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Abstract: Post-disaster search and rescue is critical to disaster response and recovery efforts and is
often conducted in hazardous and challenging environments. However, the existing post-disaster
search and rescue operations have problems such as low efficiency, limited search range, difficulty
in identifying the nature of the target, and wrong target location. Therefore, this study develops an
air–ground integrated intelligent cognition visual enhancement system based on a UAV (VisionICE).
The technique combines a portable AR display device, a camera-equipped helmet, and a quadcopter
UAV for efficient patrols over a wide area. First, the system utilizes wireless image sensors on the
UAV and helmet to capture images from the air and ground views. Using the YOLOv7 algorithm,
the cloud server calculates and analyzes these visual data to accurately identify and detect targets.
Lastly, the AR display device obtains real-time intelligent cognitive results. The system allows
personnel to simultaneously acquire air and ground dual views and achieve brilliant cognitive results
and immersive visual experiences in real time. The findings indicate that the system demonstrates
significant recognition accuracy and mobility. In contrast to conventional post-disaster search and
rescue operations, the system can autonomously identify and track targets of interest, addressing
the difficulty of a person needing help to conduct field inspections in particular environments. At
the same time, the system can issue potential threat or anomaly alerts to searchers, significantly
enhancing their situational awareness capabilities.

Keywords: unmanned aerial vehicle; YOLOv7; intelligent cognition; augmented reality

1. Introduction

Post-disaster search and rescue (SAR) is a complex and challenging endeavor. Search
and rescue operations involve locating and extracting individuals trapped or injured in the
aftermath of a disaster and are often conducted in hazardous and complex environments.
The traditional post-disaster search and rescue operations have the problems of low search
efficiency, limited search range, difficulty in identifying the nature of the target, and
inaccurate positioning of target coordinates. Recent advances in technology, such as
unmanned aerial vehicles (UAVs) and artificial intelligence (AI), have the potential to
significantly enhance the effectiveness and efficiency of post-disaster search and rescue
operations. Post-disaster searches shifted progressively to multi-dimensional, autonomous,
intelligent methods due to the rapid development of intelligent technology.

Drone-integrated systems have emerged as a promising tool for search and rescue
operations in recent years [1]. UAVs are irreplaceable in unique and complex environments
due to their wide search range, good concealment performance, and high mobility [2,3].
By being equipped with sensors such as cameras, drones can detect and locate individuals
or objects in areas that may be difficult or dangerous for human rescuers to access. In
recent years, computer vision technology has made breakthroughs with the support of
big data processing and high-performance cloud computing. The integration of computer
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vision technology and UAV technology has effectively addressed UAV surveillance more
significantly [4,5] and is a powerful tool for achieving situational awareness, target indica-
tion [6], and ground target tracking [7,8]. Therefore, combining post-disaster search and
rescue and intelligent UAVs gives the searchers both ground and air perspectives. It solves
the problem that field surveillance cannot be carried out under particular circumstances,
making the search range larger and having higher mobility.

Augmented reality (AR) technology can enhance the capabilities of drones, allowing
them to perform complex tasks and provide real-time situational awareness to operators.
AR technology can effectively reflect the natural world’s content and overlay virtual
information into the real world. AR technology involves overlaying digital information,
such as images, video, and text, onto the physical environment, creating an augmented
view of reality [9–12]. When combined with drones, AR technology can provide operators
with a real-time view of the drone’s surroundings, as well as additional information and
data, such as flight paths, obstacle detection, and telemetry. This enhances the operator’s
situational awareness ability, enables a more intuitive experience [13], makes it easier to
control and navigate drones [14], and enables drones to perform more complex tasks.

We designed the air–ground integrated intelligent cognition visual enhancement
system (VisionICE), combining AR and UAV technology according to the actual demand.
The system relies on the wireless camera on the helmet and UAV to survey and shoot
the target from ground and air perspectives. The cloud server recognizes and detects the
returned video in real time. Finally, the AR display device receives the results of intelligent
cognition and precise positioning. In real time, searchers can obtain the target recognition
results and the visual experience beyond reality from air and ground perspectives. In
contrast to conventional post-disaster search and rescue operations, the proposed system
boasts several advantages, including precise target recognition, extensive search range, high
mobility, and a straightforward process. It effectively surmounts the limitations commonly
associated with traditional search methods, such as reduced efficiency, restricted field of
view, and suboptimal environmental adaptability. The primary contributions of this paper
can be summarized as follows.

(1) Development of an air–ground integrated intelligent cognition visual enhancement
system called VisionICE. This system utilizes wireless image sensors on a drone and
camera-equipped helmet to simultaneously obtain air–ground perspective images,
achieving efficient patrols on a large scale in particular environments to address the
issues of low efficiency and limited search range in post-disaster search and rescue
operations.

(2) Based on the YOLOv7 algorithm, object detection has been achieved in scenes such
as highways, villages, farmland, mountains, and forests. In practical applications,
YOLOv7 can accurately identify the target class, effectively locate the target position,
and achieve a detection accuracy of up to 97% for interested targets. The YOLOv7
model has a detection speed of 40 FPS, which can meet the requirements of real-time
target detection and provide reliable target recognition results for searchers.

(3) Utilizing portable AR intelligent glasses, real-time display of object detection results
on the cloud server and onboard computer provides searchers with an immersive
visual experience. This improves the situational awareness of search personnel by
issuing a potential threat or anomaly alerts. Compared to traditional post-disaster
search and rescue operations, VisionICE exhibits significantly strong interactivity,
experiential capabilities, and versatility.

The organization of this paper is outlined as follows: Section 2 presents a review of
the relevant literature. Section 3 delineates the research methodology employed in this
study. Section 4 furnishes the experimental results and subsequent analysis of the proposed
algorithm. Finally, Section 5 offers the concluding remarks.
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2. Related Work
2.1. Drone Search and Rescue System

UAVs are becoming increasingly popular in search and rescue missions due to their
ability to quickly and efficiently cover large areas and provide real-time situational aware-
ness. By being equipped with various sensors such as cameras, thermal imaging equipment,
and LiDAR, drones can detect and locate individuals or objects in areas that are difficult or
dangerous for human rescuers to access.

In search and rescue missions, drones are typically used to search for missing persons
or survivors in disaster areas and identify dangerous areas or obstacles that may pose
a risk to rescue personnel. At the same time, drones can provide real-time situational
awareness to help decision-making and coordinate rescue work [15,16]. In addition, drones
can transport medical supplies, equipment, and personnel to remote or inaccessible areas.
Martinez-Alpiste et al. [1] used drones and smartphones equipped with convolutional
neural networks to achieve human detection. Yang et al. [2] utilized unmanned aerial
vehicles and unmanned surface vehicles to collaborate for maritime search and rescue, and
used reinforcement learning (RL) to achieve path planning. Gotovac et al. [5] utilized drones
to pre-acquire aerial images, and then used convolutional neural networks to improve
the efficiency and reliability of search and rescue. The problem with this method is that it
cannot be detected in real time.

Compared to traditional search and rescue methods, the use of drones in search and
rescue missions has several advantages. Firstly, drones can quickly and efficiently cover
large areas, providing a broader perspective than traditional search methods [17]. Secondly,
drones can operate in hazardous environments such as fires, floods, and earthquakes,
reducing the risk of death and injury for search and rescue personnel. Thirdly, drones
can provide real-time data and images for ground search and rescue personnel, enabling
more effective decision-making and coordination. Therefore, to address the difficulty
of on-site search and rescue personnel in specific environments, this article designs and
implements a comprehensive search and rescue system (VisionICE) based on unmanned
aerial vehicles. Compared with existing methods, the VisionICE system improves the
detection accuracy and efficiency of targets in search and rescue operations, while also
possessing real-time performance.

2.2. Target Detection Algorithm

Intelligent recognition and target detection are both concepts related to computer
vision, artificial intelligence (AI), and machine learning. They are interrelated but serve
different purposes in the processing and analysis of visual data. Intelligent recognition
refers to the process of identifying and categorizing objects or patterns within an image
or video by leveraging AI and machine learning algorithms. Intelligent recognition tasks
can include object recognition, face recognition, character recognition, and more. Target
detection is a specific application of intelligent recognition that focuses on identifying and
locating specific objects within an image or video. Target detection may involve finding
objects of interest, such as people, vehicles, or animals, among a complex background. It
can be said that target detection is a subcategory of intelligent recognition, as it involves
the identification and localization of specific objects within a given visual scene.

The target detection algorithms based on deep learning use deep neural networks to
extract shallow and high-level features of images automatically. Figure 1 illustrates the
development of target detection algorithms. Compared to the traditional algorithms with
manually designed components, the new feature extraction method substantially improves
the accuracy and speed of target detection. Moreover, for application scenarios with high
environmental complexity, large data volume, and varied target scales, the performance
advantages of deep learning algorithms are more prominent. Anchor-based object detec-
tion algorithms primarily encompass two categories: two-stage algorithms [18–22] and
one-stage algorithms [23–30]. As a prototypical two-stage algorithm, Faster R-CNN [19]
employs Region Proposal Networks (RPN) to supplant the window selection method gov-
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erned by manually designed rules, thereby achieving a more efficient acquisition of feature
region candidate bounding boxes. Subsequently, the algorithm conducts classification and
positional information regression on these candidate frames. While the two-stage object
detection algorithm exhibits high accuracy, its processing speed is relatively slow, posing a
challenge for meeting real-time performance requirements in practical application contexts.
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One-stage target detection algorithms, represented by the YOLO series [23,25–31],
have witnessed the evolution of target detection in the era of deep learning. In contrast to
object detection architectures based on candidate regions, the primary motivation behind
employing a one-stage object detection algorithm with a regression-based architecture is
to achieve enhanced speed and efficiency. This object detection model circumvents the
extraction of candidate bounding boxes and predicts the target directly via an end-to-
end methodology, converting object detection into regression prediction within a single
network, thereby achieving a fundamental improvement in detection speed. YOLO’s early
efficiency improvement came at the expense of accuracy, due to its exclusive reliance on
predicting the target bounding box on the terminal layer of the feature map. To ameliorate
the localization accuracy of the regression architecture, SSD [24] uses multiple convolutional
layers of different sizes for bounding box (bbox) prediction, significantly improving the
localization accuracy of multi-scale targets. In addition, YOLOv2 [25] and YOLOv3 [26]
also borrow the idea of Faster R-CNN and introduce an anchor box to improve the target
localization accuracy.

With the improvement of the algorithm, YOLOv5 [31] has made more progress in
performance with more balanced optimization of accuracy and speed. YOLOv7 [28]
is the most advanced new target detector in the YOLO series. The E-ELAN module
architecture designed in YOLOv7 [28] enables the framework to learn better. The E-ELAN
module uses expand, shuffle, and merge cardinality to achieve the ability to continuously
enhance the learning capability of the network without destroying the original gradient
path. In addition, YOLOv7 [28] uses composite model scaling to balance running speed and
detection accuracy, making it suitable for various computing devices. To detect and identify
the targets in the air–ground view more accurately and meet the real-time requirements,
we choose the current state-of-the-art YOLOv7 [28] model to achieve intelligent target
detection and recognition.

2.3. Drone Augmented Reality Technology

In response to the swift progression of information technology, virtual reality and
augmented reality have increasingly garnered attention within their respective fields.
Virtual reality is a wholly established virtual environment that allows humans to enter a
new world out of the existing environment. Augmented reality is developed from virtual
reality and aims to enhance human capabilities, provide various auxiliary information
for humans, become an important hub to communicate between individual humans and
the information world, and connect the physical world with the information world more
closely. According to the proportion of virtual and reality in a system, the system can be
divided into four categories: real reality, augmented reality, enhanced virtualization, and
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virtual reality, as shown in Figure 2. In turn, augmented reality and enhanced virtualization
can be collectively called hybrid reality.
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Augmented reality represents a technological approach that merges the physical world
with virtual information through real-time computational processing and multi-sensor
fusion [31–37]. This technology superimposes virtual information on factual data and
provides an interface for human–digital world interaction [9,38]. With the development of
new information technology, head-mounted augmented reality devices (e.g., AR glasses)
have become the most mainstream augmented reality devices in manufacturing [39,40].
Hietanen et al. [41] designed a shared spatial model for human–machine cooperation based
on depth perception to show the workspace of a fixed-frame robotic arm to the operator
in real-time through 3D head-mounted AR glasses. Jost et al. [42] informed users of the
location of their peripheral out-of-sight robots through AR glasses.

In recent years, researchers and practitioners have explored the use of AR technology to
enhance the capabilities of drones, enabling them to perform complex tasks and providing
real-time situational awareness to operators. The combination of AR technology and
drones brings several advantages. Firstly, it enables operators to have a more intuitive
and immersive experience, making it easier to control and navigate drones. Secondly, it
enhances the situational awareness of operators, enabling them to make wiser decisions and
respond quickly to constantly changing conditions. Thirdly, it enables drones to perform
more complex tasks such as aerial inspections, surveying, and measurement. Kikuchi
et al. [11] combined AR technology and drones, and a city digital twin method with an
aerial perspective has been developed to avoid occlusion issues. Huuskonen et al. [12]
determined the location of soil samples using aerial images captured by drones and guided
users to the sampling point using AR intelligent glasses. Liu et al. [13] utilized AR devices
to interact with autonomous drones and explore the environment. Erat et al. [14] used
AR technology to obtain an external center view to help drones have stronger spatial
understanding results in hazardous areas.

Drone AR technology has the advantage of virtual–real integration, which can help
operators to improve the field environment perception, reduce the human brain workload
and information processing stress, and provide operators with experiences beyond the
real-world perception. Therefore, this paper obtains target detection results and rich visual
enhancement experience in real time based on wireless AR smart glasses. Combining this
with drone technology provides enhanced situational awareness for operators and enables
drones to perform more complex tasks.

3. Our Approach

In developing the VisionICE system, the environment and usage habits are fully
considered, and the system has strong reliability, operability, and integrity. Figure 3
illustrates the workflow of the system. VisionICE system is based on a UAV and a camera-
equipped helmet, and it surveys the inspection area from ground and air perspectives. For
the first perspective, the operator defines the inspection region from within the ground
control station (GCS). The ground control station subsequently formulates a flight path
based on the demarcated area. It transmits it to the flight platform, executing the patrol
following the predetermined route. For the second, the operator wears a helmet with
a camera and films a ground-view video to assist the human eye in achieving a ground
search. The cloud server detects and identifies the dual-view image information in real time.
Finally, it projects the target intelligent cognitive results onto AR glasses to create a hybrid
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visually enhanced intelligent cognitive monitoring screen, which lays the foundation for
subsequent decisions such as target tracking.
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3.1. Hardware Framework

The component models of the VisionICE system are shown in Table 1. The hardware
architecture of the VisionICE system primarily comprises four components: a UAV, camera-
equipped helmet, portable AR display device, and cloud server, as shown in Figure 4.
Among them, the helmet and UAV have image acquisition equipment, which can survey
and film the target from ground and air viewpoints. The cloud server calculates and
processes the returned video in real time. The portable AR display device selects BT-300
AR smart glasses to display intelligent cognitive results with hybrid visual augmentation.

Table 1. The component list of system hardware.

Systems Component List Specification

S500 Quadrotor UAV

Flight Controller Pixhawk 2.4.8
Electronic Speed Control XXD-40A

Motor QM3507-680KV
Remote Control AT9S

Digital Transmission Module 3DR V5 Radio
Image Transmission Module R2TECK-DVL1

GPS Module GPS M8N
Sonar Obstacle Avoidance Module RCWL-1605

Power Supply System 4S Lithium Cell
Onboard Computer Jetson Xavier NX

PTZ Camera FIREFLY 8s

Helmet Camera IP Camera

AR Glasses Epson MOVERIO BT-300

3.1.1. UAV System Components

The hardware components of the UAV encompass a remote control, sonar module,
GPS module, and Pan-tilt-Zoom (PTZ) camera, as illustrated in Figure 5. The UAV employs
a Pixhawk flight controller, and the ground control station oversees and manages the UAV’s
flight to achieve target detection and identification. The UAV completes communication
between the flight control system and the ground control station through the digital
transmission module. The UAV uses the GPS module and the Pixhawk flight control
system to achieve positioning and navigation. The UAV uses the electric PTZ to install an
image acquisition module. The PTZ extends the search range of the image sensor while
maintaining a stable picture. The image sensor has a maximum frame rate of 120 FPS
and supports up to 1600 W pixels. The images are processed by the onboard computer.
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The onboard computer is equipped with the kernel correlation filter (KCF) target tracking
algorithm to realize the single target tracking function of the UAV.
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3.1.2. Camera-Equipped Helmet

The camera-equipped helmet has a lightweight image acquisition module because of
its portability and range stability. The image acquisition module uses a webcam with a
volume of 25 × 25 × 30 mm3 and a weight of 30 g. Its maximum frame rate is 25 FPS, the
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wide-angle level is 95 degrees, and the diagonal is 120 degrees. It supports wireless CMOS
image transmission and can achieve real-time communication of images at a distance.
Figure 6 depicts the camouflaged helmet equipped with the image acquisition module.
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3.1.3. AR Smart Glasses

Epson MOVERIO BT-300 AR smart glasses are used as the remote display device for
intelligent cognitive results to meet the actual use requirements of outdoor environments,
as shown in Figure 7. The size of BT-300 AR glasses is only 178 × 191 × 25 mm3, and
the weight is 69 g, which reaches the level of lightweight wearable devices. BT-300 AR
glasses are wirelessly connected and can interact with cloud computing devices for remote
display. With no external power supply, the standby time of BT-300 AR glasses reaches 6 h.
Compared to head-mounted AR display devices, the BT-300 AR glasses are small, light in
weight, and have a long standby time, significantly reducing user interference. As flight
glasses, the most apparent advantage of Epson MOVERIO BT-300 AR glasses is to avoid
frequent switching between UAV, remote control, and ground view. BT-300 AR glasses
significantly improve takeoff, landing, and low-altitude flight safety.
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3.2. Software Framework

The software components of the VisionICE system primarily consist of a UAV nav-
igation control module, a target recognition module, and a multi-process information
communication module. The UAV navigation control module is responsible for managing
the attitude and position of the UAV, in addition to planning its patrol area. The target
recognition module primarily focuses on target detection and identification. The multi-
process information communication module chiefly ensures the coordination of information
sharing among various system components, preventing process congestion from leading to
software failures. Figure 8 depicts the overview of the system software architecture.

3.2.1. UAV Navigation Control Module

The operation of UAVs can be managed via remote control devices or ground control
stations (GCS). The GCS serves as the primary interface between the UAV and its operators.
It is responsible for monitoring, controlling, and managing the UAV’s flight operations,
providing real-time communication, telemetry data, and mission planning capabilities. The
GCS features a user-friendly interface that allows operators to input commands, monitor
the UAV’s status, and visualize its position on a map. Upon the operator’s demarcation
of the patrol region, the GCS autonomously devises a flight trajectory. This flight plan is
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subsequently conveyed to the UAV through a digital transmission apparatus, facilitating
autonomous navigation along the prearranged path. When the UAV detects a search target,
the GCS’ detection and identification software displays the target’s category and location
and issues a “target found” alert.
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3.2.2. Target Recognition Module

The VisionICE system utilizes the state-of-the-art YOLOv7 object detection model.
YOLOv7 has enhanced target detection accuracy through improved network modules and
optimization methods. YOLOv7 increases the training cost but not the inference cost, and
has a faster detection speed. Figure 9 illustrates the structure of the YOLOv7 network. First,
the input image is resized to 640 × 640. Next, it is input into the Backbone network. Then
the Head layer generates three feature maps with different sizes. Finally, the RepConv
outputs the outcomes of the prediction.
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The Backbone of YOLOv7 has a total of 50 layers. After four convolutional layers,
followed by the ELAN module, and finally, three MPs and ELAN, the feature outputs of
three scales are obtained. Among them, ELAN comprises several CBSs, including Conv,
BN, and SiLU. The ELAN module’s input and output feature size are kept constant. The
number of channels changes in the beginning, with two CBSs, and the latter several input
channels are kept the same as the output channels. The primary components of the MP
layer are Maxpool and CBS, and the distinction between MP1 and MP2 is the number
of channels.

The Neck of YOLOv7 is similar to YOLOv4 and YOLOv5, which is a PAFPN structure.
First, it downsampled the output feature map of Backbone 32 times to obtain the feature
map C5. Then after SPPCSPC, the number of channels is changed from 1024 to 512. The
output of the Backbone is first fused according to top-down and C4 and C3 to obtain P3,
P4, and P5. Secondly, it integrates the bottom-up with P4 and P5. In contrast to YOLOV5,
YOLOV7 substitutes the downsampling layer for the MP2 layer and the CSP module for
the ELAN-H module. For P3, P4, and P5 outputs from PAFPN, the number of channels is
adjusted through RepConv. Finally, 1 × 1 convolution is used to predict objectness, class,
and bbox. RepConv has the summation output of the three branches during training, and
the parameters of the branches are re-parameterized to the main branch during inference.

YOLOv7 initially partitions the input image into uniformly sized S × S grid cells. It
detects and classifies the detected objects if their centers fall into the grids. Each grid pre-
dicts B bounding boxes and confidence levels. Pre-set thresholds filter multiple bounding
boxes to remove those with lower confidence levels. Finally, NMS is used to obtain the
final detection and classification results.

YOLOv7 processes target region regression and region classification in parallel, where
the target region regression contains two parameters: target center coordinates (xi, yi)
and target size (wi, hi), both of which are relative quantities based on image size, ranging
between [0, 1]. Set B to the number of prediction targets in a single grid and C to the target
category. The total output of the output layer is an S× S× (5B + C) order tensor where 5B
contains the position, size, and probability of the target, and C represents the probability of
each category in the grid. The loss function expression of the network is as follows.

L = λco
s2

∑
i=1

B
∑

j=1
1obj

ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+λco
s2
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B
∑

j=1
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(
√
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√

ŵi)
2
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√
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√
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2]

+
s2

∑
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ij (Ci − Ĉi)
2
+ λnoobj

s2

∑
i=1

B
∑

j=1
1noobj

ij (Ci − Ĉi)
2

+
s2

∑
i=1

1obj
i

B
∑

c∈classes
(pi(c)− pi(ĉ))

2

(1)

where λco denotes the coordinate weight, and (x̂i, ŷi, ŵi, ĥi) represents the predicted target
position and size. 1obj

ij denotes the indicator function for the j prediction of the grid i as

the target, the corresponding 1noobj
ij denotes its indicator function for negative examples,

and λnoobj is the penalty factor for negative samples in the prediction results. The network
weight is obtained by minimizing the loss function used to train the network. Then predict
each category’s probability and target location of each grid. Combining the two results, the
target location and category with the highest likelihood in each grid are finally output.

Take the vehicle and pedestrian targets as examples to train the YOLOv7 model. The
training process is based on the PyTorch deep learning framework. The server used in the
training process has two Intel Xeon Gold 6230 (2.1 GHz/20C/27.5ML3) CPUs and two
NVIDIA RTX 8000 GPUs. To better obtain the characteristics of the data and improve the
performance and generalization ability of the model, the cosine annealing algorithm is used
for model training. The model training process sets Epoch to 300, batch size to 8, learning
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rate to 0.001, and attenuation coefficient to 0.0005. The loss value curve of the model is
shown in Figure 10.

Drones 2023, 7, x FOR PEER REVIEW 11 of 18 
 

( , )i ix y  and target size ( , )i iw h , both of which are relative quantities based on image size, 

ranging between [0,1] . Set B to the number of prediction targets in a single grid and C to 

the target category. The total output of the output layer is an (5 )S S B C  +  order tensor 

where 5B contains the position, size, and probability of the target, and C represents the 

probability of each category in the grid. The loss function expression of the network is as 

follows. 

2

2

2 2

2

2 2

1 1

2 2

1 1

2 2

1 1 1 1

2

1 classes

ˆ ˆ1 ( ) ( )

ˆˆ1 ( ) ( )

ˆ ˆ1 ( ) 1 ( )

ˆ1 ( ( ) ( ))

s B
obj

co ij i i i i

i j

s B
obj

co ij i i i i

i j

s B s B
obj noobj

ij i i noobj ij i i

i j i j

s B
obj

i i i

i c

L x x y y

w w h h

C C C C

p c p c







= =

= =

= = = =

= 

 = − + − 

 + − + −
  

+ − + −

+ −





 

 

 (1) 

where co  denotes the coordinate weight, and ˆˆ ˆ ˆ( , , , )i i i ix y w h  represents the predicted tar-

get position and size. 1obj

ij  denotes the indicator function for the j prediction of the grid i 

as the target, the corresponding 1noobj

ij  denotes its indicator function for negative exam-

ples, and noobj  is the penalty factor for negative samples in the prediction results. The 

network weight is obtained by minimizing the loss function used to train the network. 

Then predict each category’s probability and target location of each grid. Combining the 

two results, the target location and category with the highest likelihood in each grid are 

finally output. 

Take the vehicle and pedestrian targets as examples to train the YOLOv7 model. The 

training process is based on the PyTorch deep learning framework. The server used in the 

training process has two Intel Xeon Gold 6230 (2.1 GHz/20C/27.5ML3) CPUs and two 

NVIDIA RTX 8000 GPUs. To better obtain the characteristics of the data and improve the 

performance and generalization ability of the model, the cosine annealing algorithm is 

used for model training. The model training process sets Epoch to 300, batch size to 8, 

learning rate to 0.001, and attenuation coefficient to 0.0005. The loss value curve of the 

model is shown in Figure 10. 

 

Figure 10. The loss curve of YOLOv7. Figure 10. The loss curve of YOLOv7.

The experiment selected the mean average precision (mAP) and frames per second
(FPS) as indicators to evaluate the performance of the YOLOv7 algorithm. The experimental
results show that when IoU is set to 0.50, the trained mAP of the YOLOv7 model can reach
96.3%, with high target detection accuracy. When IoU increases from 0.5 to 0.95 in steps of
0.05, the mAP of the YOLOv7 model is 28.9%. The YOLOv7 model has a detection speed of
40 FPS, which can meet the requirements of real-time object detection.

3.2.3. Multi-Process Information Communication Module

Due to the complexity and unknown nature of the external environment of the Vision-
ICE system, the data transmission and communication link of the whole system adopts a
wireless connection, as shown in Figure 11. In the experimental and test state, the cloud
computing module first acquires real-time data from the image acquisition module. Then
the analyzed and processed data have to be projected onto the display device. There is a
large amount of data exchange in these two links. Therefore, the quality of the data wireless
communication module determines the realization and performance of the whole system
function. From the system’s real-time economy and portability perspective, a MERCURY
wireless router is used to build the local area network (LAN). The multi-process information
communication module plays a vital role in enhancing the overall robustness, efficiency,
and scalability of a software system by effectively managing and coordinating inter-process
communication and synchronization.
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4. Experiments and Analysis
4.1. Drone Search Flight Test

In order to thoroughly assess the feasibility and applicability of the VisionICE system,
we conducted a UAV target detection assessment and a single-target tracking flight exam-
ination under authentic circumstances in this paper. Firstly, we chose a road scenario to
preliminarily verify drone target detection and single-target tracking flight. The ability
to detect vehicles, pedestrians, and other obstacles in real-time in highway scenes can
effectively verify the real-time effectiveness of unmanned aerial vehicle systems. Due to
the high speed of vehicles, different lighting conditions, and the presence of occlusion and
complex backgrounds, highway scenes are particularly challenging for object detection
algorithms. Object detection algorithms must be able to accurately recognize and track
objects in these challenging environments to ensure the reliability of the VisionICE system.
In addition, object detection by drones in highway scenes can collect real-time information
about unexpected traffic accidents, which is of great significance for the search and rescue
of traffic accidents.

To verify the effectiveness and real-time performance of drone target detection, we
experimented on the highway to verify the effectiveness of UAV target detection and
tracking flight. Figures 12 and 13 depict the detection and recognition results of the UAV
flight at the height of 30 m in various highway scenarios.
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Figure 12 shows that the algorithm implemented in the present research exhibits
superior real-time performance during practical scene assessments, as well as a noteworthy
detection accuracy in small target detection. Figure 13 shows that the algorithm used in
this paper has high accuracy in the actual scene test and correctly classifies and locates the
vehicles and pedestrians.

Secondly, we selected the village farmland scene for single-target tracking flight testing
of unmanned aerial vehicles. Due to the vast farmland scene in villages and the lack of
obstacles, unmanned aerial vehicle search and rescue methods are very applicable. Drones
can be used to locate and track individual targets, such as lost hikers or trapped farmers,
and then guide search and rescue teams to that location using real-time images and GPS
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coordinates. This can greatly reduce the time and resources required of search and rescue
personnel in remote areas, and improve the safety and effectiveness of search and rescue
teams. The single-target tracking flight test results in chronological order are shown
in Figure 14.
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The algorithm used in this paper can successfully locate the critical target with high
accuracy in the single-target tracking flight test. At the same time, the UAV can track the
crucial target in real-time, and the flight process is very smooth, and it does not show
significant oscillation.

In addition, drones can quickly and efficiently cover large areas of mountains and
forests in search and rescue missions, especially in mountainous terrain where ground-
based search effects may be difficult or dangerous. Drones can provide detailed images
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of terrain and surrounding areas to detect and locate specific targets in forests, such as
animals or humans. This can help rescue personnel locate and rescue people lost or injured
in the forest. The search and rescue results of the VisionICE system are shown in Figure 15.
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From the recognition results, it can be seen that the YOLOv7 object detection algorithm
can accurately locate and recognize small targets, with a maximum detection accuracy of
97%. Moreover, this algorithm is robust to changes in target behavior, enabling accurate
detection of targets in different directions and postures. In addition, it can also accurately
detect targets under changing lighting and shrub occlusion conditions, with high accuracy
and robustness.

4.2. VisionICE System Function Display

The VisionICE system aims to use drones and camera-equipped helmets as the main
data collection platform, and AR glasses as the intelligent cognitive result visualization
platform. Camera-equipped helmets can protect the safety of search and rescue personnel
and also capture ground video for transmission to cloud servers. The detection and
recognition results of video data can assist the human eye in the ground target recognition,
avoiding false positives caused by artificial subjective speculation. Drones can detect and
track targets of interest within the patrol area from the air. Once the system detects a target,
the ground control station will issue an alarm, allowing the drone to approach the target
using a remote control or independently track the target using its target tracking algorithm.
AR glasses can display real-time object detection results on cloud servers and onboard
computers, and provide an augmented reality visual experience for search and rescue
personnel. In addition, AR glasses prevent operators from frequently lowering their heads
and raising their heads to control drones, facilitating the operation process and reducing
the possibility of mistakes during operation.

The system workflow is illustrated in Figure 16. Initially, the VisionICE system
delineates the patrol region via the ground control station, transmitting pertinent flight
commands to the UAV through digital communication channels to govern its motion.
Subsequently, the image acquisition apparatus onboard the UAV captures real-time visual
data of the patrolled area. At the same time, the helmet captures the ground’s visual image
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information in real time. Third, the visual image signals obtained from the air and ground
viewpoints are transmitted through the graphical transmission module. Fourth, the ground
control station receives the video signal and then detects and identifies the target in the
field of view in real time. Fifth, AR smart glasses project intelligent cognition results in real
time. The searcher can obtain the visual enhancement effect of hybrid viewpoints.
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The VisionICE system provides a new solution for post-disaster search and rescue
tasks by integrating drones, camera-equipped helmets, intelligent cognitive algorithms,
and AR technology. This method can search designated areas in real-time and from
multiple perspectives, providing valuable insights for search and rescue missions and other
applications. In addition, the system’s use of AR smart glasses enhances the searcher’s
situational awareness by overlaying intelligent cognitive results, further improving the
efficiency and effectiveness of the search process. The workflow and functionality of
this system demonstrate its potential to revolutionize object detection and tracking in
various fields.

5. Conclusions

We design an air–ground integrated intelligent cognition visual enhancement system
(VisionICE) based on UAVs, camera-equipped helmets, and AR glasses in this paper.
The combination of helmets and drones enables operators to have both ground and air
perspectives, and the use of AR glasses improves the operator’s situational awareness
ability. By using the YOLOv7 algorithm, the accuracy of object detection can reach 97%
in scenarios such as highways, villages, farmland, and forests, achieving real-time object
detection of 40 FPS. The VisionICE system improves the scope and efficiency of search and
rescue, solves the problem of personnel being unable to search in special environments, and
has the advantages of diverse fields of view, accurate recognition, rich visual experience,
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wide application scenarios, high intelligence, and convenient operation. However, the
use of the VisionICE system in search and rescue operations also faces some challenges.
The challenges in terms of drones include regulatory issues such as obtaining necessary
permits and complying with airspace restrictions, as well as technical challenges such
as ensuring the reliability and durability of drones and their components. In addition,
accurate and reliable sensor data are also needed, as well as the development of user-
friendly AR interfaces and software to effectively integrate with drone hardware and control
systems. Future applications of the system include battlefield surveillance, firefighting,
post-disaster search and rescue, criminal investigations, anti-terrorism and peacekeeping,
and many others.
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