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Abstract: UAV swarm applications are critical for the future, and their mission-planning and
decision-making capabilities have a direct impact on their performance. However, creating a dynamic
and scalable assignment algorithm that can be applied to various groups and tasks is a significant
challenge. To address this issue, we propose the Extensible Multi-Agent Deep Deterministic Policy
Gradient (Ex-MADDPG) algorithm, which builds on the MADDPG framework. The Ex-MADDPG
algorithm improves the robustness and scalability of the assignment algorithm by incorporating
local communication, mean simulation observation, a synchronous parameter-training mechanism,
and a scalable multiple-decision mechanism. Our approach has been validated for effectiveness and
scalability through both simulation experiments in the Multi-Agent Particle Environment (MPE)
and a real-world experiment. Overall, our results demonstrate that the Ex-MADDPG algorithm
is effective in handling various groups and tasks and can scale well as the swarm size increases.
Therefore, our algorithm holds great promise for mission planning and decision-making in UAV
swarm applications.

Keywords: UAV swarm; task assignment; deep reinforcement learning; Ex-MADDPG

1. Introduction

With their advantages of high altitude, low price, and strong substitutability, un-
manned aerial vehicle (UAV) swarms are becoming increasingly prevalent in daily life.
UAV swarm refers to a large number of UAVs with weak autonomous capability that can
effectively perform complex tasks such as multi-aircraft formation and cooperative attack
through information interaction and autonomous decision-making.

UAV swarm target-attacking is a complex process, including autonomous path plan-
ning, target detection, and task assignment, and it is almost impossible to design one
algorithm to complete the whole combat process mentioned above. Therefore, this paper
simplifies the whole UAV swarm target-attacking process into two parts: target detection
and target assignment. The target-detection and target-assignment abilities of the UAV
swarm affect the quality of mission accomplishment and are the most important parts of
the swarm target-attacking system. However, different tasks have significant differences in
operational objectives, time constraints, mission requirements, and other aspects. Simul-
taneously, sub-task coupling, self-organizing, and the large-scale nature of swarms pose
great challenges for the mission planning and decision-making of the UAV swarm.

In recent years, the great potential of reinforcement learning (RL) within the swarm
intelligence domain makes it an important approach to studying UAV swarm task assign-
ment. However, RL task-assignment algorithms applied to UAV swarms still face a series
of technical bottlenecks such as low sampling efficiency, difficult reward function design,
poor stability, and poor scalability, so it is especially critical for scalable and robust task
planning and decision-making algorithms to be designed for UAV swarms. Therefore, we
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propose a scalable task-assignment method to deal with the dynamic UAV swarm task
planning and decision-making problem in this paper.

1.1. Related Works

The UAV swarm task planning problem can be formulated as a complex combinatorial
optimization problem [1] considering time constraints, task decomposition, and dynamic
reallocation, which make it an NP-hard problem. The algorithms for task assignment are
generally divided into optimization algorithms, heuristic algorithms, swarm intelligence
algorithms, contract network, auction algorithms, and reinforcement learning algorithms.

The optimization algorithm aims to obtain the optimal solution according to the
objective function under constraint conditions. Common optimization methods include
enumeration algorithms, dynamic programming algorithms [2], integer programming
algorithms [3], etc. The enumeration algorithm is the simplest task assignment algorithm
and can only be used to solve problems of small size and low complexity. The dynamic
programming algorithm is a bottom-up algorithm that establishes several sub-problems
from the bottom and solves the whole problem by solving the sub-problems. The integer
programming algorithm is the general name of a set of algorithms for solving integer
programming problems, and it includes the Hungarian algorithm [4], the branch and
bound method, etc.

The heuristic algorithm is an algorithm based on intuition or experience that aims to
find feasible solutions to complex problems in a limited time. Common heuristic algorithms
include the genetic algorithm [5] (GA), tabu search, simulated annealing [6] (SA), etc. Take
GA as an example. GA was proposed by John Holland of the United States in the 1970s.
The algorithm simulates genetic evolution in nature to search for the optimal solution.
Wu et al. [7] combined the optimization idea of SA to improve the global optimization
effect and convergence speed of GA. Martin et al. [8] dynamically adjusted the parameters
of the genetic algorithm according to the available computational capacity, thus realizing
the trade-off between computation time and accuracy.

The swarm intelligence algorithm is rooted in the concept of swarm intelligence,
which is observed in nature. This algorithm addresses the task-assignment problem by
exploring all feasible solutions in the problem space, including popular techniques such
as Ant Colony Optimization Algorithm (ACO), Particle Swarm Optimization Algorithm
(PSO), Grey Wolf (GW), etc. ACO mimics the foraging behavior of ants to determine an
optimal solution [9]. Gao et al. [10] introduced a negative feedback mechanism to hasten
the convergence of ACO, which has proved to be advantageous in solving large-scale
task-assignment problems. Du et al. [11] devised a role-based approach for the ant colony
to prioritize different search strategies, thus enhancing the efficiency of finding the global
optimal solution. PSO, a random search algorithm that emulates bird feeding behavior, has
been employed to tackle the task assignment problem [12,13]. Chen et al. [14] proposed
a guided PSO approach that has been demonstrated to yield optimal task-assignment
schemes, thereby improving the cooperative combat capability of multiple UAVs.

The contract network algorithm has been proposed to solve the workload balancing
problem among unmanned aerial vehicles (UAVs) through a “bidding winning” mech-
anism [15]. Chen [16] presented a distributed contract network-based task assignment
method to solve the communication-delay-constrained task assignment problem in multi-
ple UAVs. The auction algorithm [17] mimics the human auction process to optimize the
benefits of the UAV swarm system [18]. Liao [19] proposed a dynamic target-assignment
algorithm using multi-agent distributed collaborative auctioning. Li et al. [20] introduced a
result-updating mechanism where new and old tasks are reauctioned together, resulting in
the most beneficial replanning results while satisfying real-time requirements. The effec-
tiveness of this algorithm was demonstrated by the experimental results.

In recent years, deep RL (DRL), which combines RL and deep learning (DL), has
emerged as an important research area in UAV control and decision-making. DRL alleviates
the dimension explosion problem that easily occurs in traditional RL and has made great
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breakthroughs in areas such as robot control [21–23], scheduling optimization [24,25],
and multi-agent collaboration [26–29]. Ma [30] proposed a task-assignment algorithm
based on Deep Q Network (DQN) to support UAV swarm operations, which significantly
improves the success rate of UAV swarm combat. Huang [31] combines DQN with an
evolutionary algorithm to optimize task-assignment results of traditional algorithms and
can obtain assignment results dynamically.

In short, heuristic and swarm intelligence algorithms solve problems faster but pro-
duce suboptimal solutions that have poor scalability and flexibility. The improved dis-
tributed algorithms can only handle specific problems. Contract network and auction
algorithms have high robustness and scalability, but both rely heavily on communication
and computing capacities with poor flexibility. As for DRL, as the group size increases, there
are problems such as spatial linkage of action states, dimensional explosion, and difficulty
in determining the reward function.

1.2. Contribution

According to the aforementioned investigations, this paper presents Ex-MADDPG to
solve dynamic task assignment problems for UAV swarms. The main distinguishing advan-
tages of our algorithm are easy training, good scalability, excellent assignment performance,
and real-time decision-making. We summarize the main contributions as follows.

(1) We construct an extensible framework with local communication, a mean simulation
observation model, and a synchronization parameter training mechanism to meet the
scalability capability so that the strategies from small-scale system training can be
directly applied to large-scale swarms.

(2) Due to the poor assignment performance of the traditional DRL algorithm with
increasing system scale, a multiple-decision mechanism is proposed to ensure the
assignment performance of a large UAV swarm to perform complex and diverse tasks.

(3) The practicality and effectiveness of the proposed Ex-MADDPG algorithm have been
verified through simulation experiments carried out on the MPE simulation platform
and a real-world experiment with nine drones and three targets. The results demon-
strate that the proposed algorithm outperforms traditional task-assignment algorithms
in various performance indicators, including task completion rate, task loss, number
of communications, and decision time.

The paper is structured as follows. First, we describe the basic theory and background
of DRL in Section 2. Then, the proposed method for the dynamic extensible task assignment
problem is detailed in Section 3. Afterward, the efficiency of the proposed algorithm is
verified in Sections 4 and 5. Finally, we draw the conclusion and outline possible future
directions in Section 6.

2. Deep Reinforcement Learning Background

RL is a machine learning method for learning “what to do” to maximize utility.
The agent must learn an optimal policy in the current situation through trial and error. Most
RL algorithms are based on Markov Decision Processes (MDPs) for theoretical modeling,
derivation, and demonstration. Figure 1 shows the interaction process between the agent
and the environment in MDPs.
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Figure 1. Interaction Process between Agent and Environment.
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In MDPs, the decision-making process is described as the following quads:

(S, A, P, R) (1)

where S is the state set, A is the action set, S× S× A→ [0, 1], R is the expected rewards of
state–action, S× A→ R, and P is the state transition function.

p
(
s′ | s, a

)
= Pr{St | St−1, At−1}
= ∑

r∈R
P
(
s′, r | s, a

) (2)

In a UAV swarm system, a UAV observes a certain state St ∈ S of the environment,
then chooses an action At ∈ A according to that state. In the next moment, according to
the different selected action, the UAV will obtain a reward Rt+1 ∈ R from the state transfer
function P and enters a new state St+1. This process can be repeated to obtain the following
Markov decision sequence:

S0, A0, R1, S1, A1, R2, S2, A2, S3, · · · (3)

In 1989, Watkins [32] proposed the Q-learning algorithm by combining the time series
difference learning method and optimal control, which is a great milestone for RL. In 2013,
Mnih [33] proposed DQN by combining RL and DL and achieved the top level of human
performance in a classic Atari game. In the DRL algorithm, Lillicrap [34] proposed a
new algorithm that combines the DQN and Policy Gradient (PG) algorithm named Deep
Deterministic Policy Gradient (DDPG) to solve the control problem in continuous action
space effectively. The framework of DDPG is shown in Figure 2. DDPG samples the
distribution of actions by improving the policy µ to obtain the specific action A. At this
point, the reward function R(s, a) is determined. The deterministic policy is µθ : S → A,
and its maximum objective function is:

J(θ) = Es∼pµ [R(s, a)] (4)
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Figure 2. DDPG Algorithm Framework.

The corresponding gradient is

∇θ J(θ) = Es∼D

[
∇θµθ(a | s)∇aQµ(s, a)|a=µθ(s)

]
(5)

Equation (5) depends on ∇aQµ(s, a), and the action space of the DDPG algorithm
must be continuous.

The critic network is updated as follows:

L(θ) = Es,a,r,s′
[
(Qµ(s, a)− y)2

]
y = r + γQµ′(s′, a′

)∣∣∣
a′=µ′

θ′ (s
′)

(6)
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where µ is the actor prediction network and µ′ is the target network. The gradient of the
objective function of the actor network is:

∇θ J(µ) = Es,a∼D

[
∇θµ(a|s)∇aQµ(s, a)|a=µ(s)

]
(7)

The loss function is:
L(µ) = −Qµ(s, a) (8)

Unlike the situation of single-agent training, the change in environment is not only
related to the actions of the agent itself, but also related to the actions of other agents and
the interaction between agents, which leads to the instability of multi-agent training. Based
on the DDPG algorithm, Lowe [35] extended it to the case of multiple agents and proposed
the MADDPG algorithm. It adopted a centralized training and distributed execution
framework, as shown in Figure 3. It uses global information to guide the training of
multi-agent, while in the process of execution, the agent will only make decisions based
on its own observations. It greatly improves the convergence speed and training effect of
the algorithm.
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Figure 3. Centralized Training Distributed Execution Framework.

Considering N agents, each agent’s policy parameters can be written in the follow-
ing form:

θ = {θ1, θ2, θ3, · · · , θN} (9)

Its policy is
π = {π1, π2, π3, . . . , πN} (10)
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According to the PG algorithm, the gradient of the expected return J(θi) = E[Ri] for
agent i can be obtained:

∇θi J(θi) = Es∼pµ ,ai∼πi [L(θi)]

L(θi) = ∇θi log πθi (ai | oi)Qπ
i (x, a1, · · · , aN)

(11)

Qπ
i (x, a1, · · · , aN) is a centralized action–value function. The input consists of the

state x, and the action a1, · · · , aN of all agents. The state x can be simply composed of the
observations of all agents. Each agent can design a reward function independently and
learn independently to achieve competitive, cooperative, or hybrid policies.

Similar to DDPG, its policies are

µ = {µ1, µ2, µ3, . . . , µN} (12)

The parameters of the policies are

θ = {θ1, θ2, θ3, · · · , θN} (13)

The gradient of the objective function is

∇θi J(µi) =

[
Ex,a ∼D∇θi µi(ai | oi)∇ai Q

µ
i (x, a1, . . . , aN)

∣∣∣
ai=µi(oi)

]
(14)

The experience replay buffer D contains (x, x′, a1, · · · , aN , r1, · · · , rN), which records
the experience of all agents. The loss function of the actor network is

L(µi) = −Qµ
i (x, a1, · · · , aN) (15)

Accordingly, the critical network Qµ
i is updated as follows:

L(θi) = Ex,a,r,x′
[(

Qµ
i (x, a1, . . . , aN)− y

)2
]

y = ri + γQµ′

i
(
x′, a′1, . . . , a′N

)∣∣∣
a′j=µ′j(oj)

(16)

where µ′ =
{

µθ′1
, . . . , µθ′N

}
is the policy target network and θ′i is the parameter of network i.

The MADDPG algorithm provides a common centralized training and distributed
execution framework in multi-agent systems, as shown in Figure 3. However, the input
dimension of the critical network will expand rapidly with the increase in the number
of agents. Therefore, MADDPG cannot be applied to large-scale agent scenarios directly.
Meanwhile, MADDPG may fail when the training and application scenarios are different.
Based on the above discussion, this paper will solve the problems with the MADDPG
algorithm and propose an extensible UAV swarm task assignment algorithm.

3. Extensible Task Assignment Algorithm of UAV Swarm

This section designs a scalable UAV swarm task assignment algorithm based on the
following scenarios, which is trained on a small number of agents but can be directly
applied to a larger UAV swarm system with guaranteed task assignment performance.

(1) The UAV swarm searches for an unknown number of targets in a given area, using
the Boids [36] algorithms to avoid obstacles during exploration.

(2) The UAV is the ammunition to attack the detected target.
(3) Each target needs multiple UAVs to destroy.

In this section, we design a local communication model and a mean simulation ob-
servation model to reduce the computational burden of the basic MADDPG algorithm.
Meanwhile, we propose a parameter synchronization training mechanism, which guaran-
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tees that the training network can be used in more UAVs directly. To ensure the performance,
this paper proposes a multi-task assignment decision process. The system framework of
the proposed Ex-MADDPG algorithm is shown in Figure 4, where letters A–F indicate the
UAV swarm and the stars indicate the targets.
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Figure 4. Extensible Task-Assignment Algorithm System Framework.

3.1. Local Communication Model

To ensure that the algorithm can be used in a large-scale UAV swarm system, this
paper assumes that each agent can only receive partial information from its neighboring
agents. The local communication model followed by each agent is designed as shown in
Equation (17):

cout
i =

[
at, posi, posi,goal

]
(17)

cin
i =

{
cout

j agentj in Cagenti

0 agentj not in Cagenti

(18)

where cout
i is the communication message sent from the agent i; at is a bool variable,

indicating whether the agent i is in the ready attack state. posi is the position of the agent i;
posi,goal is target positions found by the current agent i; cout

j is the release information of

agent j; cin
i is the information received by the agent i; Cagenti refers to the communication

range of agent i. An example of the local communication model is shown in Figure 5.
The agent only receives messages within its communication range, such as A and B. If two
agents are not within each other’s communication range, such as B and C in Figure 5, they
will not communicate.
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CD
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Figure 5. Schematic Diagram of Communication Mode.

3.2. Mean Simulation Observation Model

Aiming at the problem that the observation dimension changes with the scale of the
UAV swarm, which leads to the failure of the DRL algorithm, this paper proposes fixed-
dimension observation values to solve this problem. Compared with the Long Short-Term
Memory (LSTM) method proposed by Zhou Wenqin [37], fixed dimension observation
values are more stable in environments with huge changes. The design observation model
is a mean simulation observation model, as shown in Equation (19):

obsi =
[
n, posi, posmean, posgoal

]
(19)

The agent receives the target assignment n according to local communication and
dynamically adjusts its assignment strategy according to n. Its position posi, the average
position of the surrounding agents posmean, and the target position posgoal allow the
agent to complete the target assignment based on its own observations. Meanwhile,
the dimensions of the observation will not change when the number of surrounding agents
changes dynamically.

At the same time, n is designed as a simulation quantity for large UAV swarms,
where n is simulated as a random number. Through the parameter n, the situation of
a large number of UAVs around a single UAV can be simulated. By training a small
number of UAVs, an algorithm suitable for a large number of scenarios can be obtained.
The mean simulation observation model effectively reduces the computing power and
time consumed by training a large number of UAV task assignment algorithms and solves
the disadvantage that the trained algorithms can only be applied to a fixed number. In
subsequent experiments, it can be proved that the algorithm using the mean simulation
observation model greatly improves the scalability of the MADDPG algorithm.

3.3. Swarm Synchronization Training

In traditional multi-agent reinforcement learning training processes, the parameters
of the agents are different, so the trained agents cannot be applied to systems of different
scales. After the training is completed, the strategy of a single agent is often incomplete
and needs the cooperation of other agent strategies. This training method can complete
most multi-agent tasks. When considering the scalability, this training method will fail.

Inspired by the characteristics of bee colony systems, this paper designs a training
mechanism called a swarm synchronization training mechanism, which is shown in Figure 6,
to achieve scalability. Unlike the traditional reinforcement learning training process, all agent
parameters are synchronized every certain number of training steps. Under the mean value
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simulation observation model obsi, action value Aci, and the UAV swarm synchronization
training mechanism, we obtain the gradient of the objective function:

∇θi J(µi) =Ex,Ac∼D

[
∇θi µi(Aci | obsi)∇Aci Q

µ
i (x, Ac1, . . . , AcN)

∣∣∣
Aci=µi(obsi)

]
(20)

where x = [obs1, . . . , obsN ] is the collection of the observations for each agent. The loss
function of the actor network is rewritten in Equation (21):

L(µi) = −Qµ
i (x, Ac1, · · · , AcN) (21)

The update method of critical network Qµ
i is formulated as Equation (22):

L(θi) = Ex,Ac,r,x′
[(

Qµ
i (x, Ac1, . . . , AcN)− y

)2
]

y = ri + γQµ′

i
(
x′, Ac′1, . . . , Ac′N

)∣∣∣
Ac′j=µ′j(obsj)

(22)

where µ′ =
{

µθ′1
, . . . , µθ′N

}
is the actor target network, θ′ is the actor target network parame-

ter, ω is the critical network parameter, and ω′ is the critic target network parameter. After a
certain number of steps, we synchronize the parameters of the actor and critic network:

θi_new =
∑N

j=1 θj

N
, θ′i_new =

∑N
j=1 θ′j
N

ωi_new =
∑N

j=1 ωj

N
, ω′i_new =

∑N
j=1 ω′j
N

(23)

Synchronization 
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Extract all agent parameters

Update all agent parameters
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No Yes

Final policy
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DD
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C
A

D

Figure 6. Swarm Synchronization Training Mechanism.

When the training process is finished, all agents have the same “brain”, which means
the same parameters. The final strategy µ can be directly applied to any scale of a UAV
swarm system. Thus, Ex-MADDPG with a synchronization training mechanism solves the
problem of applying the algorithm to large-scale agents.

3.4. Extensible Multi-Decision Mechanism

To ensure the performance of dynamic task assignment, this paper proposes a multi-
decision mechanism to adjust its decision in real time according to n, as shown in Figure 7.
In this mechanism, all agents complete the first-round decision, i.e., n = 0, as shown in
Equation (24), and then communicate with other involved agents (shown as the same color
in Figure 7), and make an attack decision again, as shown in Equations (25) and (26):

[0, posi, posmean, posgoal ]→ µi → Aci (24)

∑N
i=1 Aci → n (25)
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[n, posi, posmean, posgoal ]→ µi → Aci (26)
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Figure 7. Scalable Multi-decision Mechanism.

Remark 1. In practice, there may be more than one type of UAV to complete the mission and more
than one target to attack. At the same time, the mission objective may have different priorities. It is
impossible to train for every possible situation. The proposed multi-decision mechanism can easily
accommodate these requirements by simply adding the appropriate decision conditions in Figure 7,
such as the priority of the targets, the characteristics of attack targets, and so on.

By designing multi-decision mechanisms, the algorithm is more scalable and can
handle much more complex dynamic missions.

4. Simulation Experiments and Results

The simulation environment adopts the classical multi-agent simulation environment
MPE, which is a set of 2D environments with discrete time and continuous space developed
by OpenAI. This environment performs a series of tasks by controlling the motion of
various role particles in 2D space [38]. At present, it is widely used in the simulation and
verification of various multi-agent RL algorithms. We deployed the proposed algorithm on
the PC platform with Intel Xeon Gold 5222 and NVIDIA GeForce RTX 2080Ti.

In this paper, the training scenario and the application scenario are made to be not
exactly the same in order to illustrate the scalability of the proposed algorithm. Therefore,
the training scenario and the application scenario will be discussed respectively.

4.1. Training Experiment Scenario

We trained the algorithm with only four agents and deploy the result to any large
system. During the training process, the agent moves and searches for the target in the
scene. After the agent finds the target, it will communicate with the surrounding agents
and make a decision.

We set the following conditions and assumptions for the task-assignment train-
ing experiment:
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(1) The UAV makes decisions based on the distance to the target and the average distance
of the group to the target.

(2) The target needs at least two UAVs to destroy.
(3) The UAV only observes the target within its detection range.
(4) The UAV communicates only with agents within the communication range.

4.2. Construction of Training Model

During the training process, the training model is designed according to the task
assignment conditions and specific simulation application scenarios in Section 4.1, including
action, reward, mean simulation observation model, a swarm synchronization training
mechanism, and a multi-decision mechanism.

4.2.1. Action Value

In the process of UAV swarm task assignment, the UAV needs to perform actions such
as obstacle avoidance and assignment according to the observation value. According to
the task requirements and experimental assumptions, the design action value is shown in
Equation (27):

Ac =
[
at, ax, ay

]
(27)

where ax is the acceleration along the x axis and ay is the acceleration along the y axis.
With ax and ay, agents can move in any direction and at any speed on the plane.

4.2.2. Mean Simulation Observation

According to the task assignment conditions and subsequent expansion requirements,
the analog quantity n in the observation value in Section 3.2 is designed as shown in
Equation (28):

n =

{
n n < 3
random(3, 32) n ≥ 3

(28)

If the agent finds less than 3 agents attacking the same target through communication,
the agent uses the accurate number. If the number is greater than or equal to 3, the agent
uses a random number function to simulate it. In this way, the observation is still applicable
in large systems.

4.2.3. Centralized and Distributed Reward Function

According to the scenario requirements of the UAV swarm task assignment, the design
centralizes rewards for all agents:

Rcentralized =


−2 n = 0
−Dattack

Dtotal
− 0.03× 3 n = 1

−Dattack
Dtotal

− 0.03× 2 + 1 n = 2

−Dattack
Dtotal

− 0.03× n else

(29)

where Dattack means the average distance from the assigned agent to its target and Dtotal is
the average distance from all agents to the target. The larger the ratio, the worse the effect of
assignment results. At the same time, based on the requirement that each target needs two
UAV attacks, Rcentralized is divided into four parts according to the range of n observed by
the agent. When n = 0, it is at the beginning of the target assignment, and a large negative
value is needed to promote the agent to make decisions. When n = 2, there will be a large
positive reward to encourage such a decision Other cases will be punished according to the
difference between 2. The greater the difference, the greater the punishment, and the agent
will adjust its decision.

If the reward is too sparse under the above design, it will be difficult for the agent
to learn the correct policy. Therefore, the distributed reward function Ri of each agent is
designed as in Equation (30) to guide the agent to move toward the target. In the process of
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movement, the position and decision of the agent will change. In this process, the group
will continue to optimize the decision and will improve the learning efficiency greatly.

Ri = −Di−to−goal (30)

where Di−to−goal represents the distance from the current agent to the target. The two
reward functions are combined according to the following formula, and the total reward
function R is

R = Ri + 2× Rcentralized (31)

The training process is shown in Section 3.3 and Figure 6. The specific design is to
synchronize the parameters of all agents every 10 training times. Meanwhile, the decision
mechanism is introduced in Section 3.3 and Figure 7.

4.3. Validity of the Algorithm

The algorithm is mainly used in extended scenarios, i.e., scenarios where the number
of agents and the number of targets are uncertain. In terms of the effectiveness of the
algorithm, this paper will compare it with MADDPG, the mean simulated MADDPG
(ms-MADDPG) algorithm, and the Hungarian algorithm.

The Hungarian algorithm is a combinatorial optimization algorithm that can solve
the task-assignment problem in polynomial time. In the training scenario, the Hungarian
algorithm is guaranteed to obtain an optimal assignment. Therefore, it is reasonable to
choose the Hungarian algorithm for comparison.

According to the requirements of task-assignment scenarios, the task-assignment
performance consists of task loss and task target difference. The task loss function is shown
in Equation (32), and the task target difference is shown in Equation (33):

scoreD =
Dattack

Dall
(32)

scoreA = |n− 2| (33)

where Dattack is the average distance from the attacking agent to the target and Dall is the
average distance from the participating agent to the target. In this scenario, since the agent
needs to assign the target as quickly as possible, the distance ratio is used as the task loss
instead of the absolute value of the distance. n is the number of assignments to the current
target. The greater the difference between the result of task assignment and the set value of
2, the greater the difference between the task target. Obviously, the smaller the task loss
and task target difference, the better the performance of the task assignment algorithm.

As shown in Figure 8, Ex-MADDPG, MADDPG, ms-MADDPG have shown a sig-
nificant decrease in task loss with the increase in training steps, and the algorithm can
complete the task assignment according to the constraints. In Figure 9, the algorithm can be
stable around 0.2 in the task-target difference. This shows that the algorithm can satisfy the
task constraints of two agents attacking a target. The Hungarian algorithm can be designed
as two agents attacking one target, and the difference is 0.

The results show that the Ex-MADDPG, ms-MADDPG, MADDPG, and Hungarian
algorithms proposed in this paper can solve the task-assignment problem in the train-
ing scenario.
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Figure 8. Task Loss.

Figure 9. Task Target Difference.

4.4. Extended Experiments

Based on the training scenario in Section 4.1, we expand the number of agents and
targets. At the same time, to increase the detection rate of the target, the expanded scene is
divided into three phases: takeoff, search, and decision. The agent will take off from the
bottom left, pass through the formation, fly to the target area and hover, and complete the
total task.

In this section, we design two kinds of extension experiments to demonstrate the
superiority of our proposed algorithm.

Experiment 1: Number extension
Considering that the attack ratio between agents and targets in the training process is

2:1, the number of agents and the number of targets are expanded according to this ratio.
The experimental design conditions are as follows:

(1) Number of agents: number of targets = 2:1;
(2) The number of agents is between 8 and 56, with an interval of 4;
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(3) The final decision distance of the agent is designed as 1.5. If the distance between
the agent and the target exceeds this range, the agent will communicate and make a
decision at specified intervals. Otherwise, it will attack the target directly.

Experiment 2: Task extension
The practical application may be different from the training, so the tasks may also

need to be expanded. To ensure the attack effect, we add task redistribution requirements,
which means that one target may require two or more UAVs to destroy.

(1) Number of agents:number of targets = 5:2;
(2) The number of agents is between 5 and 55, with an interval of 5;
(3) The final decision distance of the agent is chosen to be 1.5. If the distance between

the agent and the target exceeds this range, the agent will communicate and make a
decision at specified intervals. Otherwise, it will attack the target directly;

(4) The target attacked by two agents has an 80% chance of being destroyed, while the
target attacked by three agents has a 100% chance of being destroyed.

To reduce the random effect, each experiment is performed 30 times.

4.5. Extended Performance Test

Based on the performance requirements of the extended extension experiment, the ex-
tended performance metrics must be redesigned to compare the performance changes
during the two extended experiments. In the following experiment, the 5:2 in the legend is
used to refer to Experiment 2 for algorithm comparison and analysis.

The running simulation process of the algorithm is shown in Figure 10, which is
applied to the dynamic target-assignment scenario of 32 agents. In Figure 10, (1) is the
swarm of intelligent agents flying from the takeoff area to the target area, and (2) is the
agent that first detects the target and starts to make decisions and allocate the target. Other
agents continue to search. Finally, (3) is the final assignment result. Each target is hit by
two agents.

Target Area

Take-off Area

(1) (2) (3)

UAVs

Figure 10. Algorithm Scalability Test Process.

For the above process, the following performance metrics are designed.

4.5.1. Task Completion Rate

In the two extended experiments, the simplest way to judge the task completion is the
target-destruction rate. In the process of task assignment, the more targets are destroyed,
the higher the task completion rate will be. Therefore, the design task completion rate is
given by Equation (34):

Drate =
Ndestroyed

Nall
(34)

Ndestroyed refers to the number of completely destroyed targets, and Nall refers to the number
of all targets.
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As shown in Figure 11, the improved MADDPG algorithm (ms-MADDPG) using only
the mean simulation has a small scalability number. When the number of agents continues
to increase, the task-completion rate of the ms-MADDPG algorithm decreases significantly,
and it can only complete some tasks. The MADDPG algorithm has no scalability at all.
When the number of applications is inconsistent with the number of training, the algorithm
will not work, and the task completion rate is 0%.

Figure 11. Task Completion Rate.

In the comparison test between Experiment 1 and Experiment 2 (5:2), the Hungarian
algorithm was found to be able to destroy the target at 100% in Experiment 1, but destroyed
less than 90% of the target in Experiment 2. At the same time, Ex-MADDPG could destroy
more than 90% of the target in two experiments within the range of the number of tests.
In Experiment 2, the algorithm could detect the target in real time. If the target was not
completely destroyed, the new optimal agent was immediately determined to attack it to
ensure that the target esd destroyed, achieving a task-completion rate of nearly 100%. The
Ex-MADDPG algorithm could maintain the task assignment performance under application
numbers and task-assignment conditions.

4.5.2. Task Loss

The design of task loss is the same as that of task loss in Section 4.3. This metric
is the key metric for judging the distributional effect. The smaller the value, the more
advantageous it is for the agent in the group, and the less time and distance it takes to
execute the attack decision, which means the better the decision will be.

Figure 12 shows that the Hungarian algorithm, as a traditional algorithm, had poor
results in Experiment 1 and Experiment 2. In the Hungarian algorithm, all agents make
decisions at the same time, resulting in poor task loss performance. The Ex-MADDPG
algorithm can select the agents in the group that is closer to the target to attack and make
better decisions for each decision. When the shortest decision distance is chosen as 1.5,
the agent can only make the final attack decision when it is relatively close to the target,
which can further reduce the task loss. In terms of task loss, whether in Experiment 1
or Experiment 2, Ex-MADDPG algorithm has obvious advantages and can make better
decisions in the case of expansion. However, the MADDPG algorithm cannot complete the
expansion experiment and count its task loss.
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Figure 12. Task loss.

4.5.3. Decision Time

In the actual operation process, real time is a very important indicator that determines
whether the agent can react quickly to external changes and react in real time. Therefore,
the time required to execute a decision is designed as one of the performance metrics of
the algorithm.

As shown in Figure 13, whether in Experiment 1 or Experiment 2, the Hungarian
algorithm, as a traditional algorithm, has a relatively short execution time in a small
number of cases, but there is an obvious upward trend with the increase in agents. It can
be predicted that when the scale of the agent is large, it will take a lot of time to obtain the
decision results. The Ex-MADDPG algorithm is calculated by a neural network. The change
in the number of surrounding agents has little impact on its input value, and the number
of iterations needed to make decisions is small. Therefore, with the increase in the number
of agents, its decision-making time showed a small upward trend. It can easily meet the
real-time requirements of the scene. However, the ms-MADDPG algorithm has many
iterations to make decisions, and it is difficult for to make decisions, so it consumes the
most time. The MADDPG algorithm cannot count its decision time because it cannot
complete the expansion experiment.

Figure 13. Decision Time.
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4.5.4. Number of Communications

The number of agents that need to communicate refers to the number of other agents
that each agent needs to communicate with when making decisions in a decision process.
The more agents that need to communicate in a decision round, the more communication
bandwidth is required to make decisions, the higher the hardware requirements for the
agents, and the more difficult the algorithm is to implement.

As shown in Figure 14, in Experiment 1 and Experiment 2, the Hungarian algorithm
needed all scene information to make decisions, and each agent needed to communicate
with all other agents. Therefore, the number of communications is equal to the size of
the agent. The Ex-MADDPG algorithm only needs to communicate with nearby agents
and can make decisions using part of the scene information. The required communication
bandwidth is therefore greatly reduced. The improved ms-MADDPG algorithm using mean
simulation requires a medium number of agents to make decisions. It can be found that the
introduction of neural networks greatly reduces the amount of information required for
decision-making and reduces the communication bandwidth.

Figure 14. Number of Communications.

In conclusion, in Experiment 1 and Experiment 2 of the expansion experiment, the Ex-
MADDPG algorithm was shown to be significantly superior to the traditional Hungarian
algorithm and the MADDPG algorithm in terms of task completion rate, task loss, decision
time, and the communication number, and could maintain stable performance during the
expansion process and correctly complete the expected tasks.

5. Experiments and Results

In this section, experiments are transferred from simulation to the real world in the
context of task assignment in a UAV swarm target-attacking scenario. To validate its
performance in practical task assignment, experiments in the real world were conducted
with a group of nano-quadcopters named scit-minis (as shown in Figure 15) flying under
the supervision of a NOKOV motion capture system. We deployed the proposed algorithm
on the same PC platform as the simulation, but the algorithm ran separately for each UAV.
The scit-mini is a nano-quadcopter such as crazyfile 2.0 [39], but with much more power
and a longer endurance. Meanwhile, we used an open-source, unmanned vehicle Autopilot
Software Suite called ArduPilot to make it easier to transfer the algorithm from simulation
to the real world.
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Figure 15. Diagram of system components.

5.1. Architecture Overview

Similar to crazyswarm [39], our system architecture is outlined in Figure 15. We tracked
the scit-mini with a motion capture system using passive spherical markers. Thanks to the
sub-millimeter recognition accuracy of the motion capture system, we used the Iterative
Closest Point (ICP) algorithm [40] to obtain the precise location of each scit-mini in the
swarm in real time.

Unlike crazyswarm, the scit-mini communicates with a PC platform over WiFi that
can transfer more data than Crazyradio PA. The control signals run at 50 Hz with an ROS2
a communication delay of about 10∼20 ms. However, the main onboard loop, like its
attitude control loop, runs at 400 Hz, which can ensure the stable operation of the scit-mini.
Each scit-mini obtains the control signals from its own Ex-MADDPG and boids through
MAVROS with ROS2. We used only one computer in this experiment, but our system
architecture supports multiple computers running simultaneously.

5.2. Flight Test

The actual test environment is shown in Figure 16, and the experimental area was
divided into the take-off area and the target area. We tested our proposed Ex-MADDPG in
a task-extension experiment, similar to Experiment 2 in Section 4.4, with nine scit-minis
and three targets. The experimental procedure was as follows: nine scit-minis took off from
the takeoff area shown in Figure 16(1) and then flew toward the target area, detected three
targets, and executed the Ex-MADDPG algorithm. The experimental subject would fly over
the target if it decides to attack it, and the rest of the scit-minis that do not decided to attack
would continue to fly forward until they cross the target area. The scit-minis used the Boids
algorithm to avoid collisions with each other.

We selected two key steps of the experiment during the whole autonomous process,
as shown in Figure 16(2),(3). Figure 16(2) shows that the scit-mini made the first decision
to attack its target using Ex-MADDPG, and Figure 16(3) is the final result of the task
assignment. As shown in Figure 16(3), one target was attacked by two scit-minis and two
targets were attacked by three scit-minis. The videos of this experiment and more tests are
available online: https://youtu.be/shA1Tu7VujM.

The experiment demonstrated that the proposed Ex-MADDPG algorithm can accom-
plish task assignment in UAV swarm target-attacking scenario efficiently in real-time,
verifying its practicality and effectiveness.

https://youtu.be/shA1Tu7VujM
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Take-off Area scit-mini

Target Area

(1) (2) (3)

targets

Figure 16. Flight Test for Ex-MADDPG.

6. Conclusions

This paper presents an improved algorithm Ex-MADDPG algorithm based on MAD-
DPG to solve the problem of task assignment in a UAV swarm target-attacking scenario.
This algorithm uses mean simulation observation and swarm-synchronization mechanisms
to deploy in arbitrary-scale systems, training only a small number of agents. By designing
the scalable multi-decision mechanism, this algorithm can maintain its performance in
the process of expansion and achieve arbitrary expansion of the number of UAVs. At the
same time, the algorithm can achieve task expansion and can complete similar tasks that
differ from the training process. The Ex-MADDPG algorithm can be trained once and
applied to a large number of task-assignment scenarios, effectively solving the problem
of insufficient scalability of the traditional RL/DRL algorithm. Simulation results show
that the Ex-MADDPG has obvious advantages over the Hungarian algorithm in terms of
assignment performance, fault tolerance, and real-time capabilities. At the same time, the al-
gorithm has good scalability and maintains performance under the condition of number
and task expansion. Furthermore, the proposed method proves to be feasible and effective
in UAV swarm target attack scenarios in both simulations and practical experiments.

In this paper, we propose a scalable reinforcement learning algorithm to address the
task assignment problem in variable scenarios, with a particular focus on UAV formation
planning. While the current implementation uses the Boids algorithm for formation flying,
the UAV formation algorithm is not presented in detail. Therefore, future work will
concentrate on the design and implementation of advanced formation planning algorithms
to improve the efficiency of target detection and task assignment.
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Abbreviations

MPE Multi-Agent Particle Environment
UAV Unmanned Aerial Vehicle
GA Genetic Algorithm
SA Simulated Annealing
ACO Ant Colony Optimization algorithm
PSO Particle Swarm Optimization algorithm
GW Grey Wolf
ICP Iterative Closest Point
DRL Deep Reinforcement Learning
RL Reinforcement Learning
DL Deep Learning
DQN Deep Q Network
MDPs Markov Decision Processes
LSTM Long Short-Term Memory
PG Policy Gradient
DDPG Deep Deterministic Policy Gradient
MADDPG Multi-Agent Deep Deterministic Policy Gradient
ms-MADDPG Mean Simulated MADDPG
Ex-MADDPG Extensible Multi-Agent Deep Deterministic Policy Gradient

References
1. Korsah, G.A.; Stentz, A.; Dias, M.B. A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 2013, 32,

1495–1512. [CrossRef]
2. Ahner, D.K.; Parson, C.R. Optimal multi-stage allocation of weapons to targets using adaptive dynamic programming. Optim.

Lett. 2015, 9, 1689–1701. [CrossRef]
3. Zhao, Z.; Liu, S.; Zhou, M.C.; Abusorrah, A. Dual-objective mixed integer linear program and memetic algorithm for an industrial

group scheduling problem. IEEE/CAA J. Autom. Sin. 2020, 8, 1199–1209.
4. Crouse, D.F. On implementing 2d rectangular assignment algorithms. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1679–1696.

[CrossRef]
5. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence; MIT Press: Cambridge, MA, USA, 1992; Volume 52, pp. 1679–1696.
6. Tanha, M.; Shirvani, M.H.; Rahmani, A.M. A hybrid meta-heuristic task scheduling algorithm based on genetic and thermody-

namic simulated annealing algorithms in cloud computing environments. Neural Comput. Appl. 2021, 33, 16951–16984.
7. Wu, X.; Yin, Y.; Xu, L.; Wu, X.; Meng, F.; Zhen, R. Multi-uav task allocation based on improved genetic algorithm. IEEE Access

2021, 52, 100369–100379.
8. Martin, J.G.; Frejo, J.R.D.; García, R.A.; Camacho, E.F. Multi-robot task allocation problem with multiple nonlinear criteria using

branch and bound and genetic algorithms. Intell. Serv. Robot. 2021, 14, 707–727. [CrossRef]
9. Abidin Çil, Z.; Mete, S.; Serin, F. Robotic disassembly line balancing problem: A mathematical model and ant colony optimization

approach. Appl. Math. Model. 2020, 86, 335–348.
10. Gao, S.; Wu, J.; Ai, J. Multi-uav reconnaissance task allocation for heterogeneous targets using grouping ant colony optimization

algorithm. Soft Comput. 2021, 25, 7155–7167. [CrossRef]
11. Du, P.; Tang, Z.; Sun, Y. An object-oriented multi-role ant colony optimization algorithm for solving TSP problem. Control Decis.

2014, 29, 1729–1736. [CrossRef]
12. Wei, C.; Ji, Z.; Cai, B. Particle swarm optimization for cooperative multi-robot task allocation: A multi-objective approach. IEEE

Robot. Autom. Lett. 2020, 5, 2530–2537. [CrossRef]
13. Li, W.; Zhang, W. Method of tasks allocation of multi-UAVs based on particles swarm optimization. Control Decis. 2010, 25,

1359–1363. [CrossRef]
14. Chen, X.; Liu, Y.; Yin, L.; Qi, L. Cooperative task assignment and track planning for multi-uav attack mobile targets. J. Intell. Robot.

Syst. 2020, 100, 1383–1400.
15. Zhao, M.; Li, D. Collaborative task allocation of heterogeneous multi-unmanned platform based on a hybrid improved contract

net algorithm. IEEE Access 2021, 29, 78936–78946. [CrossRef]
16. Chen, P.; Yan, F.; Liu, Z.; Cheng, G. Communication-constrained task allocation of heterogeneous UAVs. Acta Aeronaut. 2021, 42,

313–326.
17. Bertsekas, D.P. The auction algorithm: A distributed relaxation method for the assignment problem. Ann. Oper. Res. 1988, 14,

105–123. [CrossRef]

http://doi.org/10.1177/0278364913496484
http://dx.doi.org/10.1007/s11590-014-0823-x
http://dx.doi.org/10.1109/TAES.2016.140952
http://dx.doi.org/10.1007/s11370-021-00393-4
http://dx.doi.org/10.1007/s00500-021-05675-8
http://dx.doi.org/10.13195/j.kzyjc.2013.1173
http://dx.doi.org/10.1109/LRA.2020.2972894
http://dx.doi.org/10.13195/j.cd.2010.09.82.liw.023
http://dx.doi.org/10.1109/ACCESS.2021.3084238
http://dx.doi.org/10.1007/BF02186476


Drones 2023, 7, 297 21 of 21

18. Di, B.; Zhou, R.; Ding, Q. Distributed coordinated heterogeneous task allocation for unmanned aerial vehicles. Control Decis. 2013,
28, 274–278. [CrossRef]

19. Liao, M.; Chen, Z. Dynamic target assignment method based on multi-agent decentralized cooperative auction. J. Beijing Univ.
Aeronaut. Astronaut. 2007, 33, 180–183. [CrossRef]

20. Li, X.; Liang, Y. An optimal online distributed auction algorithm for multi-uav task allocation. In LISS 2021; Springer: Singapore ,
2013; Volume 28 ; pp. 537–548.

21. Duo, N.; Lv, Q.; Lin, H.; Wei, H. Step into High-Dimensional and Continuous Action Space:A Survey on Applications of Deep
Reinforcement Learning to Robotics. Control Decis. 2019, 41, 276–288. [CrossRef]

22. Sun, H.; Hu, C.; Zhang, J. Deep reinforcement learning for motion planning of mobile robots. Control Decis. 2021, 36, 1281–1292.
[CrossRef]

23. Wu, X.; Liu, S.; Yang, L.; Deng, W.-Q.; Jia, Z.-H. A Gait Control Method for Biped Robot on Slope Based on Deep Reinforcement
Learning. Acta Autom. Sin. 2021, 47, 1976–1987. [CrossRef]

24. Shi, J.; Gao, Y.; Wang, W.; Yu, N.; Ioannou, P.A. Operating electric vehicle fleet for ride-hailing services with reinforcement
learning. IEEE Trans. Intell. Transp. Syst. 2019, 21, 4822–4834. [CrossRef]

25. Yin, Y.; Guo, Y.; Su, Q.; Wang, Z. Task Allocation of Multiple Unmanned Aerial Vehicles Based on Deep Transfer Reinforcement
Learning. Drones 2022, 6, 215. [CrossRef]

26. Zhou, W.; Zhu, J.; Kuang, M. An unmanned air combat system based on swarm intelligence. Sci. Sin. Inf. 2020, 50, 363–374.
[CrossRef]

27. Chu, T.; Wang, J.; Codecà, L.; Li, Z. Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Trans. Intell.
Transp. Syst. 2019, 21, 1086–1095. [CrossRef]

28. Shi, W.; Feng, Y.; Cheng, G.; Huang, H.; Huang, J.; Liu, Z.; He, W. Research on Multi-aircraft Cooperative Air Combat Method
Based on Deep Reinforcement Learning. Acta Autom. Sin. 2021, 47, 1610–1623. [CrossRef]

29. Wang, L.; Wang, W.; Wang, Y.; Hou, S.; Qiao, Y.; Wu, T.; Tao, X. Feasibility of reinforcement learning for UAV-based target
searching in a simulated communication denied environment. Sci. China Inf. Sci. 2020, 50, 375–395.

30. Ma, Y.; Fan, W.; Chang, T. Optimization Method of Unmanned Swarm Defensive Combat Scheme Based on Intelligent Algorithm.
Acta Armamentarii 2022, 43, 1415–1425.

31. Huang, T.; Cheng, G.; Huang, K.; Huang, J.; Liu, Z. Task assignment method of compound anti-drone based on DQN for multitype
interception equipment. Control Decis. 2021, 37, 142–150. [CrossRef]

32. Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, King’s College, London, UK, 1989.
33. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement

learning. arXiv 2013, arXiv:1312.5602.
34. Timothy, L.P.; Jonathan, H.J.; Alexander, P.; Heess, N.M.O.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with

deep reinforcement learning. arXiv 2015, arXiv:1509.02971.
35. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive

environments. Adv. Neural Inf. Process. Syst. 2017, 30, 1–12 .
36. Reynolds, C.W. Flocks, Herds and schools: A distributed behavioral model. In Proceedings of the SIGGRAPH’87, Anaheim, CA,

USA, 27–31 July 1987.
37. Bakker, B. Reinforcement learning with long short-term memory. Adv. Neural Inf. Process. Syst. 2001, 14, 1475–1482 .
38. Mordatch, I.; Abbeel, P. Emergence of grounded compositional language in multi-agent populations. In Proceedings of the AAAI

Conference on Artificial Intelligence 2018, New Orleans, LA, USA, 2–7 February 2018; Volume 32.
39. Preiss, J.A.; Honig, W.; Sukhatme, G.S.; Ayanian, N. Crazyswarm: A large nano-quadcopter swarm. In Proceedings of the 2017

IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3299–3304. [CrossRef]
40. Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.13195/j.cd.2013.02.117.dib.010
http://dx.doi.org/10.13700/j.bh.1001\T1\textendash 5965.2007.02.012
http://dx.doi.org/10.13973/j.cnki.robot.180336
http://dx.doi.org/10.13195/j.kzyjc.2020.0470
http://dx.doi.org/10.16383/j.aas.c190547
http://dx.doi.org/10.1109/TITS.2019.2947408
http://dx.doi.org/10.3390/drones6080215
http://dx.doi.org/10.1360/SSI-2019-0196
http://dx.doi.org/10.1109/TITS.2019.2901791
http://dx.doi.org/10.16383/j.aas.c201059
http://dx.doi.org/10.13195/j.kzyjc.2020.0787
http://dx.doi.org/10.1109/ICRA.2017.7989376
http://dx.doi.org/10.1109/34.121791

	Introduction
	Related Works
	Contribution

	Deep Reinforcement Learning Background
	Extensible Task Assignment Algorithm of UAV Swarm
	Local Communication Model
	Mean Simulation Observation Model
	Swarm Synchronization Training
	Extensible Multi-Decision Mechanism

	Simulation Experiments and Results
	Training Experiment Scenario
	Construction of Training Model
	Action Value
	Mean Simulation Observation
	Centralized and Distributed Reward Function

	Validity of the Algorithm
	Extended Experiments
	Extended Performance Test
	Task Completion Rate
	Task Loss
	Decision Time
	Number of Communications


	Experiments and Results
	Architecture Overview
	Flight Test

	Conclusions
	References

