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Abstract: With the development of the Internet of Things (IoT), IoT devices are increasingly being
deployed in scenarios with large footprints, remote locations, and complex geographic environments.
In these scenarios, base stations are usually not easily deployed and are easily destroyed, so un-
manned aerial vehicle (UAV)-based edge computing is a good solution. However, the UAV cannot
accomplish the computing tasks and efficiently achieve better resource allocation considering the
limited communication and computing resources of the UAV. In this paper, a multi-UAV-assisted
mobile edge computing (MEC) system is considered where multiple UAVs cooperate to provide a
service to IoT devices. We formulate an optimization function to minimize the energy consumption
of a multi-UAV-assisted MEC system. The optimization function is a complex problem with non-
convex and multivariate coupling. Thus, a joint UAV deployment and task scheduling optimization
algorithm are designed to achieve optimal values of UAV numbers, the hovering position of each
UAV, and the best strategy for offloading and resource allocation. Experimental results demonstrate
that the algorithm has positive convergence performance and can accomplish more tasks under
the constraint of delay compared to the two benchmark algorithms. The proposed algorithm can
effectively reduce the system energy consumption compared to the two state-of-the-art algorithms.

Keywords: edge computing; task scheduling; UAV-assisted; UAV deployment

1. Introduction

The development of the Internet of Things (IoT) drives humanity into the era of
Internet of Everything. The deployment of 5G and beyond wireless networks creates
advantageous conditions for new applications. IoT devices have limited battery capacity
and computing resources constrained by size and environment. Therefore, it is challenging
to apply services to these IoT device applications. Mobile edge computing (MEC) [1–3],
which deploys servers to provide services close to IoT devices, reduces transmission energy,
and local computation, is considered to be promising in addressing the above challenges. In
general, IoT devices transmit data to a base station deployed with mobile edge computing
servers. The base station decides whether to execute it locally or send it to the data centre
by the size of the computation.

In some remote areas such as forests, farms, etc., wired communication cables are
difficult to lay and base stations are very limited due to operating costs [4]. Therefore, aerial
base stations based on unmanned aerial vehicles (UAVs) have become crucial in providing
content coverage for IoT networks [5–7]. UAV can not only assist base stations to collect
data from IoT devices but also replace base stations as edge servers to provide computing
services for IoT devices. Therefore, the stability of UAVs is also critical in the execution of
tasks. The current advanced control algorithm can theoretically solve this problem [8,9], so
the UAV can realize the precise and massive deployment of base stations in remote areas.

Currently, smart agriculture, which is a typical scenario of IoT networks, requires
UAVs to collect data and perform tasks, as shown in Figure 1. If the deployment number
of UAVs is small, smart agriculture has the following two problems: (1) It is difficult to
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provide services to a large range of IoT devices due to the limited coverage of individual
UAVs. (2) UAVs have limited battery capacity and short endurance, and cannot handle
tasks effectively. Therefore, smart agriculture generally adopts multi-UAV collaboration to
collect data and provide computing services to IoT devices. Moreover, the collaboration of
multi-UAV can accomplish the task more effectively [10].

Figure 1. The multi-UAV edge computing scenario.

However, collaboration among UAVs in smart agriculture also faces many new chal-
lenges. First, the service range, communication, and computing capabilities of UAVs are
limited by their battery capacity, communication coverage, and carrying capacity [11].
Second, due to mobility and changes in the surrounding environment, UAVs tend to collide
with each other [12], resulting in the unsuccessful offloading of IoT devices. Finally, when
UAVs are deployed, the number and location of UAVs affect the EC of UAV-assisted mobile
edge computing system. Hence, in our paper, we propose a joint optimization algorithm
for multi-UAV deployment and task scheduling to obtain the optimal number of UAVs, the
hovering position of each UAV, and a strategy for offloading and resource allocation. The
contributions of our work according to the above challenges are as follows:

• Aiming at the difficulty of providing services to IoT devices in scenarios where remote
areas lack base stations, we propose a multi-UAV-assisted MEC system. Compared
with the traditional fixed number of UAVs, the system optimizes the number and
location of UAVs according to the location and number of IoT devices. Optimizing
the number of UAVs can effectively reduce the system energy consumption (EC) and
reduce the deployment cost of purchasing UAVs.

• To improve the service time of multi-UAV-assisted mobile edge computing systems
and reduce system energy. We aim to cover the maximum number of IoT devices
with the minimum number of UAVs. Thus, we formulate a non-convex optimization
problem and propose a parametric adaptive differential evolution (PADE) algorithm
to optimize the hovering position of the UAVs.

• We present extensive simulation results to evaluate the performance of our proposed
algorithm. We have classified the different IoT device offloading tasks. Specifically,
we employ eight use cases to verify that our algorithm achieves task completion rates
subject to latency constraints and reduces average system EC. Compared with existing
algorithms, the proposed PADE algorithm is verified to be effective in reducing the
overall system EC.

2. Related Work

In some scenarios such as earthquakes, traffic jams, and remote areas, when the
ground infrastructure is damaged and the computing and communication resources of
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edge facilities are insufficient, it is difficult for IoT devices to benefit from the quality of
service [13]. To improve the quality of service for IoT devices, UAVs are widely studied
by many scholars as edge nodes to collect and process data [14]. UAVs as a mobile edge
computing system face the challenges of energy consumption, latency, and task offload
capacity [15].

UAV deployment: Limited EC is a significant challenge for UAVs to provide services.
It is important to conserve energy for UAVs to perform their tasks efficiently. In smart
agriculture, UAVs need to hover to collect, process, and then fly to another location. In
recent years, a lot of work has been conducted in reducing the EC of the multi-UAV-assisted
system, focusing on the EC of UAV and optimization of EC of IoT devices. The EC of the
UAVs determines the period of service in the system. Hu et al. [16] maximized UAV energy
efficiency by optimizing UAV flight trajectories and offload/cache decisions. Offloading
tasks to other UAVs using collaboration between UAVs can reduce the EC of individual
UAVs [17,18]. Optimizing the location of UAVs, maximizing the throughput from IoT
devices to UAVs, and reducing UAV flight time can improve the energy efficiency of UAVs.
Jing et al. [19] investigated the minimum trade-off between EC and training delay by jointly
optimizing the location and resource allocation of the UAV. To further reduce the EC of
UAVs, Guo et al. [20] optimized the number of UAVs, using fuzzy C-means (FCMs) to
optimize the location of the UAVs and to ensure the stability of the service by replacing
the UAVs. In addition, after the deployment location of the UAV was determined, the EC
of the UAV-assisted mobile edge computing system could be effectively reduced by task
offloading and resource allocation.

Resource Scheduling: Latency is an important indicator of user quality of service
(QoS), and resource scheduling can reduce task latency effectively. A UAV-assisted mobile
edge computing network is designed to optimize data transmission latency and computa-
tion latency to ensure that tasks are completed within a constrained time. To increase the
transmission rate of the terminal, Hou et al. [21] obtained high reliability with low latency
by joint optimization of computation, communication, and cache resource scheduling. To
further improve the utilization of network resources, Chen et al. [22] optimized the UAV
movement and MU association with deep reinforcement learning to reduce EC and system
latency. Offloading tasks to appropriate UAVs can reduce local computational EC. Hoang
et al. [23] used Lyapunov optimization to transform the original multi-stage problem into a
problem at each time point, which was then solved using the DRL framework. Generally,
optimizing the transmission rate of devices and scheduling tasks can effectively improve
the reduction in latency and EC of devices.

The current study focuses on providing services for a fixed number of UAVs and
then reducing system EC by optimizing network and computing resources. In practice, IoT
devices receive computing resources, network transmission limitations, and other factors,
so the offloading factor of end devices is considered. In this paper, we iterate the number
of UAVs and user offloading decision factors to obtain a better UAV deployment location
and user offloading decision. Considering the actual situation of IoT devices, we divide the
tasks into multiple categories to simulate the offloading of different tasks. A comprehensive
comparison of our proposed scheme with existing methods is shown in Table 1.
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Table 1. Overview of current state-of-the-art technologies.

References Number of
UAVs Optimized Objective Method Task

Rank

[16] Fixed EC Lagrange and SCA Single

[17] Fixed EC Lyapunov Single

[18] Fixed EC & delay machine learning Multiple

[20] Optimization Load Balancing fuzzy C-means & BP
neural network Single

[19] Optimization EC and training time SCA Single

[21] Fixed latency HBPSO Single

[22] Fixed latency and EC Reinforcement Learning Single

[23] Fixed average EC of the system Lyapunov ad Deep
Reinforcement Learning Single

Ours Optimization EC and latency PADE & Greedy Multiple

3. System Model

As edge servers collect sensor data and perform related computational tasks, UAVs
have become a hot research topic for scholars [24–26]. As servers handle the tasks offloaded
by IoT devices, UAVs are equipped with a certain amount of computing and storage
resources when they act as an edge server to collect sensor data or perform terminal
tasks. IoT devices can choose the right UAV server to offload according to their needs.
The UAV plans the flight route and resource allocation according to its situation and IoT
device location.

In smart agriculture, we consider a multi-UAV-assisted edge computing system to
collect and process agriculture data. We use K = {1, . . . , K} and N = {1, . . . , N} to
denote the set of IoT devices and UAVs. N UAVs provide computing resources to K IoT
devices, as shown in Figure 2. We use a three-dimensional (3D) Cartesian coordinate
representation to represent the specific locations of UAVs and IoT devices. K ground-
based IoT devices are randomly distributed over a horizontal plane. The locations of IoT
devices are denoted as wk = (xk, yk), whereas the locations of n-th UAVs can be denoted as
Ln = (Xn, Yn, H), n ∈ N , where H is a fixed height above the ground. The main notations
are illustrated in Table 2.

Figure 2. System Model.
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Table 2. Main Notations.

Notation Description

wk, Ln The locations of k-th IoT device and the locations of n-th UAV
N Number of IoT devices
bk,a Offloading decision of the k-th device
η1, η2 Effective switched capacitance
duu

min Minimum distance between two UAVs
duu

u1,u2
The distance between the UAV u1 and UAV u2

nmax Maximum number of tasks each UAV can serve
R, θ UAV coverage radius and signal coverage angle of the UAV
H The height of the UAV
hk,n The uplink channel gain from the k-th IoT device to the n-th UAV
µ0 Channel power gain at the unit distance
σ2 The noise power of the UAV
Ck Number of CPU cycles to complete the task of the k-th IoT device
Dk Size of the k-th IoT device’s task data
B Channel bandwidth
rk,n The uplink data rate from the k-th IoT device to the n-th UAV
tlocal
k,0 the time required to complete its task
fk,0 The computation resources of k-th IoT devices
Elocal

k,0 The locally calculated EC
fk,a The computation resources that the UAV a allocates to IoT device k
tuav
k,a The total consuming time contains transmission time and execution time on UAV

Euav
k,a The total EC of the k-th IoT device

P Transmission power of IoT device
EH Hovering energy consumption of UAVs
T, P0 Hovering time and hovering power

We use A = {0, . . . , N} to denote the set of IoT devices’ offloading decisions. We
indicate the offloading decision of the k-th device by bk,a, k ∈ K, a ∈ A. a = 0 indicates that
the IoT device performs the task locally, and a > 0 means that the IoT device chooses to
offload the task on the n-th UAV.

Proximity can lead to accidents when UAVs are deployed [27]. For any two UAVs u1
and u2 obtain:

duu
u1,u2

≥ duu
min, ∀u1, u2 ∈ N, u1 6= u2, (1)

where duu
u1,u2

is the distance between u1 and u2, and duu
min is the minimum distance among them.

3.1. Communication Model

We adopt an orthogonal frequency division multiple access (OFDMA) [28] in the
system communication model to implement the link communication between the UAV
and the device. The IoT devices offload their computational tasks to the UAV with equal
bandwidth allocation. In the system, each IoT device decides whether to offload tasks to
the UAV. The UAV has limited energy. The maximum total number of tasks performed by
each UAV should satisfy the following constraint:

K

∑
k=1

bk,a ≤ nmax, ∀k ∈ K,a ∈ A/{0}, (2)

where nmax denotes the maximum number of tasks performed by the n-th UAV.
For simplicity, we assume that the communication from the IoT device to the UAV is link

by the line-of-sight [29], where the channel quality depends on the UAV–IoT device distance.
Then, the uplink channel gain from the k-th IoT device to the n-th UAV is described by the
following expression:

hk,n = µ0(dk,n)
−2 =

µ0

H2 + ‖wk − Nn‖
, (3)
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where µ0 is the channel power gain at the unit distance. dk,n denotes the distance between
the IoT device and the UAV, and dh

k,n denotes the distance in the horizontal direction from
the k-th device to the n-th UAV. If the k-th device performs a task on the n-th UAV, then
the k-th device must be within the communication range of the UAV, i.e., the following
constraint is satisfied:

bk,adh
k,n ≤ R, ∀k ∈ K, n ∈ N , a = n, (4)

where R = H tan θ is the UAV coverage radius, and θ is the signal coverage angle of the
UAV. The uplink transmission data rate of the k-th device in offloading decision a can be
expressed as:

rk,n = B log2

(
1 +

Phk,n

σ2

)
, (5)

where σ2 denotes the noise power of the UAV and B is the channel bandwidth.

3.2. Computing Model

Each device has a computational task Uk to be completed, which is denoted by a
binary Uk = (Ck, Dk), k ∈ K, where Ck denotes the total number of CPU cycles required
to complete the task of the k-th IoT device and Dk denotes the size of the k-th IoT device’s
task data.

3.2.1. Local Computing Model

When the k-th IoT device performs a task locally, the time required to complete
its task is:

tlocal
k,0 =

Ck
fk,0

, ∀k ∈ K, (6)

where fk,0 is the computation resources of the k-th IoT devices, which is constant. The
locally calculated energy consumed is:

Elocal
k,0 = η1( fk,0)

2Ck, ∀k ∈ K, (7)

where η1 is the effective switched capacitance of IoT devices.

3.2.2. UAV-Assisted Edge Computing

We use fk,a to denote the computation resources that the UAV a allocates to the IoT
device k. If the k-th device offloads the task to the n-th UAV for execution, the total time
consumption contains the transmission time and execution time on the UAV, which can be
denoted as:

tuav
k,a =

Dk
rk,a

+
Ck
fk,a

, ∀k ∈ K, a = n. (8)

The total EC of the k-th IoT device also contains the transmission energy and execution
EC, which can be defined as:

Euav
k,a = P

Dk
rk,a

+ η2( fk,a)
2Ck, ∀k ∈ K, a = n, (9)

where P is the transmission power of the IoT device, and η2 is the effective switched
capacitance of the UAV.

3.2.3. UAV Hovering Model

When the UAV stays in a certain position, the energy required for the period of its stay
is expressed as:

EH = P0T, (10)

where P0 denotes the hover power and T denotes the hover time.
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3.3. Problem Formulation

We aim to improve the system performance by minimizing the system EC, including
local EC, device transmission EC, UAV computation EC, and UAV hovering EC. Thus,
the problem of optimizing the number of UAVs, their location, and task scheduling is
expressed as:

P1 : min
N,wk ,bk,a , fk,n

K

∑
k=1

(
bk,0Elocal

k,0 +
N

∑
n=1

bk,aEuav
k,n

)
+ NEH (11a)

s.t.
K

∑
k=1

bk,a ≤ nmax, ∀k ∈ K,a ∈ A/{0}, (11b)

N

∑
a=0

bk,a = 1, ∀k ∈ K, a ∈ A, (11c)

bk,adk,n ≤ R, ∀k ∈ K, ∀n ∈ N , a = n, (11d)

duu
min ≤ dn1,n2, ∀n1, n2 ∈ N , n1 6= n2, (11e)

fk,a > 0, ∀bk,a = 1, ∀k ∈ K, ∀n ∈ N , (11f)

fk,a = 0, ∀bk,a = 0, ∀k ∈ K, ∀n ∈ N , (11g)

bk,0tlocal
k,0 ≤ T, ∀k ∈ K, (11h)

bk,atuav
k,a ≤ T, ∀k ∈ K, (11i)

Equation (11c) ensures that all tasks are executed, and each can be executed in only one
mode. Equations (11h) and (11i) are the delay constraints for each task.

4. Joint UAV Deployment and Mission Scheduling Optimization Algorithm Design

Problem P1, an optimization problem with a non-convex and multivariate coupling
of objective function and constraints, is difficult to solve directly. The reason is that the
IoT device offloading decision variable bk,a is a binary decision variable, and the number
of UAVs N is an integer decision variable. The differential evolution algorithm is suitable
for solving mixed integer-type planning problems. Therefore, we solve this optimization
problem based on the differential evolution (DE) algorithm [14,30].

We need to optimize a total of 2N + 1 variables when optimizing the number and
location of UAVs. Each contains two coordinate variables (x, y) and the optimized number
of UAVs. K IoT devices have K offloading decision variables and K UAV resource allocation
variables, Thus, (2N + 1 + 2K) variables should be optimized, and the time complexity
becomes increasingly complex as the number of variables increases with N and K. The
problem becomes a large-scale evolutionary optimization problem because of the increase
in the solution size with the number of UAVs and IoT devices. Therefore, we decompose
the problem P1 into two sub-problems P2 and P3 for solving to decouple the variables
and reduce the problem size. The overall algorithm is given in Algorithm 1. P2 optimizes
the number of UAVs and hovering positions, and P3 optimizes the task scheduling. Then,
these two sub-problems are described separately.

The following describes the general framework proposed in Algorithm 1.
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Algorithm 1: Overall framework design
input :Parameters K, wk, Uk, stepmax
output :{N,S ,B,F}.

1 Initialize the UAV location population S under constraint (11e), f lag = 0, step = 1,
un f _num = 0.

2 According to S and Algorithm 2, bk,a and fk,a are obtained.
3 while step = 1, . . . , stepmax do
4 while f lag = 0 and {N,S ,B,F} is Available do
5 {Nt,St,Bt,Ft} = {N,S ,B,F};
6 The number of UAVs is adjusted, and two individuals with the smallest

distance from the population S are selected;
7 Their second minimum Euclidean distance is calculated, and the individual

with the smallest second minimum Euclidean distance is deleted;
8 If they have equal second minimum Euclidean distances, then their third

minimum Euclidean distance is calculated;
9 The same procedure follows for the succeeding minimum Euclidean

distances;
10 N = N − 1 ;
11 According to S and Algorithm 2, bk,a and fk,a are obtained ;
12 Calculating the new system EC ;

13 The variation and crossover operations of the PADE algorithm are performed
to generate offspring populations Sl ;

14 for i = 1, . . . , N do
15 Update {N,S ,B,F} with the i-th individual in Sl using the update

operator;
16 if {N,S ,B,F} is not available then
17 un f _num = un f _num+1 ;
18 if un f _num==1000 then
19 return {N,S ,B,F} else
20 un f _num=0 ;

4.1. UAV Deployment

UAV deployment includes UAV number and location optimization. For UAV loca-
tion optimization, we adopt the PADE algorithm with improved parameters to solve the
problem in the present study.

4.1.1. UAV Position Optimization

In the problem of optimizing the UAV’s hovering positions, the flight altitude of the
UAVs is set as a constant. Thus, each UAV has two variables to be optimized: Xn and
Yn. Existing works use an evolutionary algorithm to solve the UAV location coordinate
problem, which deploys the entire UAV location as an individual. In our problem, the
length of an individual is 2N, and the number of N changes at each iteration, thereby
complicating the evolutionary algorithm. We find that the coordinates Xn and Yn of UAVs
have the same length, and each take the same range of values. Moreover, we can encode the
hovering position of each UAV as an individual and the hovering positions of all UAVs as
a population. Thus, the length of each individual is 2, and the variable length optimization
problem is successfully turned into a fixed-length optimization problem. At this time, the
problem size of P2 becomes N + 1.
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Initializing the population:

First, we initialize the population to solve the problem P2. The feasible domain
randomly and uniformly generates a hovering position of the UAV to record it into the
initial population S . Then, the same approach is followed to generate the hovering position
of the second UAV and determine whether the UAV and the other UAVs in the group
S satisfy Equation (11e). Hence, the distance between the two UAVs is guaranteed to
be safe. Moreover, no collision can cause damage to the UAV. If satisfied, then it is put
into S ; otherwise, the generated UAV hovering position is not suitable and needs to be
regenerated. When the number of consecutive failed attempts is greater than a set constant,
initialization restarts until the hover positions of all UAVs are successfully obtained and
the initial deployment of the UAVs is obtained (i.e., S).

Mutation and crossover:

In PADE, mutant individuals xi = (xi,1, xi,2), i ∈ {1, . . . , N} are generated for each
individual in the vi population as follows:

vi = xr1 + F(l) ∗ (xr2 − xr3), (12)

where l is the number of iterations, and r1, r2, and r3 are three randomly selected indi-
viduals. Each of these individuals is different from the population S̄l , which determines
the direction of mutation. f (l) is the scaling factor, which is set as a constant in most
studies. In the present study, the scaling factor is transformed into the dynamic adaptive
adjustment of the parameters. The adaptive differential evolution algorithm of [31] is better
approximated. According to this, we rewrite the scaling factor as:

F = α
(

eβ − 1
)

, (13)

β =
lmax

lmax + G
, (14)

where G indicates the current generation of evolution, and lmax denotes the maximum
number of iterations. α is used to adjust the scaling factor, α ∈ (0.2, 0.6).

A crossover operation is applied after the mutation operation to fuse the mutant
individuals with the corresponding original individuals.

ui,j =

{
vi,j, if randj(1, 0) ≤ CR , or j = jrand;

xi,j, otherwise,
(15)

where ūi = (ui,1, ui,2) is the experimental individual, and ui,j, vi.j, xi.j is the j-th dimension of
ūi, v̄i and x̄i. CR is the crossover probability that can be found by the following expression:

CR = 0.5 ∗ (1 + rand), (16)

where rand is a uniformly distributed random number and rand ∈ [0, 1].

Selection operation:

After the experimental population is obtained by the variational crossover operation,
the selection operation is used to select individuals from the experimental population S̄l+1.
The original population S̄l is used to generate a new population S̄l+1 for the next iteration.
For the new population, if (11e) is satisfied, then one can compute the other two variables,
i.e., the offloading decision and resource allocation variables are replaced with the new
population if {N, S̄l+1,B,F} can accomplish the number of tasks greater than that in the
last {N, S̄l , b, f } under the constraint or if the EC is small.
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4.1.2. UAV Number Optimization

Attribute 1: The number of UAVs should be as small as possible when all tasks are
guaranteed to be completed under the constraint.

Optimizing the number of UAVs is equivalent to optimizing the variable N. In the
present study, the number of UAVs should be as small as possible when all tasks are
guaranteed to be completed under the delay constraint to reduce the total consumption of
flight energy of all UAVs in the system, reduce deployment costs, and simplify IoT device
offloading decisions.

4.2. Task Scheduling Optimization

P3 aims to optimize the task scheduling with a known number of UAVs and hovering
positions, including IoT device offloading decisions and resource allocation. At this point,
the optimization problem P1 is only related to the offloading decision bk,a and the resource
allocation fk,a. The problem size is 2M. Thus, (7) and (9) can be brought into (11a), and the
optimization problem can be rewritten in the following form:

P3.1 min
bk,a , fk,a

K

∑
k=1

(
bk,0η1( fk,0)

2Ck +
N

∑
n=1

bk,a

(
P

Dk
rk,a

+ η2( fk,a)
2Ck

))
s.t. (11b)(11c)(11d)(11f)(11g)(11h)(11i)

(17)

P3.1 shows that the total EC is monotonically increasing concerning fk,a. Thus, fk,a
should be as small as possible to minimize the EC. However, the delay constraints (11h)
and (11i) must be ensured when execution method a is used. Thus, fk,a must be not smaller
than the minimum value calculated based on (11h) and (11i). We can obtain the following
by bringing (6) and (8) into Equations (11h) and (11i):

fk,a ≥
Ck
T

, a = 0, k ∈ K;

fk,a ≥
Ck

T − Dk
/

rk,a
, a ∈ A\{0}, k ∈ K.

(18)

From (18), the optimal resource allocation fk,a can be expressed in terms of the smallest
resource allocation:

f ∗k,a =



Ck
T

, if bk,a = 1, a = 0;

Ck

T − Dk
/

rk,a
, if bk,a = 1, a ∈ A\{0};

0, others.

(19)

After the optimal resource allocation is obtained, (19) can be brought into (17) to
rewrite problem P1 and find the offloading decision variable:

P3.2 min
bk,a , f ∗k,a

K

∑
k=1

(
bk,0η1( fk,0∗)2Ck +

N

∑
n=1

bk,a

(
PDk/rk,a + η2

(
f ∗k,a

)2
Ck

))
s.t. (11b)(11c)(11d).

(20)

The minimum EC to complete the k-th IoT device using execution method a can also

be determined, i.e., E∗k,0 = η1

(
f ∗k,0

)2
Ck, E∗k,a = PDk/rk,a + η2

(
f ∗k,a

)2
Ck, when the optimal

resource allocation is determined. Therefore, only bk,a needs to be optimized. At this point,
problem P3 becomes a 0–1 integer programming problem, which is solved in this study
using the greedy algorithm, as shown in Algorithm 2.
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Algorithm 2: Greedy strategy for solving resource allocation

1 Initialize the offload decision variable B = 0 ;
2 The tasks are divided into three levels: K1, K2, and K3 ;
3 For K1 tasks: b1,0 = . . . = bK1,0 = 1;
4 For K2 tasks: the task with the least candidate offloading decision in the second

class is selected (by assuming that it is the m-th task). If this task has s candidate
offloading decisions and the minimum EC corresponding to the s candidate
offloading decisions is Es1, Es2, . . . , Ess, then the candidate mode with the least
EC among them is selected, denoted as s′. Then, bK1+m,s′ is set to 1, and the task
is removed from the second category;

5 The number of serviceable tasks of the s′ UAV is subtracted by 1, and the set of
candidate execution methods for the remaining tasks in the second class is
updated to find the offloading decision for all tasks in the second class. The same
procedure follows for the succeeding classes;

6 The number of serviceable tasks of the s′ UAV is subtracted by 1, and the set of
candidate execution methods for the remaining tasks in the second class is
updated. This continues to find the offloading decision for all tasks in the second
class;

7 For K3 tasks, the k-th IoT device in the third class of tasks is assumed to have s
candidate execution methods. The minimum EC corresponding to the s execution
methods are also assumed to be Es1, Es2, . . . , Ess. First, the task with the least
offloading decision and the least EC (assumed to be the i-th task in the third class)
is selected. Its offloading decision s′ is determined;

8 bK1+K2+i,s′ is set to 1, and the task is removed from the third class. The number of
serviceable tasks of the s′ UAV is subtracted by 1, and the set of the candidate
execution methods for the remaining tasks in the third category is updated. The
same procedure follows for the succeeding categories.

The greedy algorithm makes the choice that seems best at the moment when solving
the problem at each step. However, this choice is not necessarily the globally optimal
solution when viewed as a whole. Considering it is not always possible to find the global
optimal solution. The greedy algorithm does not have to consider the global at each step,
only considering whether the solution is an optimal solution at the moment. It integrates the
local optimal solution at each step to obtain a solution to the original problem. Compared
with other methods, such as branching constraints, the greedy algorithm can reduce the
algorithm running time.

In Algorithm 2, we define a set of candidate execution methods for each task. The task
can be executed in each candidate execution method and satisfy the delay constraint. In
particular, if the execution method is 0, then the EC of all other execution methods is smaller
than the EC under the 0 method. Second, all tasks are divided into three classes. The set
of candidate execution methods for the first class of tasks contains only local offloading
decisions. The set of candidate execution methods for the second class of tasks does not
contain local offloading decisions, and the set of the third class of tasks contains 0 and
other offloading decisions. If K exists and each class has K1, K2, and K3 tasks, then a total
of K = K1 + K2 + K3 tasks exist.

The tasks of the first rank can only be executed locally. Thus, the offloading decision
variable can be determined as b1,0 = . . . = bK1,0 = 1. Completing as many tasks as
possible is the goal for the tasks of the second rank. Thus, the task with the least number of
candidate offloading decisions can be selected by comparing the minimum EC to choose
one candidate execution method for the task. The tasks of the third rank are similar to
those of the previous rank, ensuring that the system completes all tasks with minimum EC,
preferring tasks with the least candidate execution methods and EC.
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5. Simulation Results

The experimental simulation scenario is an N UAV-assisted edge computing system.
The number of IoT devices is large and widely distributed in a multi-UAV scenario to
verify the scalability of the multi-UAV-assisted edge computing system. Eight sets of use
cases containing different numbers of IoT devices are set in the experiments to verify the
effectiveness of the proposed algorithm. All IoT devices are assumed to be randomly dis-
tributed in a square area with different side lengths. The specific values of the distribution
range of each use case are given in Table 3. Each IoT device has a task U. The number of
CPU cycles required to complete U is taken between 16 and 1600 M cycles. The size of
the task U is between 10 and 1000 kB. The maximum value of the computational resource
fk,0 executed locally is 0.8 GHz, and the maximum value of the computational resource
executed on the n-th UAV is 10 GHz.

Table 3. The number of IoT devices and the edge length of the IoT device distribution area.

K 100 200 300 400 500 600 700 800

Side length (m) 300 450 550 650 700 780 840 900

Other specific simulation experimental parameters are presented in Table 4. The
experiments were performed on MATLAB 2020.

Table 4. Simulation parameters.

Description Parameter and Value

Noise power σ2 = −115 dbm
Channel power gain at unit distance µ0 = 1.42× 10−4

Bandwidth B = 1 MHz
Effective switched capacitance η1 = η2 = 10−27

Minimum distance between two UAVs dUU
min = 10 m

Maximum number of tasks each UAV can serve nmax = 10
Transmission power of IoT device P = 1W
Hovering time T = 1s
Hovering power P0 = 1 kW
UAV height H = 100 m

5.1. Convergence and Validity Analysis of the Algorithm

In this section, simulation experiments were conducted for all eight use cases. The
average EC and the average number of uncompleted tasks (NU) of each instance, calculated
after running the eight use cases 30 times, are used as performance metrics.

We experimented with the EC and convergence of the NU for different size regions.
Figure 3 shows the trend of the average EC and average NU for the eight use cases with
the number of iterations. The horizontal coordinate represents the number of iterations.
The left vertical coordinate represents the average EC, and the right vertical coordinate
represents the average number of NU. Figure 3 shows that the number of NU for all use
cases eventually converges to 0, i.e., the algorithm can complete all tasks. The average EC of
each use case fluctuates at first but stabilizes after 4000 iterations. It eventually converges,
thereby showing the convergence of the proposed algorithm.
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(a) K = 100 (b) K = 200

(c) K = 300 (d) K = 400

(e) K = 500 (f) K = 600

(g) K = 700 (h) K = 800

Figure 3. Trend of their average EC and the average number of outstanding tasks after running
different instances.
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5.2. Performance Analysis of the PADE Algorithm

The performance of the proposed parametric adaptive differential carry-out algorithm
is compared with two other commonly used parameter setting schemes for differential
evolution algorithms to verify the performance of the algorithms.

INaaF: Iteration number as a function (INaaF) of the scale factor [32]. The scale factor
is set as a function of the number of iterations and is calculated as follows:

F(l) =

{
F0 ∗ 2λ1 , if 0 ≤ 1 ≤ l∗;

F0 ∗ (1− λ2)
2, otherwise,

(21)

where λ1 = exp
(
1− l∗

/
(l∗ − l + 1)

)
, λ2 = (l − l∗)

/
(lmax − l∗), F0 ∈ [0, 1] is constant, and

l∗ ∈ [0, lmax] is the predetermined division point of the segment definition function F(l).
FVaaF: Fix-value as a function (FVaaF) of the scale factor, F = 0.9 and CR = 0.9 [14].
In Figure 4, we compare the impact of the improved difference-based algorithm

proposed in this study with the differential evolution algorithm under the above two
approaches on the system’s EC. The EC of different instances calculated by the designed
parametric adaptive differential carry-out algorithm is lower than that calculated by INaaF
and FVaaF, thereby reducing the average EC of the system. The most significant reduction in
EC is approximately 16% at several 100 IoT devices. The reason is that we use a parametric
adaptive differential algorithm to optimize different numbers of IoT devices. Moreover, the
INaaF algorithm had difficulty in achieving better results with the number of iterations,
and the FVaaF algorithm with fixed parameter values was the worst, indicating that the
performance of the algorithm can be improved by using reasonable parameter values.
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Figure 4. Comparison of total EC for different algorithms.

5.3. Comparison of Different Offloading Modes

The proposed joint UAV deployment and task scheduling algorithm are compared
with two other methods. Both of these comparison algorithms use the optimization method
for the number and deployment of UAVs in this study.

Only local: Only local execution exists, with no computational offloading.
Only UAVs: Only UAVs provide computational resources.
Local execution only without computation offloading mainly verifies the effectiveness

of the approach of introducing UAV-assisted computation when no ground base station can
help the IoT device to compute. All tasks can only be executed on the UAV when consider-
ing the local computing capability to verify whether the UAV and local co-computation can
improve efficiency.
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Table 5 shows the comparison between the algorithm proposed in this paper and the
other two approaches regarding the number of tasks completed. Table 5 indicates that the
other two offloading modes cannot complete all tasks, whereas the algorithm proposed
here can complete all tasks. The reason is that when the tasks can only be performed locally,
a shortage of local resources occurs. Thus, the tasks are not counted in their entirety. IoT
devices are too scattered or unevenly distributed when they can only be executed on UAVs.
Thus, some tasks are not covered by the UAVs, and the tasks cannot be completed. This
finding verifies the effectiveness of the method proposed here. The proposed method can
mitigate the limitations of the other two approaches and improve system performance.

Table 5. Number of tasks completed.

Number of IoT Devices Only Local Only UAVs Our’s

100 42 95 100
200 86 199 200
300 142 298 300
400 200 399 400
500 262 499 500
600 306 598 600
700 332 698 700
800 400 798 800

We compared the offloading strategy of the algorithm proposed in this study with
PADE-random (PADE-R), as shown in Figure 5. Our proposed algorithm uses significantly
fewer UAVs in each instance than the other strategies. The reduced number of UAVs saves
UAV purchase and deployment costs and reduces the total UAV hovering EC.
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Figure 5. Comparison of the number of UAVs under the two offloading strategies.

6. Conclusions

In this study we considered a new multi-UAV-assisted mobile edge computing system
for remote areas where multi-UAV can collaborate to provide services for IoT devices. With
smart agriculture scenarios, we formulated a non-linear optimization objective to optimize the
multiple variables of the UAV-assisted MEC system, such as UAV numbers, hovering locations,
and the optimal strategy for offloading and resource allocation. Then, the optimization
problem containing multiple variables was simplified into two sub-problems based on the
idea of a block coordinate descent algorithm. The two sub-problems were solved using the
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improved PADE and greedy algorithms. Finally, the performance of the proposed algorithm
was analysed in simulation experiments and compared with two different algorithms, our
algorithm’s EC reduced by 16%.

In this study, the flight height of all UAVs off the ground was fixed when the UAV
flight trajectory was optimized. In some scenarios, such as forests and city centres, with
different heights of occlusion, fixed UAV heights may collide. We will investigate the
3D flight trajectories of different UAVs at non-fixed heights in the future to apply them
accurately to different scenarios and provide reliable and stable services for IoT devices.

Property Analysis

Attribute 1 analysis: E∗k,a presumably denotes the minimum EC of the k-th IoT device
under offloading decision a. ∆E∗k denotes the variation of EC of the k-th IoT device under
different UAV deployment scenarios. If the IoT device can execute locally and improve
the EC to complete the task by offloading the task to the UAV, then the EC variation ∆E∗k
should be less than E∗k,0, i.e., ∆E∗k < E∗k,0 = η1 ( f ∗k,0)

2Ck. If the IoT device is unavailable for
executing locally, the IoT device presumably executes on n-th UAV. The distance between
the two is the shortest when the n-th UAV is directly above the k-th IoT device. Then,
the ideal minimum EC to complete the task of the k-th IoT device can be obtained as

E∗min = PDk
/

rk,a,max + η2

(
f ∗k,a

)2
Ck. rk,a,max = Blog2

(
1 + Phk,n

/
σ2
)

denotes the maximum

uplink rate, hk,n = µ0(dk,n)
−2, and dk,n denotes the distance between the IoT device and

UAV, dk,n = 0. If the k-th IoT device is located at the farthest distance between the two
when the n-th UAV covers the boundary of the area, then the maximum EC to complete

the task of the k-th IoT device can be obtained as E∗max = PDk
/

rk,a,min + η2

(
f ∗k,a

)2
Ck.

rk,a,min = Blog2

(
1 + Phk,n

/
σ2
)

denotes the minimum uplink rate, hk,n = µ0(dk,n)
−2, dk,n

denotes the distance between the IoT device and UAV, and dk,n = Htanθ. Thus, in this case,
∆E∗k = E∗max − E∗min. We can obtain ∑K

k=1 ∆E∗k < EH according to the parameter settings in
the simulation experiments.

This finding indicates that in different UAV deployment scenarios, the maximum
EC boost for all tasks is less than the hovering EC of the UAV. Thus, the total system EC
increases even though adding a*-UAV reduces the EC to complete all tasks. Therefore, the
number of UAVs should be as small as possible when all tasks can be performed under the
delay constraint.
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