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Abstract: Agents are used to exhibit swarm intelligence in the sense of convergence, while divergence
is equivalently common in nature and useful in complex applications for multi-UAV systems. This
paper proposes a robust target-tracking control algorithm, where UAV swarms are partitioned
by a signed graph to perform opposite movements along or against the trajectory of the target.
Uncertainties take place in both the fractional-order model of the target and the double-integrator
dynamics of the UAVs. To tackle the challenge induced by the bipartite behavior and unknown
components in the multi-UAV systems, the article comes up with a backstepping cascade controller
and a new method for uncertainty estimation-compensation via a combined approach based on a
neural network (NN) and an Uncertainty and Disturbance Estimator (UDE). Steered by the controller,
UAVs in a structurally balanced network will display symmetry of their paths, pursuing or away
from the target with respect to the origin. Theoretical derivation and numerical simulations have
evidenced that the tracking errors converge to zero. Compared with the traditional NN method to
solve such problems, this method is proposed for the first time, which can effectively improve the
precision of cooperative target tracking and reduce the chattering phenomena of the controller.

Keywords: swarm intelligence; neural network; mixed-order system; uncertainty and disturbance
estimator; backstepping cascade robust control

1. Introduction

The swarm intelligence of the multi-agent system (MAS) is usually embodied in
collective behavior, which takes many forms. Convergence is comparatively usual in
collaboration and is supported by a large number of studies [1–3]. However, the phenomena
of divergence are equally common in nature, for instance, the split of a school of fish
when encountering an obstacle [4] and the division of an ant colony on their way to food
sources [5,6]. In a similar way, when many practical multi-agent systems [7–9], especially
UAV groups [10–12], perform complex behavior, such as coverage [13], formation [14],
enclosing [15], surrounding [16] and containment [17], their states exhibit divergence in
order to fulfill civil and military tasks related to searching and exploring by space expansion
rather than convergence. Relevant studies show that the bipartition of a UAV network is
an effective use of divergence behavior.

The bipartite consensus is behavior in a signed network based on its underlying
structural balanced graph [18,19], and numerous state-of-the-art studies illustrate its pop-
ularity: the authors of [20] come up with the concept of bipartite consensus to present
the relationship between collaboration and competition in swarm intelligence. With re-
spect to the bipartite consensus problem, the order of the networked agents extends from
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first-order [21] to second-order [22] or even high-order [23], and its dynamics gradually
change from linear [24] to nonlinear [25]. Specifically, the leader-follower collaborative
structure has also extended to this symmetric divergence behavior, namely, the bipartite
tracking problem [26–28], which has drawn much attention due to its potential application
in scattered mobile target capturing and swarm confrontation.

On the other hand, swarm intelligence is not only performed among homogeneous
UAVs. In the scenarios of air-ground cooperation, the UAVs and ground vehicles may
display different dynamics, and the latter’s can be in the form of fractional-order differ-
ential equations when they move on the surface of viscoelastic materials (grass or muddy
road) [29] or in special weather (dust rain, sand, snow, storm) [30]. It is difficult to model
such moving bodies accurately and specify their exact system orders. Even worse, in
practical tasks, UAVs are always subject to environmental disturbances. Such inevitable
uncertainties lead to heterogeneity in a swarm, and these factors may affect the multi-UAV
system stability, which is of extraordinary importance to the cooperation of networked
UAVs. Multi-agent theory can be adopted as a framework to solve the above problems for
multi-UAV systems.

In view of the above problems, this paper studies the robust dual-camp divergent
tracking control problem of mixed-order heterogeneous systems in the presence of model
uncertainties and unknown disturbances. Much of the existing literature [31–33] has
attempted to focus on robust bipartite tracking control issues and innovatively come up
with various approaches to reduce or impair the impact of undesirable conditions on system
stability and control accuracy. In article [31], a distributed control method based on a neural
network (NN) is proposed to solve the bipartite consensus problem of nonlinear MASs with
time delays and an unknown nonlinear dynamics model. An adaptive disturbance rejection
controller is presented in article [32] to ensure that bipartite consensus tracking can be
accomplished if an agents’ dynamics is subjected to unknown time-varying disturbances on
signed networks. Liu and Wang [33] investigated bipartite consensus and tracking control
issues for MASs with nonidentical matching uncertainties and developed and constructed a
discontinuous controller to deal with the influence of the matching uncertainties. However,
the previous studies do not consider the robust bipartite tracking control of a mixed-
order heterogeneous systems in a comprehensive way, while such research has significant
application value in mobile target capturing.

Therefore, the neural network and cascade UDE (NNCUDE) method is put forward to
tackle such problems. This paper makes efforts to guarantee the robustness of the bipartite
tracking control among heterogeneous system that suffer from mixed-order dynamics
in the presence of unmatched uncertainties and disturbances. Thus, with the help of a
backstepping control technique, a hybrid estimation system is constructed to compensate
for the unknown part in the models, which enjoys the complementary advantages of the
NN- (for being applicable to uncontrollable fractional-order targets) and UDE (for being
computational efficient)-based methods when they become compatible with each other
through a careful Lyapunov-based design of update laws that empower the divergence
control to robustness. The major contributions in this work include:

(I) The paper designs a backstepping cascade robust controller for mixed-order (fractional-
and integral-order) agents with unmatched uncertainties and disturbances, which
solves the order-unmatched problems between the target’s and UAVs’ kinematics
as well as the UAVs’ position dynamic loop and control input loop. Compared to
the related article [34], the proposed method resolves the unmatched uncertainties
and disturbances.

(II) An NNCUDE-based method is a combination to guarantee the robustness of swarm
systems by taking advantage of NN and UDE. NN is used to estimate the fractional-
order targets, and UDE is applied to compensate for the UAVs’ unknown parts with
low computing resources. Compared to the conventional NN-based method of [35],
this proposed method can reduce the computational complexity and effectively reduce
the occurrence of the chattering phenomenon.
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The remainder of this paper is laid out as follows. In Section 2, the preliminaries of
signed graph theory, fractional-order theory and problem formulation are provided. In
Section 3, the bipartite tracking controller via NNCUDE is designed. After that, using the
provided technique, it is demonstrated that multi-agent systems are capable of perform-
ing bipartite consensus tracking. Several numerical cases are presented in Section 4 as
experimental demonstrations of the proposed method. Eventually, we summarize the main
research achievements of this paper in Section 5.

2. Preliminary and Problem Formulation

In order to solve dual-camp divergent tracking of a heterogeneous target for a UAV
swarm, we will introduce some required definitions, properties and lemmas of fractional
calculus, as well as some related mathematical theories pertaining to signed graphs
in this section. Some commonly used notations are presented in Table 1. In addition,
coln

i [αi] , [αT
1 , αT

2 , . . . , αT
n ]

T or coln[α] , [αT , αT , . . . , αT ]Tn generates a vector in the form of
a column. The vector 1n is thus represented as 1n , coln[1].

Table 1. The explanation of symbols.

Symbols Explanation

Rn The set of real n-vectors
|x| The absolute value for a scalar value of x
‖x‖ The 2-norm for a vector x
sgn() The standard signum function
rec() The reciprocal of a fraction
diag() The diagonal matrix of the signum function
G(V , E ,A) The communication topology of multi-UAV systems
A The adjacency matrix of multi-UAV systems
L The Laplacian matrix of G
D The weighted degree matrix of signed graph
Dp

t f (t) The three types of derivatives including GLDs, RLDs and CDs
ri(t), vi(t), ui(t) The position, velocity and control input of i-th UAV
fi(ri, t) The unknown external disturbance imposed on position-loop
gi(ri, vi, t) The unknown external disturbance imposed on velocity-loop
r0(t) The position variable of target
eri,evi The bipartite tracking errors of position-loop and velocity-loop
β(r, t) The fractional-order dynamics model of target
φT

β (r, t) The Gaussian basis functions for estimation
εβ The approximation error based on neural network
ui0 The nominal control input of system
ĝi The estimates of unknown disturbance
L−1 The inverse Laplace transformation
Gd(s) A first-order filter
τd The time scale parameter
αi(ui, t) A virtual control input
f̂i The estimate of uncertain part fi
Fi(s) The frequency domain expression of fi
f̃i The estimation error of fi
xi1,xi2 The coordination transformations for constructing controller
ui1,ui2,ui3 The three parts of controller
θ̃βi The parameter estimation error



Drones 2023, 7, 306 4 of 23

Table 1. Cont.

Symbols Explanation

ẽvi The bipartite velocity tracking error
˙̂θβi,

˙̂δβi The adaptive law
X1,X2 The coordination transformations in a compact form
kr, kv The control gains
kθ , kδ The adaptive law parameters
V1 The Lyapunov function for proof
λmax, λmin The maximum and minimum eigenvalue of matrix L + B

2.1. Graph Theory

Graph theory is generally used as a mathematical method to explain a multi-UAV
system communication network. The relationship between diverse agents is represented
by a signed bipartite graph. Signed graph G(V , E ,A) can be capable of illustrating the
communication topology of multi-agent systems, in which E ⊆ V × V denotes edge sets,
while V indicates node sets. For the expression of an n agents system, a finite index
set I = {1, . . . , n} is defined for it. (si, sj) signifies an edge-linked i and j in a signed
graph, where si and sj denote the nodes of agents i and j, respectively. Since this paper
mainly studies undirected graphs, only undirected graphs are introduced here; therein,
the relationship between (i, j) ∈ E and (j, i) ∈ E is equivalent, indicating that agent i and j
are interconnected directly. Adjacent matrix A can represent the connection relationship
between agents in terms of

[
aij
]
∈ Rn×n, in which aii = 0 for all i ∈ I . In addition, aij > 0 if

(si, sj) ∈ E and j 6= i represent the convergence interaction between agents i and j, and that
corresponds to aij < 0 if (si, sj) ∈ E and j 6= i, which indicates a divergence relationship
for the linked agents. Generally, it is assumed that there exists at least a node, called the
root, which can connect every other node in a signed graph; namely the signed graph is
regarded as including a spanning tree.

Structurally balanced signed graphs are important for bipartite consensus, meaning
that the node set V of a signed graph G(V , E ,A) can be separated into two distinct groups,
Va and Vb, i.e., both of which satisfies Va ∪ Vb = V , and Va ∩ Vb = ∅, that is aij > 0,
∀vi, vj ∈ Vm, or ∀vi, vj ∈ Vn, and aij < 0 ∀vi ∈ Vm, ∀vj ∈ Vn where m 6= n, and m, n ∈ {a, b}.
W , a signature matrix, is constructed in such a form thatW = diag{w1, w2, . . . , wn}, where
wi = 1, ∀vi ∈ Vm and wi = −1, ∀vi ∈ Vn where m 6= n. In addition, there exists an
extra agent called "target" whose number index is 0, if the state of agent i and the target
eventually achieves tracking convergence, then wi = 1; otherwise, if both eventually
achieve divergence, wi = −1. Additionally, the multi-UAV systems’ Laplacian matrix L is
defined as follows

L = D −A, (1)

where D is a weighted degree matrix of a signed graph and specifically signifies D =
diag{d1, ..., dn}, therein di = ∑n

j=1
∣∣aij
∣∣.

2.2. Fractional Derivatives

First, we will provide two notable symbols related to the definition of fractional
calculus in this section. One is the Euler’s Gamma function formulated by

β(p) =
∫ ∞

0
e−ttp−1dt, (2)

and the other is the generalized Newton’s binomial coefficient:

C p
k =

β(p + 1)
β(k + 1)β(p− k + 1)

. (3)
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Consequently, there are three definitions of arbitrary-order derivatives, including
Grünwald–Letnikov Derivatives (GLDs), Riemann–Liouville Derivatives (RLDs) and Ca-
puto Derivatives (CDs).

Definition 1 (GLDs [36]). The fractional order p ∈ R of GLDs is taken as:

GL
aDp

t f (t) = lim
h→0

nh=t−a

h−p
n

∑
r=0
C−p

r f (t− rh), (4)

in which a is the GLDs’ base point.

Definition 2 (RLDs [36]). The fractional order p ∈ R of RLDs is adopted as

RL
aDp

t f (t) =



1
β(−p)

∫ t

a
(t− τ)−p−1 f (τ)dτ while p < 0

f (t) while p = 0
dm

dtm
RL

aDp−m
t f (t) while p > 0

, (5)

where integer m confines the range of p such that m − 1 < p ≤ m, and similarly a is RLDs’
base point.

Definition 3 (CDs [36]). Define the fractional order p ∈ R of CDs as

C
aDp

t f (t) =
1

β(m− p)

∫ t

a
(t− τ)m−p−1 f (m)(τ)dτ, (6)

therein, correspondingly, integer m constrains the range of p such that m− 1 < p ≤ m, and a is
the CDs’ base point.

For the simplification and standardization of the description, in this paper, the notation
Dp

t f (t) is utilized to represent all three types of derivatives defined above, GLDs, RLDs and
CDs, respectively. The fractional derivatives Dp

t f (t) have the following common properties.

Property 1. Dp
t f (t) satisfies both homogeneity and additivity [36]:

Dp
t
(
α f (t) + βg(t)

)
= αDp

t f (t) + βDp
t g(t). (7)

Property 2. Dp
t f (t) follows the composition rule [36]:

Dp
t
(
Dr

t f (t)
)
= Dp+r

t f (t). (8)

Property 3. Dp
t f (t) can expand fractional derivatives into integer derivatives [37]:

Dp
t f (t) =

∞

∑
λ=0
C p

λ

tλ−p

β(λ− p + 1)
dλ

dtλ
f (t). (9)

2.3. Problem Description

As mentioned above, swarm intelligence can also be performed in heterogeneous
systems. Thus multi-agent systems we study contain two kinds of heterogeneous agents,
namely integer-order UAV and fractional-order targets. Among the mixed-order systems,
partial UAVs are capable of sensing and knowing the position information of the target.
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The following uncertain nonlinear systems establish the dynamics of the i-th UAV from
1 to n. {

ṙi(t) = vi(t) + fi(ri, t)
v̇i(t) = ui(t) + gi(ri, vi, t), i ∈ I ,

(10)

where ri(t), vi(t), ui(t) ∈ Rn denote the position, velocity and control input of i-th UAV,
respectively, and index I satisfies I = (1, 2, ..., n). fi(ri, t) ∈ Rn and gi(ri, vi, t) ∈ Rn

are unknown smooth functions for UAVs. More concretely, fi(ri, t) = ∆1ri(t) + κi1(t),
where ∆1ri(t) ∈ Rn denotes the model uncertainty and κi1(t) ∈ Rn is an unknown exter-
nal disturbance input imposed on position-loop; gi(ri, vi, t) = ∆2ri(t) + ∆3vi(t) + κi2(t),
where ∆2ri(t) ∈ Rn and ∆3vi(t) denote the model uncertainties and κi2(t) ∈ Rn is an un-
known external disturbance input imposed on velocity-loop. Moreover, ∆1ri(t) ∈ Rn and
∆2ri(t) ∈ Rn also refer to the linearization of the function at time t.

Additionally, there is a target index 0 inside the mixed-order systems (10) since the
dynamics of the target are inconsistent with other UAVs’ inside environment among multi-
UAV systems, especially target could move in some special environments (often cannot be
modeled in the form of integer order). Consequently, the fractional-order dynamics model
of the target is described as follows:

Dq
t r0(t) = f0(r0(t), t), (11)

in which the fractional order q is confined so that 0 < q ≤ 2, and all other UAVs are not
able to attain the smooth function f0(r0(t), t). r0(t) is the target’s position variable.

Definition 4 (Bipartite Tracking Consensus Error). In terms of the bipartite tracking consensus
issue of the second-order nonlinear system, we define the position error eri and velocity error evi
of the multi-agent system for subsequent controller design. All the bipartite tracking errors of
position-loop and velocity-loop are satisfied using the following

eri =
n

∑
j=1

∣∣aij
∣∣(ri − sgn(aij)rj) + bi(ri − wir0), (12)

evi =
n

∑
j=1

∣∣aij
∣∣(ṙi − sgn(aij)ṙj) + bi(ṙi − wi ṙ0), (13)

where bi > 0 means that i-th UAV is able to receive information from the target directly; if
not, bi = 0. A diagonal matrix B = diag{b1, b2, . . . , bn}. The bipartite tracking error of the
position-loop defined above includes the sum of the position error between adjacent UAVs and the
error between the target and UAVs, and the bipartite tracking errors of the velocity-loop have the
same definition.

Remark 1. From the expression of the model dynamics, it is known that the i-th UAVs suffer
from the effect of disturbances caused by unknown smooth functions fi(ri, t) and gi(ri, vi, t). The
disturbances in the model can be regarded as the superposition of input disturbance and process
disturbance. The input disturbance refers to the external input disturbance outside the nominal
model, such as disturbance force and torque. Process disturbance refers to model uncertainty and
process noise between the real and nominal models.

Involved in the dynamics model of UAVs, the smooth function fi(ri, t) is the distur-
bance imposed on the system (10), which satisfies the following assumption:

Assumption 1. It is assumed that the uncertain parts imposed on each UAV are represented by a
smooth function fi(ri, t), which is bounded and unkown to all UAVs, i.e., ∃ f̄ > 0 and f̄d > 0, satisfy
conditions that | fi(ri, t)| ≤ f̄ and

∣∣ ḟi(ri, t)
∣∣ ≤ f̄d with regard to ∀i ∈ I . The upper bounds f̄ and

f̄d are not required to be known. The unknown smooth function gi(ri, vi, t) has similar properties,
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which implies ∃ḡ > 0 and ḡd > 0, such that |gi(ri, vi, t)| ≤ ḡ and |ġi(ri, vi, t)| ≤ ḡd as for
∀i ∈ I , ḡ and ḡd are also unknown upper bounds.

Then, this paper defines that t = 0 indicates the initial start time; thus ri(0) and
vi(0) represent the initial position and initial velocity, respectively. Based on this, the
derivative Dq

t ’s base point is adopted as 0. It is worth noting that the primary aim of this
paper is to design a robust controller for the UAVs with uncertainty and achieve bipartite
tracking. Hence the relevant definitions of the distributed tracking control and graph
weight coefficient with the target are expressed by the following:

Definition 5 (Bipartite Tracking Control). The designed control input protocol ui(t) in (10)
could achieve bipartite tracking control if all of the local bipartite tracking errors satisfy

lim
t→∞
|ri(t)− wir0(t)| = 0, (14)

namely, all the UAVs are diverged into two subgroups based on the structurally balanced signed
graphs, one subgroup tracks the trajectory of the target, and the other tracks the symmetrical
trajectory with respect to the origin, i.e.

In respect to the bipartite tracking control issues, the critical challenges are summa-
rized as:

(I) In this heterogeneous system, both the target and the UAVs exist as uncertainties,
including the target’s dynamics model and the UAV’s unknown parts, fi(ri, t) and
gi(ri, vi, t). Consequently, traditional methods based on known reference signals and
standard feedback linearization methods have been unable to solve such synthe-
sis problems.

(II) The proposed system simultaneously has disturbance-unmatched and order-unmatched
problems, namely, unknown disturbance exists in both the position-loop and velocity-
loop; furthermore, integer-order and fractional-order agent (target and UAVs) models
exist at the same time. Hence, the control protocol design should take into account
both kinds of unmatched issues.

3. Bipartite Tracking Control via NNCUDE

In order to cope with the critical challenges of the bipartite tracking problem, we pro-
pose a new control scheme, NNCUDE, in which NN is adopted to estimate the uncertainties
of the fractional target’s dynamics model. Since there are uncertain parts, fi and gi, we
innovatively propose cascade UDE to estimate the uncertain smooth functions. The state
information of the model is fully used to obtain the estimates of the disturbance. Mean-
while, the virtual input imposed on the velocity loop is designed using the backstepping
method, and the stability analysis of the closed-loop error system is explained by proper
coordinate transformation.

3.1. The Approximation of Target’s Dynamics by Neural Network

Due to the uncertainty of the target’s nonlinear fractional-order model, the first stage
is to eliminate the uncertainty by obtaining the estimates of the unknown smooth function
in the target’s dynamics (11). Therefore, we make the following assumptions to utilize
conventional linearly parameterized neural networks to approximate the true values of the
unknown function:

Assumption 2. To simplify the fractional-order dynamics model, the following equivalent substi-
tution is adopted such that β(r, t) , D1−q

t f0(r0(t), t). Based on a linearly parameterized neural
network, β(r, t) could be represented on a prescribed compact set Ωβ ⊂ R2 as follows

β(r, t) = φT
β (r, t)θβ + εβ, (15)
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where φT
β (r, t) = col

hβ

k [φβ,k(r, t)] ∈ Rhβ is the known basis function, therein hβ is the vector

dimension; an unknown constant vector θβ defines that θβ = col
hβ

k [θβ,k] ∈ Rhβ ; the approximation
error based on the neural network is expressed as εβ.

Generally speaking, a RBF neural network with Gaussian basis functions is applied
for the estimation of smooth function β(r, t) as follows:

φT
β (r, t) = e

−
(r−µβr,k)

2+(t−µβt,k)
2

η2
β,k , k ∈ {1, 2, . . . , hβ}, (16)

where r is the n-dimensional input vector; ηβ,k is the smooth parameter, which deter-
mines the widths of the center point of the basis function; (µβr,k, µβt,k) is the center of
the basis function, which evenly needs space in a specific range; and hβ is the number of
perception nodes.

Remark 2. To guarantee that the input of the RBF neural network stays in the effective range of the
Gaussian basis function, the center coordinate vector (µβr,k, µβt,k) of the Gaussian basis function
should be determined by the actual range of the input value. To ensure the effective mapping of the
Gaussian basis function, the width ηβ,k of the Gaussian basis function should be set to an appropriate
value. Once the suitable parameters of the basis function are selected, the receptive fields would
be able to approximate the unknown function β(r, t). Additionally, in accordance with the chain
rule [36] of fractional derivatives, the smoothness of β(r, t) has been maintained by that of f0(r0, t).

To facilitate the subsequent analysis, ŝ is defined as the estimate of s, and the difference
between both indicates s̃ , ŝ− s, which is the estimation error. Correspondingly, by means
of the RBF neural network, the estimate of smooth function βi(r, t) by i-th UAV would be
obtained, expressed as β̂i(r, t) , φT

β (r, t)θ̂βi, and then the neural network approximation
error by i-th UAV is β̃i(r, t). Moreover, it is noteworthy that the adjustment of parameter
θ̂βi is designed by the Lyapunov stability analysis.

The RBF network is capable of accomplishing the approximation of any nonlinear func-
tion with any accuracy [38]. Meanwhile, the approximation error will appear accordingly.
The effect of it on the control precision will also be considered in the follow-up controller
design. Here, we make the following assumption in terms of the common approximation
result in [39] about the estimation error:

Assumption 3. The i-th UAV approximation error εβi of neural network estimation is bounded
and satisfies |εβi| ≤ δβi in the relevant compact set Ωβi, where δβi is an unknown positive constant.

3.2. The Approximation of Unknown Disturbances by CUDE

The subsection will explain the working principle of cascade Uncertainty and Dis-
turbance Estimator (CUDE) to achieve the approximation of unknown unmatched distur-
bances imposed on UAVs. We initially design the estimation ĝi of unknown function gi
based on Zhong’s UDE method (2004) [40], such that the control protocol ui is divided into
two parts:

ui = ui0 − ĝi, (17)

where ui0 is the nominal control input that helps the system achieve its goal.
By means of the designing process of UDE, the estimates of disturbance can be con-

structed as
ĝi = L−1{Gd(s)}(v̇i − ui), (18)

where Gd(s) is a filter to ensure the physical realizability of the system (18), and L−1

indicates the inverse Laplace transformation. Generally speaking, if the bandwidth can
cover the bandwidth range of the disturbance signal by properly designed parameters
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about Gd(s), the estimation of the unknown disturbance can be better realized. A first-order
filter that can satisfy physical realizability is adopted, namely, to reduce the computational
amount and the complexity of the controller. That is,

Gd(s) =
1

1 + τds
, (19)

where τd is the time scale parameter of the above-mentioned first-order filter and a small
positive value, which determines the approximation performance of the UDE by appropri-
ate selection. The ultimate goal is to cover the spectrum of the unknown part gi with the
bandwidth of the filter Gd(s). Hence, the estimates of unknown smooth function ĝi can be
written as

ĝi(ri, vi, t) = L−1
{

1
1 + τds

}
(v̇i(t)− ui0(t) + ĝi(ri, vi, t)). (20)

Convert (20) to the frequency domain

Ĝi(s) =
1

1 + τds
(sVi(s)−Ui0(s) + Ĝi(s)), (21)

then, simplify it to get

Ĝi(s) =
1

τds
(sVi(s)−Ui0(s)). (22)

if reconverted to the time domain, one gets

ĝi(ri, vi, t) =
1
τd
(vi(t)− vi(0)−

∫ t

0
ui0(τ)dτ), (23)

where vi(0) is the initial velocity of the UAV, and the nominal control input ui0 would be
known, whose specific form of expression through the subsequent design.

From the above, one can conclude that the basic principle of UDE is to utilize the
filtered information of the state variable and control input in the closed-loop (here it is
Equation (17)) to construct an estimator that gradually approaches the actual value of the
unknown part therein. Using a similar idea, we can design the estimation f̂i of fi, where,
according to the aspect of view of backstepping control, the state αi(t) in (24) can be taken
as a virtual control input αi(ui, t), which is determined by the actual controller ui from (17),
and can be divided into two parts:

αi(t) = αi0(t)− f̂i(ri, t), (24)

where αi0 is the nominal input of the virtual controller guaranteeing the convergence of
state ri to its desired value. With the help of (19), the estimate of the uncertain part fi is
similarly designed by

f̂i(ri, t) = L−1
{

1
1 + τds

}
(ṙi(t)− αi0(t) + f̂i(ri, t)). (25)

Through the transformation between the time domain and the frequency domain,
one gets

f̂i(ri, t) =
1
τd
(ri(t)− ri(0)−

∫ t

0
αi0(τ)dτ), (26)

where ri(0) is the initial position of the UAV, and the nominal virtual control input αi0
would be known, which is designed later.

Remark 3. Since the information of the virtual input αi0 in (24) is determined by ui, the two UDEs
for uncertainties that appeared in the differential functions are cascades. Thus we call them the
cascade UDEs.
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Taking fi as an example, we analyze the properties of f̂i and put forward the subse-
quent analysis and proof of the corresponding Lemma. The unknown smooth function
fi(ri, t) = ∆1ri(t) + κi1(t) is given from the previous statement. The components of this
function can be expressed as ∆1Ri(s) and Ki1(s) in the frequency domain, so the function
in the frequency domain Fi(s) = ∆1Ri(s) +Ki1(s). Through this design, the uncertain parts
fi and the corresponding estimates f̂i are represented in the frequency domain.

F̂i(s) = Gd(s)Fi(s). (27)

The estimation error f̃i is defined in the time domain as

f̃i = fi − f̂i, (28)

we then substitute (19) and (28) into (27),

τdsF̃i(s) + F̃i(s) = τdsFi(s), (29)

then transform (29) into the time domain and find the relationship between the estimation
error f̃i and fi

˙̃fi = −
1
τd

f̃i + ḟi. (30)

Lemma 1 (Lemma 3 in [41]). Under Assumption 1, relationship (30) possesses the three properties
shown below:

(1) f̃i is uniformly bounded as t tends to infinity and satisfies

lim
t→∞

∣∣ f̃i(ri, t)
∣∣ ≤ τd f̄d, (31)

where f̄d is a bounded positive value.
(2) For ∀t ≥ 0, f̃i is limited by max(

∣∣ f̃i0
∣∣, τd f̄d), which satisfies∣∣ f̃i(ri, t)

∣∣ ≤ max(
∣∣ f̃i(0)

∣∣, τd f̄d), ∀t ≥ 0, (32)

where f̃i(0) is the initial estimation error while t = 0.
(3) if the function fi is decaying, and lim

t→∞
ḟi(ri, t) = 0, then

lim
t→∞

f̃i(ri, t) = 0. (33)

Remark 4. Considering that unknown smooth functions fi and gi have similar properties, we
use the same first-order inertial filter Gd(s) based on UDE, and the derivative of the final es-
timate satisfies ˙̃gi = − 1

τg
g̃i + ġi. Moreover, Lemma 1 is also applied for gi; that is, it satis-

fies lim
t→∞
|g̃i(ri, vi, t)| ≤ τd ḡd, where g̃i is uniformly bounded with ultimate bound τd ḡd while

t tends to infinity; |g̃i(ri, t)| ≤ max(|g̃i0|, τd ḡd), ∀t ≥ 0; and if lim
t→∞

ġi(ri, vi, t) = 0, then

lim
t→∞

g̃i(ri, vi, t) = 0.

Lemma 1 and Remark 4 reveal the relationship between the time scale parameter τd
and the estimation error f̃i. Simply speaking, a smaller time scale parameter can ensure a
smaller estimation error, but at the same time, attention should be paid to the impact of
accompanying noise.

3.3. Backstepping Controller Design

A robust adaptive control structure based on the backstepping scheme is given in this
subsection for the mixed-order systems (10) and (11) under a signed graph. Then, the fol-
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lowing coordination transformations are adopted for constructing the proposed controller,{
xi1 = ri − wir0
xi2 = vi − αi

, (34)

where xi1 is the bipartite tracking error, and xi2 represents the difference between virtual
control and true velocity.

Combining (34) and (10), one takes the derivative of xi1 and yields

ẋi1 = ṙi − wi ṙ0

= vi + fi − wiβi

= xi2 + αi + fi − wiβi.

(35)

Then, we construct a reference virtual control input αi in position-loop:

αi = αi0 − f̂i = −kreri + wi β̂i − f̂i, (36)

where kr is the control gain and f̂i is the estimate of an unknown smooth function fi.
According to the universal approximation property of NN, β̂i(ri, t) = φT

β (ri, t)θ̂βi, and

define the derivative of β̂i to be ˙̂βi, accordingly,

˙̂βi(ri, t) = φT
β (ri, t) ˙̂θβi +

∂

∂r
φT

β (ri, t)θ̂βi +
∂

∂t
φT

β (ri, t)θ̂βi, (37)

Similarly, one has
ẋi2 = v̇i − α̇i = ui + gi − α̇i, (38)

where ui is the true whole control input. In order to achieve limt→∞|vi − αi| = 0, the control
input ui can be designed as

ui = −kvxi2 − eri − kr êvi︸ ︷︷ ︸
ui1

−ĝi − ζi︸ ︷︷ ︸
ui2

+wi

.
β̂i −rec(Θi)δ̂βi︸ ︷︷ ︸

ui3

, (39)

The controller can be divided into three parts in terms of its function. The first part is
the basis controller, which is able to achieve bipartite consensus tracking control without
uncertainties and neural network approximation errors, where kr and kv are both the
control gain and êvi is the estimate of velocity error evi through replacing ṙi, ṙ0 with ˆ̇ri,
ˆ̇r0, respectively.

The second part is to compensate for the uncertainties imposed on the UAVs, where ĝi
is the estimate of unknown smooth function gi, and the derivative of f̂i holds
˙̂f i(ri, t) = 1

τd
(vi + fi)− αi0(t) under Equation (26), which is not completely known, thus its

estimates are obtained as ζi(ri, t) = 1
τd
(vi + f̂i)− αi0(t).

The third part is target oriented, where the first item is the estimation of the second
derivative of the target’s position state; the second item considers the effect of the neural
network approximation errors, Θi takes the form

Θi =
xi2

|eri + kryi|
. (40)

In addition, the elements of yi satisfy yi = ∑n
j=1
(∣∣aij

∣∣+ |bi|
)
(vi − αi0)−∑n

j=1 aij(vj − αj0).
Substituting αi and ui into the coordinate transformation (34), we get the closed-loop

error system as follows,
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ẋi1 = xi2 − kreri + f̃i + wiφ
T
β (ri, t)θ̃βi − wiεβi,

ẋi2 = −kvxi2 − eri + g̃i − 1
τd

f̃i + kr ẽvi − rec(Θi)δ̂βi.
(41)

where θ̃βi = θ̂βi − θβi represents the parameter estimation error, f̃i and g̃i represent the
disturbance estimation error and ẽvi = evi − êvi is expressed as the bipartite velocity
tracking error.

For achieving error approximation, the adaptive law is derived as follows:

˙̂θβi = −kθwiφ
T
β (ri, t)(eri + kryi),

˙̂δβi = kδ|eri + kryi|,
(42)

where kθ and kδ are adjustable adaptive gain.
To simplify the analysis, the following closed-loop error system is obtained for the

entire multi-UAV systems in a compact form; accordingly, we define that,

X1 = coln
i [x11, x12, ..., x1n]

T ,

X2 = coln
i [x21, x22, ..., x2n]

T ,

Er = coln
i [er1, er2, ..., ern]

T

ΦT
β (r, t) = coln

i [wiφ
T
β (ri, t)]T ,

θ̃β = coln
i [θ̃βi]

T ,

Ξβ = coln
i [wiεβ]

T ,

Γ = coln
i [rec(

xi2
|eri + kryi|

)δ̂βi]
T ,

F̃ = coln
i [ f̃i]

T ,

(43)

Apparently, Er = (L + B)X1, Ev = (L + B)Ẋ1 and Êv = (L + B) ˆ̇X1, where
ˆ̇X1 = coln

i [ ˆ̇ri − wi ˆ̇r0]
T = coln

i [vi + f̂i − wi ˆ̇r0]
T , and note that Ẽv = coln

i [ẽvi]. One gets
the compact form of (41) as

Ẋ1 = X2 − krEr + ΦT
β (r, t)θ̃β + F̃− Ξβ,

Ẋ2 = −kvEv − Er + kr Ẽv + G̃− 1
τd

F̃− Γ.
(44)

3.4. The Theoretical Validation of the Proposed Controller

Theorem 1. Controller ui designed by (36) with the adaptive law shown in (42), resolves the
distributed bipartite tracking control problem defined by Definition 5 under Assumption 2 if the
control gains kr, kv and the adaptive law parameters kθ , kδ satisfy:

kr > 0, kv > 0, kθ > 0, kδ > 0. (45)

Proof. The Lyapunov function is considered as:

V1 =
1
2

XT
1 (L + B)X1 +

1
2

XT
2 X2 +

1
2kθ

n

∑
i=1

θ̃2
βi +

1
2kδ

n

∑
i=1

δ̃2
βi. (46)
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Apparently, V1 is positive definite, its derivative is

V̇1 = XT
1 (L + B)Ẋ1 + XT

2 Ẋ2 +
n

∑
i=1

θ̃βi
˙̂θβi +

n

∑
i=1

δ̃βi
˙̂δβi

= XT
1 (L + B)

{
X2 + ΦT

β1(r, t)θ̃β + F̃− Ξβ − krEr

}
+ XT

2

{
−kvX2

−Er + kr Ẽv + G̃− 1
τd

F̃− Γ
}
+

1
kθ

n

∑
i=1

θ̃βi
˙̂θβi +

1
kδ

n

∑
i=1

δ̃βi
˙̂δβi

= −kr((L + B)X1)
T((L + B)X1) + XT

1 (L + B)
{

ΦT
β (r, t)θ̃β

+ F̃− Ξβ

}
− kvXT

2 X2 + XT
2 (kr Ẽv + G̃− 1

τd
F̃− Γ)

+
1
kθ

n

∑
i=1

θ̃βi
˙̂θβi +

1
kδ

n

∑
i=1

δ̃βi
˙̂δβi.

. (47)

Noting that the following inequality holds

− kr((L + B)X1)
T((L + B)X1) 6 0,

− kvXT
2 X2 6 0.

(48)

In terms of (48), (47) can be rewritten as:

V̇1 6 XT
1 (L + B)

{
ΦT

β (r, t)θ̃β + F̃− Ξβ1

}
+ XT

2 (kr Ẽv + G̃− 1
τd

F̃− Γ)

+
1
kθ

n

∑
i=1

θ̃βi
˙̂θβi +

1
kδ

n

∑
i=1

δ̃βi
˙̂δβi.

(49)

Under the definition of the bipartite tracking consensus error, it is known that

Ẽv = Ev − Êv

= (L + B)Ẋ1 − (L + B) ˆ̇X1

= (L + B)coln
i [(ṙi − wi ṙ0 − ˆ̇ri + wi ˆ̇r0)]

T

= (L + B)coln
i [( fi − wi ṙ0 − f̂i + wi ˆ̇r0)]

T

= (L + B)coln
i [
{

f̃i + wiφ
T
β (ri, t)− wiεβ

}
]T

= (L + B)
{

F̃ + ΦT
β (r, t)θ̃β − Ξβ

}
.

(50)

Combining (49) and (50), it can be derived that

V̇1 6 XT
1 (L + B)

{
ΦT

β (r, t)θ̃β + F̃− Ξβ

}
+ XT

2

{
kr(L + B)(F̃ + ΦT

β (r, t)θ̃β − Ξβ)

+ G̃− 1
τd

F̃− Γ
}
+

1
kθ

n

∑
i=1

θ̃βi
˙̂θβi +

1
kδ

n

∑
i=1

δ̃βi
˙̂δβi.
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To simplify the above inequality further, the following vectors’ form can be rewritten
as a sum formula

XT
1 (L + B)ΦT

β (r, t)θ̃β =
n

∑
i=1

wiφ
T
β (ri, t)θ̃βi eri,

XT
1 (L + B)Ξβ =

n

∑
i=1

wiεβeri,

XT
2 (L + B)ΦT

β (r, t)θ̃β =
n

∑
i=1

wiφ
T
β (ri, t)θ̃βi yi,

XT
2 (L + B)Ξβ =

n

∑
i=1

εβyi,

XT
2 Γ =

n

∑
i=1

δ̂βirec(
xi2

|eri + kryi|
)xi2,

(51)

From the result in (51), we get that

V̇1 6 XT
1 (L + B)F̃ + XT

2 (G̃−
1
τd

F̃) + krXT
2 (L + B)F̃

+
n

∑
i=1

wiφ
T
β (ri, t)θ̃βi eri −

n

∑
i=1

wiεβeri + kr

n

∑
i=1

wiφ
T
β (ri, t)θ̃βi yi

−
n

∑
i=1

krwiεβyi −
n

∑
i=1

δ̂βirec(
xi2

|eri + kryi|
)xi2

+
1
kθ

n

∑
i=1

θ̃βi
˙̂θβi +

1
kδ

n

∑
i=1

δ̃βi
˙̂δβi.

Equivalently,

V̇1 6 XT
1 (L + B)F̃ + XT

2 (G̃−
1
τd

F̃) + krXT
2 (L + B)F̃ + Dv.

Considering the adaptive law (42), one gets

Dv = −
n

∑
i=1

wiεβeri +
n

∑
i=1

wiφ
T
β (ri, t)θ̃βi (eri + kryi)

−
n

∑
i=1

krwiεβyi +
n

∑
i=1

θ̃βiwi(−φT
β (ri, t)(eri + kryi))

−
n

∑
i=1

δ̂βirec(
xi2

|eri + kryi|
)xi2 +

n

∑
i=1

δ̃βi|eri + kryi|

= −
n

∑
i=1

wiεβ(eri + kryi) +
n

∑
i=1

δ̃βi|eri + kryi| −
n

∑
i=1

δ̂βi|eri + kryi|

≤
n

∑
i=1

∣∣εβ

∣∣|eri + kryi|+
n

∑
i=1

δ̃βi|eri + kryi| −
n

∑
i=1

δ̂βi|eri + kryi|

≤
n

∑
i=1

δβi|eri + kryi|+
n

∑
i=1

δ̃βi|eri + kryi| −
n

∑
i=1

δ̂βi|eri + kryi|

=
n

∑
i=1
|eri + kryi|(δβi + δ̃βi − δ̂βi)

= 0.



Drones 2023, 7, 306 15 of 23

Under condition Dv ≤ 0, we can deduce that

V̇1 6 XT
1 (L + B)F̃ + XT

2 (G̃−
1
τd

F̃) + krXT
2 (L + B)F̃. (52)

From the previous description, it is known that matrix L + B is positive definite
and symmetric, on the basis of the Rayleigh–Ritz theorem, we obtain that λminXT

1 X1 ≤
XT

1 (L + B)X1 ≤ λmaxXT
1 X1, so the following inequality exists

XT
1 (L + B)(L + B)X1 ≤ λ2

maxXT
1 X1 ≤ λ2

max
λmin

XT
1 (L + B)X1,

XT
2 (L + B)(L + B)X2 ≤ λ2

maxXT
2 X2,

(53)

where λmax and λmin are the maximum and minimum eigenvalues of matrix L + B.
At the same time, the Lyapunov function V1 can be written as V1 = XT

2 X2 + ∆2, where

∆2 > 0, so there is a norm ‖X2‖ 6
√

XT
2 X2 + ∆2 6

√
2V1. Therefore, V̇1 can be further

written as
V̇1 6 XT

1 (L + B)F̃ + XT
2 (G̃−

1
τd

F̃) + krXT
2 (L + B)F̃

6
∥∥∥XT

1 (L + B)
∥∥∥∥∥F̃

∥∥+ ∥∥∥XT
2

∥∥∥∥∥∥∥G̃− 1
τd

F̃
∥∥∥∥

+
∥∥∥XT

1 (L + B)
∥∥∥∥∥F̃

∥∥.

(54)

Under Lemma 1, by suitably lowering the value of τd, the estimation error f̃i and g̃i of
CUDE can be decreased to zero (or a negligibly tiny amount), noting that

∣∣ f̃i
∣∣ ≤ f̄h, and

f̄h = max
{∣∣ f̃i0

∣∣, τd f̄d
}

, accordingly, one exists
∣∣∣g̃i − 1

td
f̃i

∣∣∣ ≤ κh.

V̇1 6
√

2n f̄h

√
λ2

max
λmin

V1 +
√

2nκh
√

V1 +
√

2n f̄hλmax
√

V1

= Ωh
√

V1.
(55)

where Ωh =
√

2
λmax2
λmin

n f̄h +
√

2nκh +
√

2n f̄hλmax.
Consequently,

dV1√
V1

6 Ωhdt, (56)

√
V1(t)−

√
V1(0) 6

1
2

Ωh(t− t0), (57)

where it is obvious that Ωh is a bounded positive value, and inequality (57) is acquired by
integrating inequality (56) over the interval [0, t]. Accordingly, X1 and X2 cannot diverge
in finite time. Considering Lemma 1 in article [42], we can obtain that limt→∞X1 = 0 and
limt→∞X2 = 0. Then according to Definition 5 and Equation (44), limt→∞ |ri − wir0| → 0
for all i ∈ I . To sum up, Theorem 1 is proven.

4. Simulations

In this section, to demonstrate the availability and effectiveness of the introduced
control scheme, we will utilize numerical simulations for the robust bipartite tracking
control to evaluate the theoretical results. Consider five connected UAVs and an additional
target with the signed graph shown in Figure 1, the signed graph is structurally balanced,
containing a spanning tree and only the 1-st UAV is able to obtain the position information
of the target directly. In order to facilitate the observation of experimental results, this paper
only shows the one-dimensional status information from the UAV.

From the signed graph, it is known that the UAV group is divided into two groups,
V1,V2, where {v0, v1, v2} ∈ V1 and {v3, v4, v5} ∈ V2. The UAVs’ dynamics (10) with
nonlinear components are set as in Table 2.
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Figure 1. The signed graph among the mixed-order system. The convergence relations among
the UAVs are represented by the solid edges, and the divergence relations among the UAVs are
represented by the dotted edges. The agent indexed 0 is the target and the others are UAVs.

Table 2. Five UAVs’ dynamics.

Index UAVs’ Dynamics

UAV 1 ṙ1 = v1 +
cos(−r1)

t2+1 , v̇1 = u1 + 0.1 sin(r1 + v1)

UAV 2 ṙ2 = v2 + e−t2
+ sin r2, v̇2 = u2 − 0.2r2e−v2

2

UAV 3 ṙ3 = v3 + e−|r3|t − 1, v̇3 = u3 − r3 sin(v3)− cos(−r3)
UAV 4 ṙ4 = v4 + e−r4 sin(r4t), v̇4 = u4 + e−r4 cos(v4)− 1
UAV 3 ṙ5 = v5 − 5r5 + sin(r5t), v̇5 = u5 + sin(r5v5)

To verify the effectiveness of the bipartite tracking control scheme proposed in (39)
for mixed-order heterogeneous systems, we consider the different fractional-order models,
which are described with different fractional-order q and dynamics model in Table 3. We
chose Case 1 as the basic experiment to verify the proposed method. In this experiment,
the fractional order q is equal to 0.4. The dynamics model of the target makes the state
trajectory of the target change gradually over time. In Case 2, the same fractional order
is selected as in Case 1, but the target’s dynamics model is different. In Case 2, the state
trajectory of the target changes dramatically. The experimental comparison between Cases
1 and 2 can verify that the algorithm can adapt to tracking tasks under different target
motion trajectories. In Cases 3 and 4, cases with fractional order greater than zero and less
than zero are selected, respectively. These two supplementary experiments prove that the
proposed method can cope with tracking tasks under different fractional orders of targets.

Table 3. Simulation results with different fractional orders q and dynamics.

Case q Target’s Dynamics Dq
t r0

Case 1 0.4 Dq
t r0 = −0.45r0 + sin(t0.6) + 0.02t + 2

Case 2 0.4 Dq
t r0 = −e(−|r0|)0.5

+ sin(2r0) + sin(t0.6) + 0.02t + 2
Case 3 0.8 Dq

t r0 = −0.5r3
0 − e−r0 + sin(t0.6) + 0.02t + 2

Case 4 1.1 Dq
t r0 = sin(t0.6) + 0.02t + 2

Only the first UAV obtains the target’s information with the weight b1 = 2.0, the rest
of the UAVs cannot receive it directly, hence b2 = b3 = b4 = b5 = 0, and the signature
matrixW denotesW = (1, 1,−1,−1,−1)T .

Here we rewrite the Gaussian basis functions (16) for the estimation of βi(r, t) by the
i-th UAV:

φT
βi(r, t) = e

−
(r−µβir,k )

2+(t−µβit,k )
2

η2
βi,k , k ∈ {1, 2, . . . , hβi}, (58)

where the number of perception nodes is hβi = 17× 17, the basis function’s widths are set
as ηβi,k = 6 and the centers (µβir,k, µβit,k) are uniformly distributed in [−25, 25]× [0, 50].
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Under the conditions in Theorem 1, the control gain is chosen as kr = 0.5, kv = 0.5,
let UDE parameter τd = 0.01 and the parameter of the estimator’s update control law be
defined as kβ = 2, kδ = 0.001. The initial value related to the position of the UAVs are:[

r1 r2 r3 r4 r5
v1 v2 v3 v4 v5

]
(0) =

[
1.6 −1 1 0.5 −1.5
0 0 0 0 0

]
.

and r0(0) = 2, θ̂βi(0) = 0, δ̂βi(0) = 0.
In the simulations, we first perform four cases with different fractional-order and

target’s dynamics models. The relevant evaluation standards and specific evaluation
indicators include (1) whether all the UAVs diverge into two subgroups, one subgroup
tracks the trajectory of target, the other tracks the symmetrical trajectory with respect to
the origin; (2) whether all the local bipartite tracking errors converge gradually to near
zero; (3) whether the trajectories of neural network approximation error on the unknown
smooth function of target converge gradually to near zero; (4) whether the trajectories of
UDE estimation error on the unknown smooth function of UAV model converge gradually
to near zero.

Case 1: Figure 2a–d are depicted to show the results of the bipartite tracking control
with fractional-order q = 0.4. From Figure 2a, it is apparent that the bipartite consensus
tracking is well achieved and diverged into two sub-groups, steered by the designed
controller, the UAVs in a structurally balanced network display symmetry of their paths
pursuing or away from the target with respect to the origin. In the network, we can observe
UAVs 1 and 2 follow the trajectory of the target’s path, and the subgroup comprised of
UAVs 3, 4 and 5 follow a symmetric trajectory, which corresponds to the theoretical analysis
on signed graph {v0, v1, v2} ∈ V1 and {v3, v4, v5} ∈ V2. The trajectory of NN estimate error
β̃i(r0, t) is shown in Figure 2b, which implies the estimation error eventually converges
to a very small value approaching zero. The control input result is shown in Figure 2c,
which ends up with regular continuous fluctuations within a certain range, and Figure 2d
shows that the estimation error of CUDE tends to be zero, which demonstrates the validity
and accuracy of the estimator. Due to the good estimation of the new scheme, NNCUDE,
we achieve a better compensation performance for the existing uncertainties. Accordingly,
the estimation error of the uncertain function finally converges to an almost negligibly
small value.

Time(s)

(a)

Time(s)

(b)

Figure 2. Cont.
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Time(s)

(c)

Time(s)

(d)

Figure 2. q = 0.4; (a) The trajectories of the UAVs ri(t) with one target r0(t); (b) The trajectories
of NN estimation error β̃(t); (c) The control input ui(t); (d) The trajectories of UDE estimation
error g̃i(ri.vi, t).

Case 2: Like Case 1, the same fractional-order size is given, but there are different
target dynamics. It can be seen from the simulation results in Figure 3a that the bipartite
tracking control is implemented, and the multiple UAVs and targets are diverged into two
sub-groups {v0, v1, v2} ∈ V1 and {v3, v4, v5} ∈ V2, whereas the trajectory of targets changes
more dramatically from t = 20 to t = 30. Furthermore, large fluctuations in target affect the
stability of the UAVs’ tracking, and in this process, the trajectories of the UAVs also have
certain fluctuations. Correspondingly, the control input, neural network estimation error
and bipartite consensus error also arise at the corresponding time, respectively.

Time(s)

(a)

Time(s)

(b)

Time(s)

(c)

Time(s)

20 35 50
-0.05

0

0.05

(d)

Figure 3. q = 0.4; (a) The trajectories of the UAVs ri(t) with one target r0(t); (b) The trajectories
of bipartite tracking error ei; (c) The control input ui(t); (d) The trajectories of UDE estimation
error g̃i(ri.vi, t).

Remark 5. When the trajectory of the target changes dramatically, that is, the derivative is relatively
large, there will be a temporary oscillation phenomenon. The reason is that the neural network
estimation requires the trajectory of UAVs to be as smooth as possible.
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Case 3: As shown in Figure 4, this example considers the change in both fractional-
order size and the target’s fractional-order dynamics at the same time. From the experi-
mental results, it can be seen that all the UAVs achieve the bipartite consensus tracking,
and the bipartite consensus error approximates to zero.

Time(s)

Figure 4. q = 0.8; The trajectories of the UAVs ri(t) with one target r0(t).

Case 4: Like Case 3, we change the targets in the fractional-order value and dynamics,
where the change in the trajectory amplitude is bigger, but with no chattering phenomenon
in Figure 5. Therefore, the chattering phenomenon will only appear in a certain range at
the same time as the bipartite consensus error and estimation error achieve convergence.

Time(s)

Figure 5. q = 1.1; The trajectories of the UAVs ri(t) with one target r0(t).

To sum up, according to the simulation results and analysis, by applying the designed
control protocol and selecting suitable control parameters, it is demonstrated that the
bipartite consensus tracking can be achieved and the bipartite tracking errors converge to a
small bounded set under different fractional-order target models and different UAV models.

In addition, in order to verify the superiority of the algorithm, we compared the
proposed method (NNCUDE) with the conventional method. Considering the rationality
of comparison, we take neural network (NN) as the comparison method in this paper.
Specifically, the neural network is not only utilized to estimate the unknown model part of
the target but also to deal with the disturbance existing in the UAV model, including fi(ri, t)
and gi(ri, vi, t). Since the application of the UDE method requires accurate modeling, we
cannot solve the problems studied in this paper by only using UDE. The corresponding
results are shown in Figures 6 and 7. The superiority is mainly reflected in the position
tracking accuracy and controller smoothness.
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(a)

(b)

Figure 6. The experimental conditions are the same as Case 1; (a) The trajectories of bipartite tracking
error ei by NNCUDE; (b) The trajectories of bipartite tracking error ei by NN.

The experimental conditions are the same as Case 1, Figure 6 shows the trajectories
of bipartite tracking error ei by the NNCUDE and NN methods, respectively. As can be
seen from Figure 6, the NN-based method will cause some high-frequency chattering
during target tracking, and the tracking error is obviously larger than the result obtained by
NNCUDE. Figure 7 shows the trajectories of control input ui(t) obtained by the NNCUDE
and NN methods, respectively. From the results, it indicates that the controller also appears
to have the chattering phenomenon, which can lead to deviations and overshoots in the
system results, and in severe cases, to instability. In addition, it may also cause damage to
physical components such as mechanical structures. Comparatively, our proposed method
effectively alleviates the chattering phenomenon.

(a)

Figure 7. Cont.
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(b)

Figure 7. The experimental conditions are the same as Case 1; (a) The control input ui(t) by NNCUDE;
(b) The control input ui(t) by NN.

5. Conclusions

In this paper, the robust cooperative control of UAV swarms problem is investigated
for dual-camp divergent tracking of a heterogeneous target over a signed graph. A novel
controller, NNCUDE, is designed for nonlinear systems subjected to unmatched uncertain-
ties and disturbances. The target with unknown nonlinear fractional-order dynamics is
considered, which is resolved using the neural network approximation approach in which
fewer learning parameters need to be adjusted online. The influence of unmatched uncer-
tainties related to the dynamics of UAVs is compensated by cascade UDE. By employing
the Lyapunov function and some known theorems, proof of the proposed control scheme is
derived. Finally, several numerical simulations are performed to testify to the innovative
method’s availability in theory and practice, the bipartite consensus tracking based on
multi-agent theory can be achieved and the bipartite tracking errors converge to a small
bounded value by selecting suitable control gains and adaptive parameters.
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