluation Protocol
	Results Discussion
	Discrete GPU-Based Detection
	AI-on-the-Edge Based Detection

	Ablation Study
	Qualitative Analysis
	Comparison of SOTA Vs Our Proposed Approach

	Conclusions
	References

