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Abstract: A swarm of robots is the coordination of multiple robots that can perform a collective task
and solve a problem more efficiently than a single robot. Over the last decade, this area of research
has received significant interest from scientists due to its large field of applications in military or
civil, including area exploration, target search and rescue, security and surveillance, agriculture,
air defense, area coverage and real-time monitoring, providing wireless services, and delivery of
goods. This research domain of collective behaviour draws inspiration from self-organizing systems
in nature, such as honey bees, fish schools, social insects, bird flocks, and other social animals. By
replicating the same set of interaction rules observed in these natural swarm systems, robot swarms
can be created. The deployment of robot swarm or group of intelligent robots in a real-world scenario
that can collectively perform a task or solve a problem is still a substantial research challenge. Swarm
robots are differentiated from multi-agent robots by specific qualifying criteria, including the presence
of at least three agents and the sharing of relative information such as altitude, position, and velocity
among all agents. Each agent should be intelligent and follow the same set of interaction rules over
the whole network. Also, the system’s stability should not be affected by leaving or disconnecting an
agent from a swarm. This survey illustrates swarm systems’ basics and draws some projections from
its history to its future. It discusses the important features of swarm robots, simulators, real-world
applications, and future ideas.

Keywords: swarm intelligence; swarm behaviors; swarm robotics; industrial swarm; swarm
robotics applications

1. Introduction

A swarm of robots refers to the coordination of multiple individual entities, which
traditionally operate without centralized control and instead rely on simple local behaviors
to cooperate. Robot technology, particularly Unmanned Aerial Systems (UAS), is becoming
more affordable, efficient, and is boosting the transmission capacity of robots as solutions
to problems ranging from disaster relief to research mapping. Independent robots can
perform tasks that need simple, ready to go solutions and a consistent real time approach.
The autonomous robot can be a part of a robot swarm, if it fulfills at least three significant
characteristics. These characteristics include the following: the minimum number of
individual entities must be three or more, minimal or no human control, and cooperation
between these robots based on a simple set of rules as depicted in Figure 1. Swarm robotics
include a group of independent robots working collaboratively to complete a shared
task without relying on any external infrastructure or a centralized control system/robot.
Figure 2 illustrates how the fundamental concept of the swarm may be comprehended.
In Figure 2a, the system is a robot swarm which consists of three autonomous agents
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that cooperate in response to the orders received from a single ground control station.
Figure 2b indicates that the system is a sensor network rather than a swarm of robots. Each
sensor is neither a robot nor an intelligent agent, and is solely responsible for providing
data through readings without the capability of taking any actions. Figure 2c does not
depict a robot swarm since a swarm necessitates more than two agents. Despite the robots
working together towards a shared objective, each one has its own designated tasks to
accomplish, which are directed by a separate operator. Figure 2d depicts a software system
comprising multiple agents, which cannot be classified as a robot swarm as the agents are
not autonomous robots, despite their collaboration on a shared hardware platform.

3+ Group Size

It must contain three or more
entities 

Limited Human Control

Minimum or zero human
operated control system 

Cooperative

Entities within the swarm must
work cooperatively

Swarm Robotics 
Three characteristics for a system to be qualified as a swarm of robots  

Figure 1. Basic Characteristics of Swarm Robotics.

Swarm robotics involves a group of robots that collaborate to address problems
through the development of advantageous structures and behaviours that resemble those
observed in nature, such as birds, fish, and bees. These robots, which can be either homoge-
neous or heterogeneous, form an intelligent network of a swarm, enabling individual robots
to interact autonomously with each other and their environment by leveraging onboard
communication, processing, and sensing capabilities. Such behaviours can be classified
into four categories, namely navigation , spatial organization, intelligent and precise decision-
making, and miscellaneous [1]. This study offers an in-depth analysis and mathematical
comprehension of swarm intelligence algorithms. It also provides a comprehensive review
of the evolution of swarm robotics from its inception to the present day and highlights the
future ambitions of this field. Our aim is to present a broad overview of swarm robotics by
exploring its history, current research, and future directions. The main contributions are
as follows:

• To understand the fundamental difference between multi-agent and swarm of robots,
along with the natural behaviours of a swarm.

• Multiple swarm intelligence algorithms derived from the natural set of rules and
constraints for their transformation on multi-agent robots.

• Industrial and academic utilization of swarm robotics keeping in view the history and
future perspectives.

• The objective is to address the research gap that exists between theoretical and in-
dustrial research in the field of swarm robotics. Theoretical research mainly involves
simulating swarm behaviours using algorithms, while research in industrial settings
are primarily focused on designing and developing hardware capable of executing
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swarm behaviour. Therefore, it is imperative to deploy swarm algorithms using
specific hardware that can accommodate swarm behaviour functionality.

N1 N2

N3

N1 N2

R1

R2

Swarm Robotics: 
Is a Swarm

Sensor's Network: 
Not a Swarm 

Multi-Robots System: 
Not a Swarm

Multi-Agent Software System: 
Not a Swarm

This is a robot swarm containing 3 intelligent agents working 
cooperatively connected with ground control unit

This system is not a robot swarm rather a system of multiple 
sensors that are not intelligent and cannot perform physical actions 

individually

Sensors do not move or react

This is not a robot swarm rather it is a multi-agent software
system. The agents are not intelligent itself rather

dependent on single controlling system

This system is not a robot swarm. Although the robots
are intelligent but 2 are not enough agents to be

considered a swarm

Control Station

Control Station

(a) (b)

(c) (d)

Figure 2. Comparison of Multi-agent Systems and Robot Swarm [2]. (a) depicts swarm robotics
system, while (b–d) show non-swarm systems.

Figure 3 depicts the deployment of swarm behaviours in simulation and hardware,
which is thoroughly explored in Section 2 of this article. The behaviours are simulated using
existing and state-of-the-art swarm intelligence algorithms, as explained in Section 3 with
mathematical reasoning. The simulation results demonstrate high accuracy in replicating
natural animal behaviours. For the past two decades, the main research challenge in
swarm robotics has been to develop multi-robot systems that are robust, flexible, fault-
tolerant, and capable of incorporating self-organizing behaviours dynamically and by
design. The swarm robotics field has evolved from algorithmic studies to mature academic,
laboratory, and industrial-based solutions since the early 2000s. A comprehensive review
of swarm robotics and its applications is presented in Table 1 and Section 4, respectively.
Despite significant progress, cooperation and coordination in deploying the developed
swarming algorithms among swarm robots remain limited [3]. Section 5 provides a brief
overview of the era of swarm robotics, and the article concludes in the final section.
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Table 1. Era of Swarm Robotics: Past, Present, and Future Perspectives.

1990–2000 The first robot tests show self-organization through indirect and local interactions, clearly inspired by
swarm intelligence. SW

2000–2005
The ability to generate swarms of robots that work together has now been expanded to a variety of
additional tasks, including object handling, task allocation, and occupations that require significant

teamwork to achieve.
SW

2002–2006 Swarm-bots is a project that shows how robot swarms self-assemble. Robots can construct pulling
chains and massive constructions capable of transporting large loads and dealing with tough terrain. HW and SW

2004–2008 The evolving swarm robotics technique was devised after the first demonstrations of autonomous
assembly of robot swarms using evolutionary algorithms. SW

2005–2009 For swarm robotics research, the first attempts at building standard swarm robotics platforms and
small robots. HW

2006–2010 Swarmanoid showed heterogeneous robot swarms made up of three different types of robots: flying,
climbing, and ground-based robots for the first time. HW and SW

2010–2015
Advanced autonomous design methods such as AutoMoDe, novelty search, design patterns,

mean-field models, and optimal stochastic approaches are all employed in the creation of
robot swarms.

SW

2016–2020 Decentralized solutions have been investigated and deployed as swarms of flying drones become
available for investigation. HW and SW

2020–2025 The first example of robot swarms that may self-learn suitable swarm behaviour in response to a
specific set of challenges. SW

2025–2030 Marine and deep-sea robotic swarms will be utilized for ecological monitoring, surveillance, and
fishing,among other things. HW

2030–2040 Small rover swarms will be utilized for the first mission to the Moon and Mars to expand the
exploration area and showcase on-site construction capabilities. HW

2040–2045 Soft-bodied robot swarms measuring in millimeters will be deployed to explore agricultural fields and
aquatic areas to identify plastic usage and assist with pest control. HW and SW

2035–2050 Clinical research with human volunteers will begin after nanoscale robot swarms have been shown for
therapeutic objectives such as customized medication delivery. HW and SW

Behaviors

Swarm
Algorithms Swarm Robots

Simulation 
Based

Hardware 
Based

Precise and
Accurate

Not Precise and
Accurate all the

Time

Implementation Implementation

Results Results

Figure 3. Swarming Behaviours’ Deployment in Simulation and Hardware.
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2. Swarm Robotics Fundamental Behaviours

Swarm algorithms are characterized by individual entities following local rules, re-
sulting in the emergence of overall behaviour through swarm interactions. In swarm
robotics, robots exhibit local behaviours based on a set of rules ranging from basic reactive
mapping to complex local algorithms. These behaviours often involve interactions with the
physical environment, such as other robots and surroundings [4]. The interaction process
involves retrieving environmental values and subsequently processing them to drive the
actuators in accordance with a set of instructions. This recurring process is referred to as
the fundamental activity and persists until the desired state is attained. Figure 4 illustrates
a summary of several naturally occurring behaviours that are further elaborated in the
subsequent subsection.

Swarm Behaviours

Spatial Organization

Navigation Decision Making

Miscellaneous

Aggregation

Pattern Form
ation

Spatial O
rganization

O
bject C

lustering &
Assem

bly 

Self-H
ealing

Self-R
eproduction

H
um

an-Sw
arm

Interaction

C
ollective

Exploration

C
oordinated M

otion

C
ollective Transport

C
ollective

Localization

C
ollective

Perception

Synchronization

C
ollective Fault

D
etection

G
roup Size

R
egulation

Task Allocation

C
onsensus

Figure 4. Swarm Behaviours [1].

2.1. Spatial Organization

These behaviours allow robots in a swarm to move around the environment and
spatially arrange themselves around things.

Object Clustering and Assembly allow a swarm of robots to control geographically
dispersed things. These are critical for construction processes. Pattern Formation organizes
the robot swarm into a precise form. Chain Formation is a specific instance where robots
construct a line to establish multi-hop communication between two places [1,5]. Self-
assembly links robots to form structures. They can be connected physically or remotely
via communication lines [1,6]. Morphogenesis is a specific instance in which the swarm
grows into a predetermined form [1,7,8]. Aggregation pushes the individual robots to gather
spatially in a certain location of the environment. This permits swarm members to get
geographically near to one another for further interaction [1,9,10].

2.2. Navigation

These characteristics enable a swarm of numerous robots in the environment to move
in unison. Thus, a group of robots move in harmony from one location to another or from a
source to a final destination [1,11].

Collective Localization allows the swarm’s robots to determine their location and orien-
tation relative to one another by establishing a local coordinate system across the swarm [1].
In Collective Transport, a swarm of robots may collectively move things that are too heavy or
massive for individual robots [1]. Coordinated Motion moves the swarm in a configuration
that must have a well-defined shape or structure, such as a line, triangle, or arbitrary
formation of robots, as in flocking [1]. Collective Exploration navigates the environment
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to examine things, monitor the environment, or create a robot-to-robot communication
network [1,12].

2.3. Decision Making

This characteristic of swarm robotics facilitates collective decision-making for accom-
plishing specific tasks collaboratively. The Group Size Regulation feature empowers the
swarm’s robots to create groups of the required size, and if the swarm’s size exceeds the
required group size, it automatically divides into multiple groups or sub-swarms [1,13].
Additionally, the Collective Fault Detection feature detects individual robot shortcomings
inside the swarm, enabling the identification of robots that deviate from the expected
behaviour due to hardware or some algorithmic issues [1,14]. Furthermore, Synchronization
aligns the frequency and phase of the swarm’s oscillators, enabling the robots to share
a common perception of time and execute tasks in synchrony. The Collective Perception
feature aggregates the locally collected data from the swarm’s robots into a comprehensive
image. It allows the swarm to make collective decisions, such as accurately classifying
objects, allocating a suitable percentage of robots to a given task, or determining the best
solution to a global problem [1]. Moreover, the Task Allocation feature dynamically assigns
emergent tasks to individual robots, aiming to maximize the overall performance of the
swarm system. In cases where the robots possess diverse skill sets, the work can be as-
signed differently to further enhance the system’s performance [1,15]. Finally, the Consensus
feature allows the swarm of robots to converge on a single common point from multiple
available options [1,16].

2.4. Miscellaneous

The swarm robots exhibit additional behaviours beyond the previously discussed
categories. Self-healing behaviour allows the swarm to recover from individual robot
failures, improving the swarm’s reliability, resilience, and overall performance [1,17]. Self-
reproduction enables a swarm of robots to add new robots/agents or replicate the patterns
created by several individuals, thereby increasing the swarm’s autonomy by eliminating
the need for human intervention in the construction of additional robots. Human-swarm
Interaction facilitates communication between humans and the swarm of robots, either
remotely via a computer terminal or in a shared area using visual or auditory cues [1].

3. Swarm Intelligence Algorithms

Swarm Intelligence (SI) is a collective intelligence employed in various applications,
including self-organized and decentralized systems [18]. Some examples are collective
sorting, cooperative transportation, group foraging, and clustering. Self-organization and
division of work are two essential notions in SI. The ability of robots to evolve into a proper
pattern without external assistance is referred as self-organization. In contrast, division of
labor refers to the simultaneous execution of multiple tasks by individual robots. It enables
the swarm to execute a challenging task that requires individuals to collaborate. Genetic
Algorithm (GA), Ant Colony Optimization (ACO), Particles Swarm Optimization (PSO),
Differential Evolution (DE), Artificial Bee Colony (ABC), Glowworm Swarm Optimization
(GSO), and Cuckoo Search Algorithm (CSA), are all examples of famous and currently used
swarm intelligence algorithms.

3.1. Genetic Algorithm

Genetic Algorithms (GA) were introduced in 1975 by John Holland [19,20]. This
type of algorithm mimics natural existing biological behaviours in order to evaluate the
survival of the fittest. In a genetic algorithm (GA), a specified number of individuals, also
known as members, comprise the population. Mathematical operators such as crossover,
reproduction, and mutation are used to manipulate the genetic makeup of individuals.
Based on these operators, the fitness value of each member is calculated and ranked
accordingly. The previous population’s traits, represented by chromosomes (or strings),
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are combined with new traits to generate a new population [21–24]. A GA algorithm
with five basic steps is shown in Figure 5. The fitness function evaluates population
members, which begins with an initial population that can be generated randomly or
through a heuristic search. After the population members are assessed, the lowest-ranked
chromosome is eliminated, and the remaining members are used for reproduction. The
final step is mutation, in which the mutation operator modifies genes on a chromosome
to ensure that every part of the problem space is explored. This process of evaluating and
generating new populations continues until the best solution is found.

It has a vast area as an application, which includes, navigation and formation con-
trol [25], path planning [26], scheduling [27,28], machine learning [29], robotics [30,31],
signal processing [32], business [33], mathematics [34], manufacturing [35] and routing [36].

Generate Initial Random
Population

Calculate Fitness of Individual

Satisfy Stop 
 Criterion?

Selection of the Individuals

Selection of the Individuals

Crossover Operator: 
Select two individuals and swap a

section of gene between them

Mutation Operator: 
Select one individual and mutate

the genes in it 

Start

End

Figure 5. Flow Chart of Genetic Algorithm [37] .

3.2. Ant Colony Optimization

Ant Colony Optimization (ACO) is a heuristic search-based algorithm that uses the
ant colony system to solve problems. It was proposed by Marco Dorigo as part of his
Ph.D. study in 1992 [38]. The four fundamental components of the ant-inspired foraging
algorithm are the ant, pheromone, daemon action, and decentralized control. The ant
acts as an imaginary agent which mimics the behaviour of exploitation and exploration
processes in a search space and produces a chemical substance called pheromones. Its
intensity varies with the passage of time due to the evaporation process and serves as a
global memory for the ant’s path of travel. Daemon activity is used to gather global data
whereas, the decentralized control is used for the robustness of the ACO algorithm and
to maintain flexibility within a dynamic environment. The Figure 6a–c show the initial,
mid-range, and final outcomes of the ACO algorithm, respectively [38,39]. Figure 6a shows
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the initial random environment in which the agent (or ant) from the nest begins the process.
When ants discover numerous viable paths from the nest to the source, they go through
many iterations of execution, as shown in Figure 6b. The ant has chosen the shortest
possible path, which contributes to the pheromone trail’s high intensity. Equation (1) below
is used as an initial step in determining the optimal solution to select the best node from
the current search space.

S S S

N N N

ab

(a) (b) (c)

Figure 6. Nest and Food-Source have been shown by letters N and S, respectively. (a) depicts the
early stages of the process, in which ants start to discover a passage between the nest and the source
and lay their pheromones. (b) depicts the intermediate phase, in which the ants took all available
pathways. (c) demonstrates that the majority of ants chose the road with the highest pheromone
concentration [36] .

pu
(n,m)(to) =

(
[τnm(to)]

α · [ηnm]
β
)

(
∑u∈Iu [τnm(to)]

α · [ηnm]
β
) (1)

The probability of travelling from node n to node m is p(n,m), Iu are the nodes to which
the ant is permitted to go from node n, whereas η(nm) adds to visibility between nodes
n and m and it indicates the quantity of un-evaporated pheromone between nodes at a
time to. α and β in Equation (1) regulate the impact of τnm(to) and ηnm, where, if α is larger,
the ant’s searching behaviour is more pheromone-dependent, and if β is higher, then the
ant’s searching depends on its visibility or knowledge.

In order to deposit a pheromone, the following equation is used:

∆τu
nm(t) =


Q
Lu
(t)

0
(2)

Q is a constant, L is the cost of the ant’s tour that represents the length of the cre-
ated path, t is the iteration number and u shows a specific ant. Another key factor is
pheromone evaporation rate, which shows exploration and exploitation behaviour of
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the ant. In Equation (3), s is the number of ants in the system and p is the pheromone
evaporation rate or decay factor.

τnm(t + 1) = (1− p).τ(n,m)(t) +
s

∑
k=1

[∆τu
n,m(t)] (3)

Compared to other heuristic-based approaches, ACO guarantees to converge, but the
time required for it is uncertain and for better performance, the search space should be
small [40,41]. Its applications include vehicle routing [42,43], network modelling prob-
lem [44,45], machine learning [46], path planning robots [47], path planning for Unmanned
Aerial Vehicles (UAVs) [48], project management [49] and so on.

3.3. Particle Swarm Optimization

Kennedy and Eberhart invented Particle Swarm Optimization (PSO) in 1995, and it
uses a simple method to encourage particles to explore optimal solutions [50]. It is based
on flocking bird and schooling fish behaviours [51], by exhibiting three simple behaviours:
separation, alignment, and cohesiveness. Separation is used to avoid congested local flock-
mates, alignment is the travelling of one flock-mate in the same average direction of the
other flock-mates, and cohesiveness is the movement of flock-mates toward the average
position. The PSO algorithm is as follows [50,52,53]:

vt+1
id = vt

id + c1 · rand(0, 1) ·
(

pt
id − xt

id
)
+ c2 · rand(0, 1) ·

(
pt

gd − xt
id

)
xt+1

id = xt
id + vt+1

id

(4)

where vt
id and xt

id are particle velocity and position, whereas d is search space dimension,
i represents particle index and t shows the iteration number. c1 and c2 depict the speed
and regulating length of the swarm when it travels towards the optimal particle position.
The optimal position attained by particle i is pi and the best position found by neighbouring
particles of i is pg. The process of exploration ensues if either or both of the differences
between the best of particle pt

id and the previous position of particle xt
id and between the

population all-time best pt
gd and the previous particle’s position xt

id are large. Similarly,
the process of exploitation happens when both of these values are small. PSO has been
demonstrated as an effective, robust, and stochastic optimization algorithm for high-
dimensional spaces. The key parameters of PSO include the position of the agent in space,
the number of particles, velocity, and the agent’s neighbourhood [54–56].

The PSO algorithm begins by initializing the population, and the second step is to
calculate the fitness of each particle. Whereas, the third step is followed by updating
the individual and global best. In the fourth step velocity and neighbourhood of the
particles are updated. Steps two to four keep repeating until the terminating condition is
satisfied [51,54,57,58].

Figure 7 shows the working of the PSO method, where the particles are spread out in
the first iteration to discover the best exploration. The best solution is identified in terms
of neighbourhood topology, and each member’s personal and global best particles are
updated. As indicated in the figure, the convergence would be determined by attracting all
particles towards the particle with the best solution.

PSO is simple to configure for efficient global search, has few parameters to set, is scale-
insensitive, and parallelism for concurrent processing is also easy. Population size is one of
the key factors that ensures precise and fast convergence for large population sizes [51,59].
Networking [60], power systems [61], signal processing [62], control systems [63], machine
learning [64], and image processing [65–67] are some of the applications.



Drones 2023, 7, 269 10 of 28

ITERATION 1 ITERATION 25

ITERATION 50 ITERATION 75

Particle
Best

Figure 7. The operation of the PSO algorithm and its progress towards global optima as measured by
iteration numbers [47].

3.4. Differential Evolution

Differential Evolution (DE) is similar to GA, using the same crossover, mutation,
and selection operators. The fundamental difference between the two algorithms is that
the DE utilizes the mutation operator while GA uses the crossover operator to produce a
superior solution. Price and Storn first introduced it in 1997 [68]. DE repeatedly generated
new populations using three properties: mutant vector, target vector, and trail vector
explained in Figure 8. A crossover process between the target and mutant vectors produces
the trailing vector. The mutant vector represents the mutation of the target vector, whereas
the target vector represents the vector holding the search space solution [69,70]. The DE
algorithm starts with population initialization and then evaluates the population to find
the fittest members. The weighted difference between the two population vectors is added
to the third vector to create new parameter vectors and this process is known as mutation.
The vector is blended within the crossover to perform a final selection.

N parameter vector mutation is generated by using the following equation:

vj,N+1 = xl1,N + F(xl2,N − xl3,N). (5)

i shows the index of the 2D vector. xl1, xl2, and xl3, are solution vectors selected
randomly and the values of l1, l2 l3 and i should not be equal to each other. F is the
scaling factor ∈ [0,1], while, a crossover procedure is employed to improve the variety of
the disconcerted parameter vectors. The parent and mutant vectors are combined in the
following method to create a trial vector:

ui,G+1 =

 vi,G+1 if Rj ≤ CR

xi,G if Rj > CR
(6)

where CR denotes the crossover constant. Rj denotes a random real number ε [0,1] while j
depicts the resultant array’s jth component.

The primary distinction between DE and GA operations is that in DE, the probability
of being selected as a parent is not based on fitness value. Increasing the population size
can significantly improve DE performance.
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DE can be found in a variety of fields, including, robot path planning [71,72] engi-
neering [73], image processing domain [74], machine learning [75], and economics [76].

Target Vector Mutant Vector Trail Vector

Xi Vi, G+1 Ui, G+1

j=1
2
3
4
5
6
7

j=1
2
3
4
5
6
7

3
4

6

j=1

5

7

2

Figure 8. Demonstration of DE with a seven-vector dimension j. A target vector is a current approach;
however, a mutant vector is also an alternative. After the crossover operation, the trailing vector is a
new solution [55].

3.5. Artificial Bee Colony

Dervis Karaboga presented Artificial Bee Colony (ABC) as an important SI algorithm
in 2005 [77]. Its performance is thoroughly examined in [78], which concluded that ABC
outperforms other techniques. It is based on honey bees’ intelligent behaviour in locating
food and communicating information about that food with other bees. ABC is as straight-
forward as PSO, and DE [78], which divides artificial agents into three types: employed,
observer, and scout bees. Each agent bee is given a particular task to finish the algorithm
process. The employed bee concentrates and memorizes the food supply. The employed
bee provides the observer bee with the information about the hive’s food supply. The scout
bee is on the lookout for new nectar and its sources. Figure 9 presents the algorithmic
flow of the ABC. The ABC method’s overall procedure and specifications of each step are
explained below [77–79]:

Step 1. Initialization: Food sources, xi, are initialized with i = 1 ... N, where N is the
number of scout bees in the population. li and ui are the control parameters represent lower
and upper limits, respectively. The following Equation (7) represents the initialization phase:

xi = li + rand(0, 1) ∗ (ui − li) (7)

Step 2. Employed Bees: The search capacity for finding new neighbour food source
vi increases to accumulate more nectar around the neighbour food source xi. Once they
identify a nearby new food source supply, its profitability and fitness value are assessed.
The following formula is used to define the new nearby food source:

vi = xi + φi
(
xi − xj

)
(8)

where xj is a randomly selected food source. φi has random numbers of range between
[−a, a]. After the profitability of the new source vi is determined, a greedy selection is
used between −→xi and −→vi . The process of exploration occurs if xi − xj is greater, otherwise
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exploitation happens. The fitness value f iti(
−→xi ) is computed by the following Equation (9)

and objective function with solution value xi is fi(
−→xi ).

f iti(
−→xi ) =


1

1+ fi(
−→xi )

if fi(
−→xi ) ≥ 0

1 + abs( fi(
−→xi )) if fi(

−→xi ) < 0
(9)

Step 3. Onlooker Bees: After calculating the fitness value and by obtaining information
from employed bees, a probability value pi is computed by using Equation (10), and this
value is then shared with the waiting bees in the hives for selecting food sources. These
bees are known as onlooker bees.

pi =
f iti
(−→xi

)
∑SN

i=1 f iti
(−→xi

) (10)

Step 4. Scout Bees: Employed bees that cannot raise their fitness values after multiple
repetitions become scout bees. These unemployed bees choose sources at random.

Step 5. Best Fitness: The best fitness value and the exact position with an associated
value are memorized.

Step 6. Termination Checking Phase: The program terminates upon meeting the
termination condition. If the termination condition may not be reached, the program goes
back to step 2 and repeats the process until it is.

InitilizationStart Employed Bee Onlooker Bee Scout Bee End 
Condition End

Yes

No

GRO

Figure 9. Flow Chat of ABC Algorithm.

Since ABC has only two control factors, colony size and maximum cycle number,
it is straightforward to set up, robust and customize-able. It is also possible to add and
remove bees without re-initializing the algorithm [80,81]. The disadvantage of ABC is that
additional fitness tests for new parameters are required to increase the algorithm’s overall
performance. It is also slow when a large number of objective function evaluations are
required [82]. Path planning for multi-UAVs [83], engineering design difficulties [84,85],
networking [86], electronics [87], scheduling [87], and image processing [87] are some of
the disciplines where it is used.

3.6. Glowworm Swarm Optimization

Glowworm Swarm Optimization (GSO) is a new SI based approach presented by Kr-
ishnanad and Ghose in 2005 [88,89] to optimize multimodal functions. In GSO, glowworms
are real-life tangible creatures. There are three key parameters in a glowworm m condition
at time t: a search space position xm(t), a luciferin level lm(t), and a neighbourhood range
rm(t) [88–90]. These variables change over time, whereas the glowworms are distributed
throughout the work area at random initially, and then the other settings are set using pre-
determined constants. It is similar to earlier algorithms, where three phases are continued
until the termination condition is reached. The three steps of [88] are luciferin level update,
glowworm migration, and neighbourhood range update. The fitness value of glowworm
m’s current position of luciferin level is updated by using the following equation:

lm(t) = (1− p) · lm(t− 1) + γJ(xm(t) (11)
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where p is the luciferin evaporation factor and J represents the objective function. For posi-
tion update in the search space, the following equation is used:

xm(t) = xm(t− 1) + s
(xn(t− 1)− xm(t− 1)
||(xn(t− 1)− xm(t− 1)|| (12)

where s is the step size, and ||.|| is euclidean norm operator. Exploration and exploita-
tion behaviours occur on the basis of xn and xm difference. Greater difference leads to
exploration and smaller to exploitation behaviour.

If a glowworm has several neighbours to choose from, one is selected using the
following probability equation and the glowworm m is the neighbour of glowworm n only
if the distance between them is shorter than the neighbourhood range rm(t):

pm(t) =
lm(t)− ln(t)

∑k∈Ni(t) lk(t)− ln(t)
(13)

The following equation is used to compute the neighbourhood range:

rm(t + 1) = min{rs, max[0, rm(t) + β(nd − |nm(t)|)]} (14)

rs represents sensor range, nd is the desired number of neighbours, |nm(t)| is several
neighbours of the glowworm m at time t, and β is a model constant. The diagram below
demonstrates two hypothetical scenarios in which agents developing methods result in dis-
tinct behaviours depending on the agents’ placement in the search space and the accessible
nearby agents. The glowworm’s agents are represented by i, j, and k. Figure 10a signifies
agent j’s sensor range, whereas rj

d denotes agent j’s local-decision range. The same is true
for i and k, where ri

s and ri
d, rk

s and rk
d respectively denote sensor range and local-decision

range. It is applied in the circumstances where agent i is in the sensor range of agent j and
k. Only agent j uses the input from agent i because the agents have different local decision
domains. Glowworm agents are a, b, c, d, and e in Figure 10b. The glowworm agents are
ranked 1, 2, 3, 4, and 5, depending on their luciferin values.

a

c d

e5

3

2

4

1

b

Local Decision Range

Glowworm

Local Decision 
Domains

Radial sensor 
range of agent k

Radial sensor 
range of agent j

𝑟𝑠
𝑗

𝑟𝑑
𝑗

𝑟𝑑
𝑘

j

k

i

(a) (b)

Figure 10. GSO in two different scenarios. The glowworm agents are a, b, c, d, e, f, i, j, and k. Three
agents with varied sensor ranges and local-decision ranges are shown in (a). It demonstrates how
agents gravitate towards agents with higher luciferin values when they are in the same local decision
as another agent. Glowworm agent’s rating is according to their luciferin levels, as shown in (b).
Lower numbers indicate greater luciferin values and vice versa [67].
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The following modifications can be considered to improve the performance of GSO.
(i) To include all agents in the solution, consider increasing the number of neighbourhoods.
When the best solution has been identified, all the agents can travel in the direction of the
agent which has the best solution, because more agents will be within the optimal solution
range and it will also increase the efficiency of exploitation; (ii) In the neighbourhood range,
smallest possible number should be selected to increase the convergence rate of GSO. Since
there are fewer calculations needed to estimate the probability and direction of the GSO’s
movement, this action may decrease the GSO’s processing time.

GSO is useful in situations when only a small sensor range is required. It can detect
many sources and can be used to resolve problems of numerical optimization [88–90]. It is
also inaccurate and has a slow convergence rate [91,92]. 3-Dimensional path planning [93],
self-organization based clustering scheme for UAVs [94], routing [95], swarm robotics [96],
image processing [97], and localization [98,99] difficulties have all been solved using GSO.

3.7. Cuckoo Search Algorithm

Yang and Deb in 2009 proposed Cuckoo Search Algorithm (CSA) as one of the most
current meta-heuristic techniques. The behavior of cuckoos, i.e., brood parasites, and the
properties of Levy flights [100] inspired this algorithm. Three steps are followed throughout
the implementation of this approach. First, in each repetition, each cuckoo lays one egg,
and the nest in which the cuckoo lays its egg is chosen at random by the cuckoo. Quality
eggs and nests are passed down from generation to generation in the second step. In the
third step, the number of possible host nests are fixed, and a host bird uses probability pa ε
[0, 1] to find a cuckoo egg. In other words, the host can either reject the egg or depart the
nest and start over. These three major criteria are used to present the specifications of the
acts taken in CSA. The following Levy flight equation is used to construct a new solution,
u(i + 1) [100,101]:

um(i + 1) = um(i) + ∂⊕ Levy(β) (15)

Levy ∼ s = t−1−β(0 < β < 2) (16)

The product ⊕ is an indication of multiplication, follows the same rules as entry-wise
matrix multiplication, and ∂ is the step size and, in most circumstances, ∂ = 1. The step
size begins with a large value and gradually decreases until the last generation, allowing
the population to converge on a solution, similar to the processes involved in reducing PSO
linearly. Yang [102] introduces the additional component as follows:

um(i + 1) = um(i) + ∂⊕ Levy(β) ∼ 0.01
s

|v|1/β
(un(i)− um(i)) (17)

where s and v are selected using the normal distribution, which is defined as follows:

s ∼ N
(

0, σ2
s

)
, v ∼ N

(
0, σ2

s

)
(18)

where;

σu =


(

γ(1 + β) sin
(

πβ
2

))
(γ[1 + β)/2]β2

β−1
2


1/β

, σv = 1 (19)

γ is the standard gamma function [102]. Exploration happens when the difference
between un and um is high, while exploitation occurs when the difference is minor.

Compared to other approaches, CSA offers the advantage of multi-model objectives
and requires fewer parameters to fine-tune them. It is used in a variety of settings, including
path planning for UAVs [103], neural networks [104], embedded systems [105], electromag-
netics [106], economics [107], business [108], and the Traveling Salesman Problem (TSP)
issue [109].
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4. Applications of Swarm Robotics

Swarm robotics is an emerging area of research and development that has yet to gain
significant industrial adoption. Still, academics have created a variety of platforms to test
and analyze the algorithm. In [110], the authors mentioned that they are researching for
future industrial platforms. Swarm robotics research (see Figure 11), and industrial efforts
& products (see Figure 12), are the two areas of the survey which will be discussed later.
Industrial projects and products are examples of deployment in a real-time scenario. The
swarm robotics research platform assists researchers in demonstrating, verifying, and ex-
perimenting with swarming algorithms in a laboratory setting. The four categories for
both platforms are terrestrial, aerial, aquatic, and extraterrestrial. Robotic vehicles include
Unmanned Submarine Vehicles (UUV), Unmanned Aerial Vehicles (UAVs), Unmanned
Surface Vehicles (USVs), and Unmanned Ground Vehicles (UGVs).

4.1. Research Platforms

This section includes the application from swarm algorithms to swarm robots. Ad-
vanced robotics research platforms, such as the balboa robot and others, exist but are not
included in Figure 11 because, they are not designed to use in swarm applications.

Environments
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Outer Space
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Figure 11. Classification of different research platforms for swarm robotics .

4.1.1. Terrestrial

The kilobot swarm is widely considered the best swarm of robots ever produced
for educational and research purposes. They are little, measuring 33 mm in diameter.
For propulsion, vibration motors are employed, and for communication, infrared light
reflected from the ground is used. For swarming, 1024 robots are used and they are
well-known for their capacity to self-assemble into various forms [111]. It is open-source
and commercially accessible through K-Teams. Jasmin, an open-source platform, was
created with a large-scale swarm investigation that required touch, proximity, distance,
and color sensors. Alice [112] is another platform, with additional sensors, including
a linear camera, increases the functionalities of swarming. Similarly, AMiR [113] and
Colias [114] are open-source and commercially available swarm robots that provide a
foundation for a number of research platforms. Mona is a commercial product as well as an
open-source initiative. However, R-One may be used as a swarm robotics platform since
it comes with a camera for ground-truth localization and software to connect all devices.
The swarming platform Elisa-3 incorporates an Arduino with eight infrared sensors, three
accelerometers, and four ground sensors, all of which can be charged by a charging station
and communicate through infrared or radio waves. The Khepera IV [115] was created for
indoor use. K-Team is a tiny and unique swarming research platform with a linux core,
color camera, WLAN, bluetooth, USB, accelerometer, loudspeakers, gyroscope, three RGB
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LEDs, and it is also commercially available. The GRITSbot [116] is an open-source robot
found at Georgia Tech’s Robotarium in Atlanta. Researchers can utilize the resources by
uploading code, performing experiments, and gathering data using Robotarium’s remote
access. As the size and quantity of these robots increase, more maintenance and usability
aspects become crucial.

The e-puck and its successor, the e-puck2, are designed to make programming and con-
trolling robot behavior simple for research and education. It includes an infrared proximity
sensor, a CMOS camera, and a microphone. Both commercial and open-source versions
are available. Its new edition, Xpuck, introduces new features, including aggregation of
raw processing power, which is used in current mobile system-on-chip (SoC) devices with
roughly two teraflops of processing power.

ArUco marker tracking in image processing computations is another example [117].
Similarly, Thymio II [118] swarm robots offer a range of sensors, including temperature,
infrared distance, microphone, and accelerometer. Visual and text-based programming are
also available. Thymio II is open-source and commercially available at Thymio, whereas
Pheeno [119] is also a free and open-source swarm robotics platform for teaching and
research. Custom modules with three degrees of freedom may be employed, and an IR
sensor is used to communicate with the outside world. The open-source and locomotion-
capable Spiderino [120] has six legs and has a hexapod toy-like design with an Arduino
CPU, WLAN, and some reflected infrared sensors on a PCB.

I-Swarm (Intelligent Small-World Autonomous Robots for Tiny-Manipulation) is a
swarming microrobot. Its sizes are 3 × 3 × 3 mm, and it is solar-powered without a source.
It travels by vibrating and communicates using infrared transceivers to establish a swarm
of 1000 robots [121]. The prototype is on exhibit at the technology museum in Munich.
The Zooids [122] human-computer interface is a novel type of HCI that handles interaction
and presentation. It was built as a unique open-source robotics platform. Light patterns pro-
jected from an overhead projector regulate the swarming of Zooids. The APIS, or adaptable
platform for an interactive swarm, comprises several components, i.e., the swarm’s infras-
tructure and testing environment, software infrastructure, and simulation [123]. The focus
is to experiment with human-swarm interaction. The platform uses an OLED display and a
buzzer. With the help of the swarm, clean up the environment Wanda [124] is a robotics
platform that might be useful. The authors have built the entire tool-chain from robot
design and simulation to deployment. Droplet [125], a spherical robot that can organize
itself into complex shapes with the help of vibration locomotion, is another ideal platform
for education and study. The powered floor, which features alternating positive charge
and ground stripes, has been used for both charging and communication between swarm
robots. Swarm-bots [126,127] may automatically align themselves to various 3D shapes.
Its design is open-source, and robots are made up of various insect-like shapes. They are
built with low-cost, readily available components. They can adapt to any environment
due to their self-assembling and self-organizing capabilities. The swarm can move heavy
goods that would be too heavy for individual robots. Swarmanoid and its successor, are
the first study of integrated design, development, and control of heterogeneous swarm
robotics systems. It is open-source, and includes three types of autonomous robots. Eye-bots
(UAVs that can stick to an interior ceiling), Hand-bots (UGVs that can climb), and Footbots
(UGVs that can self-assemble) are among the varieties of UAVs that are developed [128].
Surprisingly, the termes robots [129] interact without the need for communication or GPS to
build huge constructions using modular components. It is based on how termites construct
their nests in nature, and they are block-carrying climbing robots that can also construct
similar structures in unstructured situations. Other swarming platforms for research are
symbrion and replicator [130]. They are two projects that are pretty much identical in terms
of developing autonomous platforms for swarms. By physically connecting to each robot in
the swarm, they may function individually or in a certain form and the goal was to devise
a strategy for achieving robot organism evolvability. PolyBots [131] are self-configurable
robots that can move in many ways. They have interchangeable object manipulation mod-
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ules that may take on a variety of shapes depending on the situation, such as an earthworm
for slithering over barriers or a spider for marching through hilly terrain. These robots are
ideal for multitasking and usage in new areas. M-TRAN I [132], M-TRAN II [133], and M-
TRAN III [134] are self-configurable robotics technologies. ATRON [135], CONRO [136],
sambot [137], and molecube [138] are all open-source robotic systems and robots.

4.1.2. Aerial

Miniature and micro unmanned aerial vehicles (µUAVs) for swarming are affordable
robots available for research and education [139] and Swetha et al. [140] both look into
small-scale UAVs. Several off-the-shelf Micro Air Vehicles (µAVs) are available and famous in
the gaming and commercial industries. Three rate gyroscopes and three accelerometers are
used in UAVs developed for swarming robots in µAVs in [141], together with one ultrasonic
sensor and four IR sensors. The Distributed Flight Array [142] is a popular platform used to
construct swarmanoid [128] on it. Each UAV adds a single rotor to a big array. The module
self-assembles into a multi-rotor system, in which all robots must exchange coordinates and
local parameters for coordinated flying. Crazyflies [143], which are available commercially
and open-source at Bitcraze, make use of a variety of sensors, including a high-precision
pressure sensor, an accelerometer, a magnetometer, and a gyroscope. It can conduct
experiments while minimizing the risk to humans because of its light weight of about 27 g.
In FINken-III [144], is a powerful copter equipped with a better communication module
(802.15.4) to communicate between ground station and other copters , and sensors like
optical flow, infrared distance, and four sonar sensors.

4.1.3. Aquatic

The Collective Cognitive Robotics (CoCoRo) project has been developed with 41 het-
erogeneous Unmanned Underwater Vehicles (UUVs). Electric fields and sonar sensors are
used to communicate, and the system applies to environmental monitoring, water pollution
assessment in rivers and oceans, and global warming consequences. The Monsun [145] has
two communication modes: a camera for identifying other swarm members and an under-
water acoustic modem for transmitting data. CORATAM (Control of Aquatic Drones for
Maritime Tasks) [146] has also been developed for swarms of USVs, with uses such as sea
border patrols, marine life localization, and environmental monitoring. This open-source
platform uses evolutionary computing to evaluate swarm methods [147].

4.1.4. Outer Space

NASA has developed swarmies to gather water, ice, and minerals on Mars. They have
also established a swarmathon to aid academics in developing an ant-based swarm algorithm.
In-situ Resource Utilization (ISRU) is the name given to this application. Twenty swarmies
cover a distance of 42 km in around 8 h. Another NASA Innovation Advanced Concept (NIAC)
program project aims to enrich knowledge on the Mars exploration swarm of Marsbees [148].
These have the size of the bumblebee for robotics flapping wing flyers. They can explore
and discover themselves in an unfamiliar place. With NIAC financing, a flapping flyer with
insect-like wings will be offered as a technical implementation.

4.2. Industrial Projects and Products

These include UAV, UGV, UUV, and USV swarm robots developed for industrial
projects and products. The available robot with respective type has been shown in Figure 12.

4.2.1. Terrestrial

Agriculture is essential to a country’s growth. Food demand is growing, but the
output is still insufficient [149]. SwarmBot 3.0 is being used to monitor fields autonomously
using Unmanned Ground Vehicles (UGVs). Before beginning the specified task, this swarm
collaborates via a centrally controlled timetable. The large area is automatically subdivided
into smaller fields and then allocated to an individual robot in the swarm [150]. Their tasks
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include sowing, applying fertilizers to the assigned areas, harvesting, and irrigation which
is the requirement of the agriculture sector. Another fascinating innovation from the Fendt
firm is the UGV Xaver, which is used for seeding and is powered by a battery [151].

Environments

Terrestrial

Aerial

Aquatic

Outer Space

Robot-Type

UGV UAV USVUUV
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Figure 12. Classification of different industrial projects and products of swarm robotics.

The GUARDIANS (Group of Unmanned Assistant Robots Deployed in Aggregative
Navigation by Scent) [152] has been used for emergency and rescue missions. They are
used in places where human presence is prohibited or where the environment severely
impairs human senses. This project assists in searching and warns against toxic chemicals
using mobile communication links. They can form and navigate using potential fields and
achieve the assigned task without explicit communication between the robots.

Another autonomous Ocado [153] warehouse has been developed that has a swarm of
homogeneous cuboids and is being utilized for grocery orders and dispatching. A total
of 1100 collaborative swarms of robots are used for the order and dispatch, where the
workers put the customer order together. Robots are controlled from a central location by a
cloud server, and data are exchanged via cellular technology between the robot and the
cloud. Amazon [154], which employs Kiva, is the most prominent player in the swarming
of robots in warehouses. An A* algorithm (with visual tags on the ground) searches for
humans who assemble the customer’s order. WLAN is used for the communication of
robots, and dispatching is organized centrally. A low battery of robots is handled by the
charging stations automatically. Alibaba [155] retailers are using a similar system for the
autonomous order of goods and dispatching.

4.2.2. Aerial

The OFFSET (OFFensive Swarm Enabled Tactics) [156] projects are mostly deployed
in military applications, although they can also be applied in other situations. This project
aims to improve intra-city observations using UAVs and UGVs. These swarms of robots
are capable of detecting hazards from the surroundings. Perdix [157], a military application
swarm supported by the business. It is capable of performing its tasks without human
piloting and has the ability to communicate with other drones to work collaboratively and
achieve a common goal. These drones operate in a swarm of 20 or more and coordinate
their actions to accomplish the desired outcome. Pentagon consisting of 103 drones, is
another military application swarm. This swarm is not controlled by a single leader and
can adapt to UAVs. They can fly in formation and make decisions as a group, making
them useful for covert operations and targeted assassinations. The autonomous swarm
is developed to install and manage WLAN network [158] as part of the Swarming Micro
Air Vehicle Network (SMAVNET) project [159] in the emergency and rescue application
sector. The project aims to gather rescue teams when disaster places have been explored
and located. SWARMIX [160] is a similar search and rescue initiative in which a swarm
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of heterogeneous agents, such as humans, dogs, and Unmanned Aerial Vehicles (UAVs),
create a swarm and engage in a search and eventually rescue operation.

Using a swarm of autonomous aerial vehicles, the Swarm robotics for Agricultural
Applications (SAGA) project [161] seeks to do weed-spread monitoring and mapping.
A swarm’s fitness is decided by trade-off exploration and weed detection time in smart
farming. Weeds and plants are detected and identified using a visual approach.

Nowadays, swarms are also providing entertainment in terms of light shows. The UAVs
are equipped with colorful LEDs and perform the formation of different patterns accom-
plished by music to create a beautiful scene. In Spaxels, Flyfire, Ehang, Intel [162], and Lucie
micro, 1000 Unmanned Aerial Vehicles (UAVs) are controlled from a central location and
follow pre-programmed patterns.

4.2.3. Aquatic

Swarms are commonly used in aquatic environments to monitor the environment.
Platypus [163] offers autonomous swarm robotics boats as USVs. They are utilized to
keep track of water quality, produce a dense map of defined bodies beneath the surface,
and stratify salinity and oxygen levels. Apium Data Diver is a prototype vehicle with a
maximum depth of 100 m. It is meant for swarm operations on the surface and underwater,
with temperature, pressure, and GPS among the sensors on board. It finds its application
areas in defense, oceanography, hydrographic survey, and aquaculture. This type of swarm
can be found in UUVs and USVs. It can accept high-level commands from a human
operator and build a wide range of patterns [164]. Hydromea’s Vertex Swarm is available in
UUVs and can assess water quality in various places up to 300 m deep. It generates 3D
data with great spatial and temporal resolution that is faster and more precise than manual
approaches. The major purpose of the SWARMs (Smart Networking Underwater Robots in
Cooperation Meshes) project [165] is to develop surface and underwater vehicles that can
operate in maritime and offshore operations. It is responsible for designing and developing
software and hardware components for the next generation of maritime vehicles, as well as
assisting in the improvement of autonomy, robustness, cooperation, dependability, and cost-
effectiveness. It uses offshore installations, chemical pollution monitoring, and plume
tracking. Research focus lies on reliable underwater communication [166] and leveraging
topology control [167].

The military has employed the CARACaS software kit, which is used in aquatic
environment. NASA developed CARACaS (Control Architecture for Robotic Agent Com-
mand and Sensing), which has now been upgraded by ONR (Office of Naval Research)
for autonomous Navy operations in the United States where USVs communicate with
one another [168]. It enables USVs to choose their courses, protect assets in the navel,
and intercept enemy boats as a group. In a demonstration at the James River in Virginia in
2014, CARACaS was installed on rigid-hulled boats and proved to be magnificent and suc-
cessful [169]. Based on the discoveries of the CoCoRo, Submarine Cultures (SubCULTron)
conduct long-term robotic exploration of unusual environmental niches. It is used on UUV
robots to assess factors such as learning and self-sustainability.

4.2.4. Outer Space

Swarm was launched in 2013 and is made up of three identical spacecraft, two of
which are side-by-side at 450 km and the third at 530 km above the ground. The mission of
each satellite was to research the earth’s magnetic field, and each was nine meters long [169].
Cluster II is a tetrahedral arrangement of four identical cylindrical spacecraft that was
launched in 2000. It was initially capable of sending three-dimensional solar wind data on
the earth’s magnetosphere to investigate the sun’s influence on the environment [170].
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5. Swarm Robotics: Past, Present and Future Perspective

Social insects, fish schools, and bird flocks are examples of naturally self-organizing sys-
tems that display emergent collective behavior based on simple local knowledge [171,172].
Swarm robotics emerged as a branch of swarm intelligence, or the computational modeling
of collective, self-organizing activity, which has yielded many successful optimization
methods [173,174] that are now used in fields ranging from telecommunications [175] to
crowd simulation, and prediction [176]. In contrast, swarm behavior in robots necessitate
the installation of swarm intelligence algorithms on current robotic systems. Because of
the expected ubiquity of autonomous robots in real-world applications and the challenge
of allowing them to interact with one another and with their human users while avoiding
the drawbacks of centralized control, swarm robotics research is gaining traction. Swarm
robotics research will be crucial in addressing complex coordination problems in future
robotics applications. It includes cooperative (i.e., robots working together to complete a
common task) and semi-cooperative (i.e., self-interested robots benefiting from a globally
efficient organization of activities, such as autonomous vehicles) scenarios. In the future,
it will become a new and powerful tool in precision medicine, allowing for personalized
therapies such as minimally invasive surgery or direct polytherapy delivery to malignant
cells inside the human body [177,178]. Large numbers of robots with limited computation
and communication capabilities, on the other hand, will push swarm robotics to its limits,
necessitating the development of new conceptual tools in addition to tiny hardware or
robotics devices [179].

In lab settings, robot swarms are shown using a small number of tiny robots [128,180].
Although technology advancements are pushing the bounds to ever-smaller sizes [177,181]
and greater numbers [6,7], but the road to real-world applications remains lengthy and
arduous. For example, group scale, from a few dozen to millions of people constituting the
swarm and physical scale, from micro/nanorobots to massive terrestrial, aerial, and aquatic
robots. Swarms that display prompt intervention and adaptability in a quickly changing
environment to robots that work on months-long missions are examples of temporal scale
(e.g., on a distant planet) from small-scale deployments to large-scale deployments and
geographical scale. Previous, current, and future robotics achievements in terms of software,
hardware, or a combination of the two are explained in the Table 1. Figure 13 shows the
evolution of swarm robotics, to the best of our knowledge, from algorithmic research to the
real-time best-performing swarm of robots.
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Figure 13. Evolution of swarm algorithms and swarm robotics.
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6. Conclusions

Swarm robotics aims to develop simple, autonomous or self-governing robots that
can cooperate to solve real-world problems collectively. Intelligent swarm algorithms are
needed to enable the robots to interact autonomously and coordinate together without
centralized control. The research on the swarm robotics domain started in the late 1900s,
and the development work started in the early 2000s, gradually evolving the previous
research and simulation work towards the actual real-world projection of swarm robotics.
But there is a gap between theoretical and industrial research in swarm robotics. Theoretical
research mainly focused on simulating swarm behaviours, while industrial research focuses
on designing hardware that can execute swarm behaviour. Therefore, it is crucial to deploy
swarm algorithms on hardware that can accommodate swarm behaviour functionality.

This article provides a comprehensive overview to new researchers of the swarm
robotics field. It classifies the definition of swarm robots and identifies the difference
between a multi-agent system and an actual swarm of agents. A detailed review of the
swarm’s most emerging swarm behaviors, and swarm intelligence algorithms is captured,
keeping in view the limitation and the transformation towards the industrial application
and development of the swarm robotic platform. In addition to the industrial applica-
tion, this paper reviewed several research hardware platforms specifically designed to
demonstrate or replicate any swarm behaviour. Finally, this paper concludes by reviving
the era of swarm robotics from the past, present, and future projections with expected
timelines of evolving the system and having real-world application, agnostic of swarm
robotics platforms.

This article provides valuable insights for researchers in swarm robotics by highlight-
ing various areas of research gaps, including algorithmic and hardware implementation.
It emphasizes the importance of addressing these gaps to enable effective collaboration
among robots. Researchers can bridge the gap between theoretical and industrial research
in swarm robotics, leading to advancements in the field.
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